Citation:
Shan Zhao, Xu Liu, Haotian Guo, Zonglin Liu, Pengfei Wang, Jie Shu, Tingfeng Yi. Synergistic design of high-entropy P2/O3 biphasic cathodes for high-performance sodium-ion batteries[J]. Acta Physico-Chimica Sinica,
;2026, 42(1): 100129.
doi:
10.1016/j.actphy.2025.100129
-
P2-type layered transition metal oxides (P2-NaxTMO2) have emerged as promising cathodes for sodium-ion batteries (SIBs) owing to their superior cycling stability and excellent rate capability. However, their practical application is significantly hindered by two major challenges. Firstly, irreversible phase transitions occur during high-voltage operation, which disrupt the structural integrity and deteriorate electrochemical performance. Secondly, their inherently low theoretical specific capacity fails to meet modern energy demands. To tackle these challenges, this study proposes a novel synergistic strategy that integrates high-entropy engineering with a biphasic P2/O3 structural design. An innovative cathode material, Na0.70Ni0.25Mn0.35Co0.15Fe0.05Ti0.20O2 (denoted as Na0.70NMCFT), was successfully synthesized via a high-temperature solid-state reaction. This material design critically incorporates five distinct transition metal cations into the transition metal (TM) layer, constructing a stabilized high-entropy configuration. Careful optimization of both the five TM elements and the sodium content was essential to precisely regulate the synthesis and formation of the desired integrated P2/O3 biphasic structure within this high-entropy host. Comprehensive structural characterization unequivocally confirms the successful construction of this tailored architecture. X-ray diffraction (XRD) and transmission electron microscopy (TEM) collectively confirm the successful construction of the P2/O3 biphasic architecture. The high-entropy engineering stabilizes the P2 phase through configurational entropy, effectively suppressing irreversible phase transitions and Na+/vacancy ordering during cycling, as evidenced by smoother charge/discharge profiles and ex-situ XRD analysis under high potentials. Meanwhile, the introduced O3 phase compensates for capacity shortages and improves cycling stability, working in tandem with the P2 phase. Critically, the interaction between the two phases enables a highly reversible transition between P2/O3-P2/P3, further enhancing the overall performance. Under the combined action of the high-entropy and biphasic strategies, Na0.70NMCFT exhibits optimal electrochemical performance. It delivers an initial discharge capacity of 102.08 mAh g−1 at 1C, retaining 88.15% after 200 cycles, demonstrating exceptional cycling stability. Moreover, even at 10C, Na0.70NMCFT still has an initial discharge specific capacity of 85.67 mAh g−1 and a capacity retention of up to 70% after 1,000 cycles. Kinetic analyses further reveal that Na0.70NMCFT possesses the lowest charge transfer resistance and the highest sodium-ion diffusion coefficient among the materials studied. In conclusion, this work demonstrates that the rational design of biphasic high-entropy cathodes can synergistically achieve superior rate capability, cycling stability, and maintain high theoretical capacity. It not only overcomes the key bottlenecks of P2-type oxides but also paves the way for the development of advanced SIB cathodes, establishing a new paradigm for the engineering of high-performance cathode materials in the field of sodium-ion batteries.
-
-
-
[1]
K. Tian, Y. Dang, Z. Xu, R. Zheng, Z. Wang, D. Wang, Y. Liu, Q. Wang, Energy Storage Mater. 73(2024) 103841, https://doi.org/10.1016/j.ensm.2024.103841.
-
[2]
F. Zhang, B. He, Y. Xin, T. Zhu, Y. Zhang, S. Wang, W. Li, Y. Yang, H. Tian, Chem. Rev. 124(2024) 4778, https://doi.org/10.1021/acs.chemrev.3c00728.
-
[3]
J. Mei, B. Li, S. Zhang, D. Xiao, P. Hu, G. Zhang, Acta Phys. Chim. Sin. 40(2024) 2407023, https://doi.org/10.3866/PKU.WHXB202407023.
