Citation:
Binbin Liu, Yang Chen, Tianci Jia, Chen Chen, Zhanghao Wu, Yuhui Liu, Yuhang Zhai, Tianshu Ma, Changlei Wang. Hydroxyl-functionalized molecular engineering mitigates 2D phase barriers for efficient wide-bandgap and all-perovskite tandem solar cells[J]. Acta Physico-Chimica Sinica,
;2026, 42(1): 100128.
doi:
10.1016/j.actphy.2025.100128
-
All-perovskite tandem solar cells (TSCs) demonstrate exceptional potential to overcome the single-junction efficiency limit through enhanced photon harvesting across the solar spectrum and suppressed thermalization effects, achieving theoretical power conversion efficiencies surpassing 44%. Wide-bandgap perovskites solar cells (WBG PSCs) are crucial for tandem photovoltaics, and have witnessed exponential progress during the last decade. However, these devices suffer from severe open-circuit voltage (VOC) deficits, primarily due to interfacial recombination and carrier transport losses. A major contributor to these losses is the uncontrolled formation of insulating two-dimensional (2D) perovskite phases during surface passivation. Here, we introduce 4-hydroxyphenylethyl ammonium iodide (p-OHPEAI) as a multifunctional molecular additive to address this critical trade-off. Unlike conventional phenethyl ammonium iodide (PEAI), which forms the insulating 2D phase and the invert electric field by vertical molecular orientation that impedes charge extraction, the hydroxyl group (–OH) in p-OHPEAI enables parallel molecular adsorption on perovskite surfaces via synergistic interactions between amino (–NH3) and –OH groups. This configuration effectively eliminates the formation of insulating 2D perovskite phase, passivates undercoordinated halide and lead vacancies, reducing non-radiative recombination. Additionally, the polarity of p-OHPEAI generates a dipole moment at the perovskite/electron transport layer (ETL) interface, optimizing energy-level alignment and facilitating electron extraction. By incorporating p-OHPEAI into 1.77 eV WBG PSCs, we achieved a remarkable VOC of 1.344 V, corresponding to a minimal voltage deficit of 0.426 V, which is among the lowest reported VOC-deficit values for the inverted WBG PSCs with bandgaps ranging from 1.75 to 1.80 eV. The optimized device delivered a power conversion efficiency (PCE) of 19.24%, demonstrating superior performance compared to conventional PEAI-passivated cells. When integrated into all-perovskite TSCs, this strategy enabled a champion PCE of 28.50% (with a certified efficiency of 28.19%). Furthermore, the devices exhibited excellent operational stability, maintaining over 90% of their initial efficiency after 350 h of continuous illumination, highlighting the robustness of the hydroxyl-driven passivation approach. The introduction of hydroxyl groups in passivation molecules provides a versatile strategy to balance defect suppression and charge transport, bridging the gap between high voltage and efficient carrier extraction.
-
-
-
[1]
https://www.nrel.gov/pv/cell-efficiency.html. (Accessed 10 February 2025).
-
[2]
L. Canil, T. Cramer, B. Fraboni, D. Ricciarelli, D. Meggiolaro, A. Singh, M. N. Liu, M. Rusu, C. M. Wolff, N. Phung, et al., Energy Environ. Sci. 14(2021) 1429, https://doi.org/10.1039/d0ee02216k.
-
[3]
H. Chen, A. Maxwell, C. Li, S. Teale, B. Chen, T. Zhu, E. Ugur, G. Harrison, L. Grater, J. Wang, et al., Nature 613(2023) 676, https://doi.org/10.1038/s41586-022-05541-z.
-
[4]
C. Li, L. Chen, F. Jiang, Z. Song, X. Wang, A. Balvanz, E. Ugur, Y. Liu, C. Liu, A.Maxwell, et al., Nat. Energy 9(2024) 1388, https://doi.org/10.1038/s41560-024-01613-8.
-
[5]
W. Shockley, H. J. Queisser, J. Appl. Phys. 32(1961) 510, https://doi.org/10.1063/1.1736034.
-
[6]
Z. Yu, M. Leilaeioun, Z. Holman, Nat. Energy 1(2016) 16137, https://doi.org/10.1038/nenergy.2016.137.
-
[7]
Y. An, T. Ma, X. Li, Sol. RRL 5(2021) 2100199, https://doi.org/10.1002/solr.202100199.
-
[8]
S. Gu, R. Lin, Q. Han, Y. Gao, H. Tan, J. Zhu, Adv. Mater. 32(2020) 1907392, https://doi.org/10.1002/adma.201907392.
-
[9]
K. Xiao, Y. H. Lin, M. Zhang, R. D. J. Oliver, X. Wang, Z. Liu, X. Luo, J. Li, D. Lai, H. W. Luo, et al., Science 376(2022) 762, https://doi.org/10.1126/science.abn7696.
-
[10]
W. Chen, Y. D. Zhu, J. W. Xiu, G. C. Chen, H. M. Liang, S. C. Liu, H. S. Xue, E. Birgersson, J. W. Ho, X. S. Qin, et al., Nat. Energy 7(2022) 229, https://doi.org/10.1038/s41560-021-00966-8.
-
[11]
G. Yang, Z. W. Ren, K. Liu, M. C. Qin, W. Y. Deng, H. K. Zhang, H. B. Wang, J. W. Liang, F. H. Ye, Q. Liang, et al., Nat. Photonics 15(2021) 681, https://doi.org/10.1038/s41566-021-00829-4.
-
[12]
Q. Jiang, Y. Zhao, X. W. Zhang, X. L. Yang, Y. Chen, Z. M. Chu, Q. F. Ye, X. X. Li, Z. G. Yin, J. B. You, Nat. Photonics 13(2019) 460, https://doi.org/10.1038/s41566-019-0398-2.
-
[13]
T. K. Zhang, M. Z. Long, M. C. Qin, X. H. Lu, S. Chen, F. Y. Xie, L. Gong, J. Chen, M. Chu, Q. Miao, et al., Joule 2(2018) 2706, https://doi.org/10.1016/j.joule.2018.09.022.
-
[14]
Y. W. Jang, S. Lee, K. M. Yeom, K. Jeong, K. Choi, M. Choi, J. H. Noh, Nat. Energy 6(2021) 63, https://doi.org/10.1038/s41560-020-00749-7.
-
[15]
C. Li, R. Yang, G. Zhao, Y. Yue, W. Zhang, H. Zhang, Y. Zhang, S. Li, H. Zhou, Sol. RRL 8(2024) 2400201, https://doi.org/10.1002/solr.202400201.
-
[16]
C. Chen, Z. N. Song, C. X. Xiao, R. A. Awni, C. L. Yao, N. Shrestha, C. W. Li, S. S. Bista, Y. Zhang, L. Chen, et al., ACS Energy Lett. 5(2020) 2560, https://doi.org/10.1021/acsenergylett.0c01350.
-
[17]
X. Huo, S. Mariotti, Y. Li, T. Guo, C. Ding, P. Ji, S. Yuan, T. Li, N. Meng, X. Liu, et al., Energy Environ. Sci. 17(2024) 8658, https://doi.org/10.1039/d4ee02133a.
-
[18]
Z. Wu, Y. Zhao, C. Wang, T. Ma, C. Chen, Y. Liu, T. Jia, Y. Zhai, C. Chen, C. Zhang, et al., Adv. Mater. 37(2025) 2412943, https://doi.org/10.1002/adma.202412943.
-
[19]
S. Wang, A. Wang, X. Deng, L. Xie, A. Xiao, C. Li, Y. Xiang, T. Li, L. Ding, F. Hao, J. Mater. Chem. A 8(2020) 12201, https://doi.org/10.1039/D0TA03957H.
-
[20]
T. Yu, Z. Ma, Z. Huang, Y. Li, J. Tan, G. Li, S. Hou, Z. Du, Z. Liu, Y. Li, et al., ACS Appl. Mater. Interfaces 15(2023) 55813, https://doi.org/10.1021/acsami.3c12898.