-
[4]
X. Gui, Z. Xiang, T. Ren, W. Liu, Z. Pei, G. Long, Z. Fu, K. Wan, Z. Liang, Adv. Mater. 37(2025) 2417008, https://doi.org/10.1002/adma.202417008.
-
[5]
C. Huang, H. Zheng, N. Qin, C. Wang, L. Wang, J. Lu, Acta Phys. Chim. Sin. 40(2024) 2308051, https://doi.org/10.3866/PKU.WHXB202308051.
-
[6]
R. Usiskin, Y. Lu, J. Popovic, M. Law, P. Balaya, Y.-S. Hu, J. Maier, Nat. Rev. Mater. 6(2021) 1020, https://doi.org/10.1038/s41578-021-00324-w.
-
[7]
J.W. Kim, V. Augustyn, B. Dunn, Adv. Energy Mater. 2(2012) 141, https://doi.org/10.1002/aenm.201100494.
-
[8]
A. Bauer, J. Song, S. Vail, W. Pan, J. Barker, Y.H. Lu, Adv. Energy Mater. 8(2018) 1702869, https://doi.org/10.1002/aenm.201702869.
-
[9]
J. Jin, Y. Liu, X. Zhao, H. Liu, S. Deng, Q. Shen, Y. Hou, H. Qi, X. Xing, L. Jiao, J. Chen, Angew. Chem. Int. Ed. 62(2023) e202219230, https://doi.org/10.1002/anie.202219230.
-
[10]
C. Zhao, Q. Wang, Z. Yao, J. Wang, B. Sánchez-Lengeling, F. Ding, X. Qi, Y. Lu, X. Bai, B. Li, H. Li, A. Aspuru-Guzik, X. Huang, C. Delmas, M. Wagemaker, L. Chen, Y.-S. Hu, Science 370(2020) 708, https://doi.org/10.1126/science.aay9972.
-
[11]
Y. Wang, Z. Cao, Z. Du, X. Cao, S. Liang, Acta Phys. Chim. Sin. 41(2025) 100035, https://doi.org/10.3866/PKU.WHXB202406014.
-
[12]
Y.P. Deng, Z.G. Wu, R. Liang, Y. Jiang, D. Luo, A. Yu, Z. Chen, Adv. Funct. Mater. 29(2019), 1808522, https://doi.org/10.1002/adfm.201808522.
-
[13]
H.R. Yao, L. Zheng, S. Xin, Y.G. Guo, Sci. China Chem. 65(2022) 1076, https://doi.org/10.1007/s11426-022-1257-8.
-
[14]
N. Yabuuchi, K. Kubota, M. Dahbi, S. Komaba, Chem. Rev. 114(2014) 11636, https://doi.org/10.1021/cr500192f.
-
[15]
C. Delmas, C. Fouassier, P. Hagenmuller, Physica B+C 99(1980) 81, https://doi.org/10.1016/0378-4363(80)90214-4.
-
[16]
Y. Wen, C. Lin, H. Shen, K. Fang, F. Li, C. Luo, X. Wang, H. Peng, Y. Qiao, S. Zhuang, M. Lu, Chem. Eng. J. 506(2025) 160126, https://doi.org/10.1016/j.cej.2025.160126.
-
[17]
L. Yu, H. Dong, Y.-X. Chang, Z. Cheng, K. Xu, Y.-H. Feng, D. Si, X. Zhu, M. Liu, B. Xiao, P.-F. Wang, S. Xu, Sci. China Chem. 65(2022) 2005, https://doi.org/10.1007/s11426-022-1364-1.
-
[18]
G. Wan, B. Peng, L. Zhao, F. Wang, L. Yu, R. Liu, G. Zhang, SusMat 3(2023) 58, https://doi.org/10.1002/sus2.105.
-
[19]
L. Yao, P. Zou, C. Wang, J. Jiang, L. Ma, S. Tan, K.A. Beyer, F. Xu, E. Hu, H.L. Xin, Adv. Energy Mater. 12(2022) 2201989, https://doi.org/10.1002/aenm.202201989.