-
[21]
J. Liu, C. Ai, C. Hu, B. Cheng, J. Zhang, Acta Phys. Chim. Sin. 40(2024) 2402006, https://doi.org/10.3866/PKU.WHXB202402006.
-
[22]
C. Chen, J. W. Liang, J. J. Zhang, X. X. Liu, X. X. Yin, H. S. Cui, H. B. Wang, C. Wang, Z. F. Li, J. B. Gong, et al., Nano Energy 90(2021) 106608, https://doi.org/10.1016/j.nanoen.2021.106608.
-
[23]
J. Zhuang, P. Mao, Y. Luan, X. Yi, Z. Tu, Y. Zhang, Y. Yi, Y. Wei, N. Chen, T. Lin, et al., ACS Energy Lett. 4(2019) 2913, https://doi.org/10.1021/acsenergylett.9b02375.
-
[24]
A. Ray, B. Martin-Garcia, M. Prato, A. Moliterni, S. Bordignon, D. Spirito, S. Marras, L. Goldoni, K. M. Boopathi, F. Moro, et al., ACS Appl. Mater. Interfaces 15(2023) 28166, https://doi.org/10.1021/acsami.3c03366.
-
[25]
G. Sadoughi, D. E. Starr, E. Handick, S. D. Stranks, M. Gorgoi, R. G. Wilks, M. Baer, H. J. Snaith, ACS Appl. Mater. Interfaces 7(2015) 13440, https://doi.org/10.1021/acsami.5b02237.
-
[26]
X. Chen, J. Zhang, C. Liu, Q. Lou, K. Zheng, X. Yin, L. Xie, P. Wen, C. Liu, Z. Ge, ACS Appl. Energy Mater. 4(2021) 11112, https://doi.org/10.1021/acsaem.1c02033.
-
[27]
Y. Shi, Z. Zhu, D. Miao, Y. Ding, Q. Mi, ACS Energy Lett. 9(2024) 1895, https://doi.org/10.1021/acsenergylett.4c00529.
-
[28]
J. Zhang, Y. Sun, C. Huang, B. Yu, H. Yu, Adv. Energy Mater. 12(2022) 2202542, https://doi.org/10.1002/aenm.202202542.
-
[29]
S. Xiong, F. Tian, F. Wang, A. Cao, Z. Chen, S. Jiang, D. Li, B. Xu, H. Wu, Y. Zhang, et al., Nat. Commun. 15(2024) 5607, https://doi.org/10.1038/s41467-024-50019-3.
-
[30]
T. Li, J. Xu, R. Lin, S. Teale, H. Li, Z. Liu, C. Duan, Q. Zhao, K. Xiao, P. Wu, et al., Nat. Energy 8(2023) 610, https://doi.org/10.1038/s41560-023-01250-7.
-
[31]
R. He, W. Wang, Z. Yi, F. Lang, C. Chen, J. Luo, J. Zhu, J. Thiesbrummel, S. Shah, K. Wei, et al., Nature 618(2023) 80, https://doi.org/10.1038/s41586-023-05992-y.
-
[32]
S. Liu, J. Li, W. Xiao, R. Chen, Z. Sun, Y. Zhang, X. Lei, S. Hu, M. Kober-Czerny, J. Wang, et al., Nature 632(2024) 536, https://doi.org/10.1038/s41586-024-07723-3.
-
[33]
H. D. Sun, S. W. Liu, X. X. Liu, Y. Gao, J. A. Wang, C. Y. Shi, H. Raza, Z. X. Sun, Y. Y. Pan, Y. Cai, et al., Small Methods 8(2024) 2400067, https://doi.org/10.1002/smtd.202400067.
-
[34]
X. Lin, H. Su, S. He, Y. Song, Y. Wang, Z. Qin, Y. Wu, X. Yang, Q. Han, J. Fang, et al., Nat. Energy 7(2022) 520, https://doi.org/10.1038/s41560-022-01038-1.