-
[20]
Y. Yao, Q. Dong, A. Brozena, J. Luo, J. Miao, M. Chi, C. Wang, I.G. Kevrekidis, Z.J. Ren, J. Greeley, G. Wang, A. Anapolsky, L. Hu, Science 376(2022) eabn3103, https://doi.org/10.1126/science.abn3103.
-
[21]
H. Liu, Y. Wang, X. Ding, Y. Wang, F. Wu, H. Gao, Sustainable Energy Fuels 8(2024) 1304, https://doi.org/10.1039/D3SE01597A.
-
[22]
Y. Jiang, W. Li, K. Luo, ACS Sustainable Chem. Eng. 12(2024) 8051, https://doi.org/10.1021/acssuschemeng.4c00185.
-
[23]
Y. Dong, Z. Zhou, Y. Ma, H. Zhang, F. Meng, Y. Wu, Y. Ma, ACS Energy Lett. 9(2024) 5096, https://doi.org/10.1021/acsenergylett.4c02223.
-
[24]
W. Zhang, K. Wang, H. Ning, Z. Qu, H. Luo, Q. Wei, P. Qing, X. Huang, X. Wang, G. Li, C. Huang, Z. Lan, W. Zhou, J. Guo, D. Huang, H. Liu, J. Power Sources 635(2025) 236516, https://doi.org/10.1016/j.jpowsour.2025.236516.
-
[25]
P. Zhang, G. Zhang, Y. Liu, Y. Fan, X. Shi, Y. Dai, S. Gong, J. Hou, J. Ma, Y. Huang, R. Zhang, J. Colloid Interface Sci. 654(2024) 1405, https://doi.org/10.1016/j.jcis.2023.10.129.
-
[26]
D. Zhou, W. Huang, X. Lv, F. Zhao, J. Power Sources 421(2019) 147, https://doi.org/10.1016/j.jpowsour.2019.02.061.
-
[27]
Y. Wang, M. Yan, K. Xu, Y.-X. Chang, J. Guo, Q. Wang, B. Wang, D. Wang, Y.-X. Yin, S. Xu, Inorg. Chem. Front. 9(2022) 5231, https://doi.org/10.1039/D2QI01018F.
-
[28]
D. Hao, G. Zhang, D. Ning, D. Zhou, Y. Chai, J. Xu, X. Yin, R. Du, G. Schuck, J. Wang, Y. Li, Nano Energy 125(2024) 109562, https://doi.org/10.1016/j.nanoen.2024.109562.
-
[29]
L. Yu, Z. Cheng, K. Xu, Y.-X. Chang, Y.-H. Feng, D. Si, M. Liu, P.-F. Wang, S. Xu, Energy Storage Mater. 50(2022) 730, https://doi.org/10.1016/j.ensm.2022.06.012.
-
[30]
E. Lee, J. Lu, Y. Ren, X. Luo, X. Zhang, J. Wen, D. Miller, A. DeWahl, S. Hackney, B. Key, D. Kim, M.D. Slater, C.S. Johnson, Adv. Energy Mater. 4(2014) 1400458, https://doi.org/10.1002/aenm.201400458.
-
[31]
C. Lin, P. Dai, X. Wang, J. Sun, S. Zhuang, L. Wu, M. Lu, Y. Wen, Chem. Eng. J. 480(2024) 147964, https://doi.org/10.1016/j.cej.2023.147964.
-
[32]
Z. Cheng, X.-Y. Fan, L. Yu, W. Hua, Y.-J. Guo, Y.-H. Feng, F.-D. Ji, M. Liu, Y.-X. Yin, X. Han, Y.-G. Guo, P.-F. Wang, Angew. Chem. Int. Ed. 61(2022) e202117728, https://doi.org/10.1002/anie.202117728.
-
[33]
X. Liu, X. Li, Y. Li, H. Zhang, Q. Jia, S. Zhang, W. Lei, EcoMat 4(2022) e12261, https://doi.org/10.1002/eom2.12261.
-
[34]
J.W. Sturman, E.A. Baranova, Y. Abu-Lebdeh, Front. Energy Res. 10(2022) 862551, https://doi.org/10.3389/fenrg.2022.862551.
-
[35]
W. Sun, L. Xiao, X. Wu, J. Alloys Compd. 772(2019) 465, https://doi.org/10.1016/j.jallcom.2018.09.185.
-
[36]
Z. Liu, J. Shen, S. Feng, Y. Huang, D. Wu, F. Li, Y. Zhu, M. Gu, Q. Liu, J. Liu, M. Zhu, Angew. Chem. Int. Ed. 60(2021) 20960, https://doi.org/10.1002/anie.202108109.
-
[37]
T. Jin, P.-F. Wang, Q.-C. Wang, K. Zhu, T. Deng, J. Zhang, W. Zhang, X.-Q. Yang, L. Jiao, C. Wang, Angew. Chem. Int. Ed. 59(2020) 14511, https://doi.org/10.1002/anie.202003972.
-
[38]
P. Zhou, Z. Che, J. Liu, J. Zhou, X. Wu, J. Weng, J. Zhao, H. Cao, J. Zhou, F. Cheng, Energy Storage Mater. 57(2023) 618, https://doi.org/10.1016/j.ensm.2023.03.007.
-
[39]
S. Jamil, F. Mudasar, T. Yuan, M. Fasehullah, G. Ali, K.H. Chae, O. Voznyy, Y. Zhan, M. Xu, ACS Appl. Mater. Interfaces 16(2024) 14669, https://doi.org/10.1021/acsami.3c15667.
-
[40]
T. Jin, H. Li, Y. Li, L. Jiao, J. Chen, Nano Energy 50(2018) 462, https://doi.org/10.1016/j.nanoen.2018.05.056.
-
[41]
M. Han, Z. Zou, J. Liu, C. Deng, Y. Chu, Y. Mu, K. Zheng, F. Yu, L. Wei, L. Zeng, T. Zhao, Small 20(2024) 2312119, https://doi.org/10.1002/smll.202312119.
-
[42]
Z. Li, M. Han, J. Wang, L. Zhang, P. Yu, Q. Li, X. Bai, J. Yu, Adv. Funct. Mater. 34(2024) 2404263, https://doi.org/10.1002/adfm.202404263.
-
[43]
Q. Shen, X. Zhao, Y. Liu, Y. Li, J. Zhang, N. Zhang, C. Yang, J. Chen, Adv. Sci. 7(2020) 2002199, https://doi.org/10.1002/advs.202002199.
-
[44]
Y. Guo, S. Pan, X. Yi, S. Chi, X. Yin, C. Geng, Q. Yin, Q. Zhan, Z. Zhao, F.-M. Jin, H. Fang, Y.-B. He, F. Kang, S. Wu, Q.-H. Yang, Adv. Mater. 36(2024) 2308493, https://doi.org/10.1002/adma.202308493.
-
[45]
N. Yabuuchi, M. Kajiyama, J. Iwatate, H. Nishikawa, S. Hitomi, R. Okuyama, R. Usui, Y. Yamada, S. Komaba, Nat. Mater. 11(2012) 512, https://doi.org/10.1038/nmat3309.
-
[46]
Z. Xu, H. Yang, X. Zhao, R. Zheng, Z. Song, Z. Wang, H. Sun, Y. Liu, D. Wang, ACS Appl. Mater. Interfaces 17(2025) 1085, https://doi.org/10.1021/acsami.4c16665.
-
[47]
X. Liang, Y.-K. Sun, Adv. Funct. Mater. 32(2022) 2206154, https://doi.org/10.1002/adfm.202206154.
-
[48]
R. Li, X. Qin, X. Li, J. Zhu, L.-R. Zheng, Z. Li, W. Zhou, Adv. Energy Mater. 14(2024) 2400127, https://doi.org/10.1002/aenm.202400127.
-
[49]
Z.J. Li, Y.W. Zhang, X. Wu, X.Q. Wu, R. Maudgal, H.W. Zhang, G. Han, Adv. Sci. 2(2015) 1500001, https://doi.org/10.1002/advs.201500001.
-
[50]
S.M. Oh, P. Oh, S.O. Kim, A. Manthiram, J. Electrochem. Soc. 164(2017) A321, https://doi.org/10.1149/2.0931702jes.