-
[35]
X. Li, W. Zhang, X. Guo, C. Lu, J. Wei, J. Fang, Science 375(2022) 434, https://doi.org/10.1126/science.abl5676.
-
[36]
C. Wang, Y. Zhao, T. Ma, Y. An, R. He, J. Zhu, C. Chen, S. Ren, F. Fu, D. Zhao, et al., Nat. Energy 7(2022) 744, https://doi.org/10.1038/s41560-022-01076-9.
-
[37]
S. F. Hu, K. Otsuka, R. Murdey, T. Nakamura, M. A. Truong, T. Yamada, T. Handa, K. Matsuda, K. Nakano, A. Sato, et al., Energy Environ. Sci. 15(2022) 2096, https://doi.org/10.1039/d2ee00288d.
-
[38]
Q. Jiang, J. H. Tong, Y. M. Xian, R. A. Kerner, S. P. Dunfield, C. X. Xiao, R. A. Scheidt, D. Kuciauskas, X. M. Wang, M. P. Hautzinger, et al., Nature 611(2022) 278, https://doi.org/10.1038/s41586-022-05268-x.
-
[39]
C. L. Wang, D. W. Zhao, C. R. Grice, W. Q. Liao, Y. Yu, A. Cimaroli, N. Shrestha, P. J. Roland, J. Chen, Z. H. Yu, et al., J. Mater. Chem. A 4(2016) 12080, https://doi.org/10.1039/c6ta04503k.
-
[40]
D. W. Zhao, Y. Yu, C. L. Wang, W. Q. Liao, N. Shrestha, C. R. Grice, A. J. Cimaroli, L. Guan, R. J. Ellingson, K. Zhu, et al., Nat. Energy 2(2017) 17018, https://doi.org/10.1038/nenergy.2017.18.
-
[41]
R. A. Awni, Z. N. Song, C. Chen, C. W. Li, C. L. Wang, M. A. Razooqi, L. Chen, X. M. Wang, R. J. Ellingson, J. V. Li, et al., Joule 4(2020) 644, https://doi.org/10.1016/j.joule.2020.01.012.
-
[42]
R. Chen, S. Liu, X. Xu, F. Ren, J. Zhou, X. Tian, Z. Yang, X. Guanz, Z. Liu, S. Zhang, et al., Energy Environ. Sci. 15(2022) 2567, https://doi.org/10.1039/d2ee00433j.
-
[43]
D. Zhao, C. Chen, C. Wang, M. M. Junda, Z. Song, C. R. Grice, Y. Yu, C. Li, B. Subedi, N. J. Podraza, et al., Nat. Energy 3(2018) 1093, https://doi.org/10.1038/s41560-018-0278-x.
-
[44]
N. Koch, L. Naumann, F. Pretis, N. Ritter, M. Schwarz, Nat. Energy 7(2022) 844, https://doi.org/10.1038/s41560-022-01095-6.
-
[1]
-
-
-
[1]
Yixuan Gao , Lingxing Zan , Wenlin Zhang , Qingbo Wei . Comprehensive Innovation Experiment: Preparation and Characterization of Carbon-based Perovskite Solar Cells. University Chemistry, 2024, 39(4): 178-183. doi: 10.3866/PKU.DXHX202311091
-
[2]
Nengmin ZHU , Wenhao ZHU , Xiaoyao YIN , Songzhi ZHENG , Hao LI , Zeyuan WANG , Wenhao WEI , Xuanheng CHEN , Weihai SUN . Preparation of high-performance CsPbBr3 perovskite solar cells by the aqueous solution solvent method. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1131-1140. doi: 10.11862/CJIC.20240419
-
[3]
Yameen Ahmed , Xiangxiang Feng , Yuanji Gao , Yang Ding , Caoyu Long , Mustafa Haider , Hengyue Li , Zhuan Li , Shicheng Huang , Makhsud I. Saidaminov , Junliang Yang . Interface Modification by Ionic Liquid for Efficient and Stable FAPbI3 Perovskite Solar Cells. Acta Physico-Chimica Sinica, 2024, 40(6): 2303057-0. doi: 10.3866/PKU.WHXB202303057
-
[4]
Zongsheng LI , Yichao WANG , Yujie WANG , Wenhao ZHU , Xiaoyao YIN , Wudan YANG , Songzhi ZHENG , Weihai SUN . Preparation of CsPbBr3 perovskite solar cells via bottom interface modification with methylammonium chloride. Chinese Journal of Inorganic Chemistry, 2025, 41(9): 1805-1816. doi: 10.11862/CJIC.20250066