-
[51]
Y. Liu, Q. Shen, X. Zhao, J. Zhang, X. Liu, T. Wang, N. Zhang, L. Jiao, J. Chen, L.-Z. Fan, Adv. Funct. Mater. 30(2020) 1907837, https://doi.org/10.1002/adfm.201907837.
-
[52]
Z. Hu, Y. Niu, X. Rong, Y. Hu, Acta Phys. Chim. Sin. 40(2024) 2306005, https://doi.org/10.3866/PKU.WHXB202306005.
-
[53]
Y. Ma, Y. Ma, S.L. Dreyer, Q. Wang, K. Wang, D. Goonetilleke, A. Omar, D. Mikhailova, H. Hahn, B. Breitung, T. Brezesinski, Adv. Mater. 33(2021) 2101342, https://doi.org/10.1002/adma.202101342.
-
[54]
Q. Jiang, X. Li, Y. Hao, J. Zuo, R. Duan, J. Li, G. Cao, J. Wang, J. Wang, M. Li, X. Yang, M. Li, W. Li, Y. Xi, J. Zhang, W. Xiao, Adv. Funct. Mater. 35(2025) 2400670, https://doi.org/10.1002/adfm.202400670.
-
[1]
-
-
-
[1]
Zilin Hu , Yaoshen Niu , Xiaohui Rong , Yongsheng Hu . Suppression of Voltage Decay through Ni3+ Barrier in Anionic-Redox Active Cathode for Na-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(6): 2306005-0. doi: 10.3866/PKU.WHXB202306005
-
[2]
Jianbao Mei , Bei Li , Shu Zhang , Dongdong Xiao , Pu Hu , Geng Zhang . Enhanced Performance of Ternary NASICON-Type Na3.5−xMn0.5V1.5−xZrx (PO4)3/C Cathodes for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(12): 2407023-0. doi: 10.3866/PKU.WHXB202407023
-
[3]
Yuyao Wang , Zhitao Cao , Zeyu Du , Xinxin Cao , Shuquan Liang . Research Progress of Iron-based Polyanionic Cathode Materials for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 2406014-0. doi: 10.3866/PKU.WHXB202406014
-
[4]
Wenhui Li , Yakun Tang , Yusheng Zhou , Yue Zhang , Wenhai Zhang , Qingtao Ma , Lang Liu , Sen Dong , Yuliang Cao . Enhanced sodium storage performance of asphalt-derived hard carbon through intramolecular oxidation for high-performance sodium-ion batteries. Acta Physico-Chimica Sinica, 2025, 41(10): 100119-0. doi: 10.1016/j.actphy.2025.100119
-
[5]
Shuhong Xiang , Lv Yang , Yingsheng Xu , Guoxin Cao , Hongjian Zhou . Selective electrosorption of Cs(Ⅰ) from high-salinity radioactive wastewater using CNT-interspersed potassium zinc ferrocyanide electrodes. Acta Physico-Chimica Sinica, 2025, 41(9): 100097-0. doi: 10.1016/j.actphy.2025.100097
-
[6]
Yu Guo , Zhiwei Huang , Yuqing Hu , Junzhe Li , Jie Xu . Recent Advances in Iron-based Heterostructure Anode Materials for Sodium Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(3): 2311015-0. doi: 10.3866/PKU.WHXB202311015
-
[7]
Zhicheng JU , Wenxuan FU , Baoyan WANG , Ao LUO , Jiangmin JIANG , Yueli SHI , Yongli CUI . MOF-derived nickel-cobalt bimetallic sulfide microspheres coated by carbon: Preparation and long cycling performance for sodium storage. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 661-674. doi: 10.11862/CJIC.20240363
-
[8]
Xiaotian ZHU , Fangding HUANG , Wenchang ZHU , Jianqing ZHAO . Layered oxide cathode for sodium-ion batteries: Surface and interface modification and suppressed gas generation effect. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 254-266. doi: 10.11862/CJIC.20240260
-
[9]
Liangliang Song , Haoyan Liang , Shunqing Li , Bao Qiu , Zhaoping Liu . Challenges and strategies on high-manganese Li-rich layered oxide cathodes for ultrahigh-energy-density batteries. Acta Physico-Chimica Sinica, 2025, 41(8): 100085-0. doi: 10.1016/j.actphy.2025.100085