-
[5]
Zeyuan WANG , Songzhi ZHENG , Hao LI , Jingbo WENG , Wei WANG , Yang WANG , Weihai SUN . Effect of I2 interface modification engineering on the performance of all-inorganic CsPbBr3 perovskite solar cells. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1290-1300. doi: 10.11862/CJIC.20240021
-
[6]
Xiaoyao YIN , Wenhao ZHU , Puyao SHI , Zongsheng LI , Yichao WANG , Nengmin ZHU , Yang WANG , Weihai SUN . Fabrication of all-inorganic CsPbBr3 perovskite solar cells with SnCl2 interface modification. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 469-479. doi: 10.11862/CJIC.20240309
-
[7]
Mingxuan Qi , Lanyu Jin , Honghe Yao , Zipeng Xu , Teng Cheng , Qi Chen , Cheng Zhu , Yang Bai . Recent progress on electrical failure and stability of perovskite solar cells under reverse bias. Acta Physico-Chimica Sinica, 2025, 41(8): 100088-0. doi: 10.1016/j.actphy.2025.100088
-
[8]
Ying Liang , Yuheng Deng , Shilv Yu , Jiahao Cheng , Jiawei Song , Jun Yao , Yichen Yang , Wanlei Zhang , Wenjing Zhou , Xin Zhang , Wenjian Shen , Guijie Liang , Bin Li , Yong Peng , Run Hu , Wangnan Li . Machine learning-guided antireflection coatings architectures and interface modification for synergistically optimizing efficient and stable perovskite solar cells. Acta Physico-Chimica Sinica, 2025, 41(9): 100098-0. doi: 10.1016/j.actphy.2025.100098
-
[9]
Jizhou Liu , Chenbin Ai , Chenrui Hu , Bei Cheng , Jianjun Zhang . Accelerated Interfacial Electron Transfer in Perovskite Solar Cell by Ammonium Hexachlorostannate Modification and fs-TAS Investigation. Acta Physico-Chimica Sinica, 2024, 40(11): 2402006-0. doi: 10.3866/PKU.WHXB202402006
-
[10]
Chuan′an DING , Weibo YAN , Shaoying WANG , Hao XIN . Preparation of wide-band gap copper indium gallium sulfide solar cells by solution method. Chinese Journal of Inorganic Chemistry, 2025, 41(9): 1755-1764. doi: 10.11862/CJIC.20250198
-
[11]
Pengyu Dong , Yue Jiang , Zhengchi Yang , Licheng Liu , Gu Li , Xinyang Wen , Zhen Wang , Xinbo Shi , Guofu Zhou , Jun-Ming Liu , Jinwei Gao . NbSe2 Nanosheets Improved the Buried Interface for Perovskite Solar Cells. Acta Physico-Chimica Sinica, 2025, 41(3): 2407025-0. doi: 10.3866/PKU.WHXB202407025
-
[12]
Ruonan Li , Shijie Liang , Yunhua Xu , Cuifen Zhang , Zheng Tang , Baiqiao Liu , Weiwei Li . Chlorine-Substituted Double-Cable Conjugated Polymers with Near-Infrared Absorption for Low Energy Loss Single-Component Organic Solar Cells. Acta Physico-Chimica Sinica, 2024, 40(8): 2307037-0. doi: 10.3866/PKU.WHXB202307037
-
[13]
Yawen Guo , Dawei Li , Yang Gao , Cuihong Li . Recent Progress on Stability of Organic Solar Cells Based on Non-Fullerene Acceptors. Acta Physico-Chimica Sinica, 2024, 40(6): 2306050-0. doi: 10.3866/PKU.WHXB202306050
-
[14]
Yipeng