-
[10]
Zhuo WANG , Xiaotong LI , Zhipeng HU , Junqiao PAN . Three-dimensional porous carbon decorated with nano bismuth particles: Preparation and sodium storage properties. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 267-274. doi: 10.11862/CJIC.20240223
-
[11]
Xue Xiao , Jiachun Li , Xiangtong Meng , Jieshan Qiu . Sulfur-Doped Carbon-Coated Fe0.95S1.05 Nanospheres as Anodes for High-Performance Sodium Storage. Acta Physico-Chimica Sinica, 2024, 40(6): 2307006-0. doi: 10.3866/PKU.WHXB202307006
-
[12]
Yuying JIANG , Jia LUO , Zhan GAO . Development status and prospects of solid oxide cell high entropy electrode catalysts. Chinese Journal of Inorganic Chemistry, 2025, 41(9): 1719-1730. doi: 10.11862/CJIC.20250124
-
[13]
Xin Han , Zhihao Cheng , Jinfeng Zhang , Jie Liu , Cheng Zhong , Wenbin Hu . Design of Amorphous High-Entropy FeCoCrMnBS (Oxy) Hydroxides for Boosting Oxygen Evolution Reaction. Acta Physico-Chimica Sinica, 2025, 41(4): 2404023-0. doi: 10.3866/PKU.WHXB202404023
-
[14]
Lina Guo , Ruizhe Li , Chuang Sun , Xiaoli Luo , Yiqiu Shi , Hong Yuan , Shuxin Ouyang , Tierui Zhang . Effect of Interlayer Anions in Layered Double Hydroxides on the Photothermocatalytic CO2 Methanation of Derived Ni-Al2O3 Catalysts. Acta Physico-Chimica Sinica, 2025, 41(1): 100002-0. doi: 10.3866/PKU.WHXB202309002
-
[15]
Endong YANG , Haoze TIAN , Ke ZHANG , Yongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369
-
[16]
Wang Wang , Yucheng Liu , Shengli Chen . Use of NiFe Layered Double Hydroxide as Electrocatalyst in Oxygen Evolution Reaction: Catalytic Mechanisms, Electrode Design, and Durability. Acta Physico-Chimica Sinica, 2024, 40(2): 2303059-0. doi: 10.3866/PKU.WHXB202303059
-
[17]
Qing Xue , Shengyi Li , Yanan Zhao , Peng Sheng , Li Xu , Zhengxi Li , Bo Zhang , Hui Li , Bo Wang , Libin Yang , Yuliang Cao , Zhongxue Chen . Novel Alkaline Sodium-Ion Battery Capacitor Based on Active Carbon||Na0.44MnO2 towards Low Cost, High-Rate Capability and Long-Term Lifespan. Acta Physico-Chimica Sinica, 2024, 40(2): 2303041-0. doi: 10.3866/PKU.WHXB202303041
-
[18]
Yaping ZHANG , Tongchen WU , Yun ZHENG , Bizhou LIN . Z-scheme heterojunction β-Bi2O3 pillared CoAl layered double hydroxide nanohybrid: Fabrication and photocatalytic degradation property. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 531-539. doi: 10.11862/CJIC.20240256
-
[19]
Huafeng SHI . Construction of MnCoNi layered double hydroxide@Co-Ni-S amorphous hollow polyhedron composite with excellent electrocatalytic oxygen evolution performance. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1380-1386. doi: 10.11862/CJIC.20240378
-
[20]
Kai PENG , Xinyi ZHAO , Zixi CHEN , Xuhai ZHANG , Yuqiao ZENG , Jianqing JIANG . Progress in the application of high-entropy alloys and high-entropy ceramics in water electrolysis. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1257-1275. doi: 10.11862/CJIC.20240454
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(7)
- HTML views(1)
Login In
DownLoad: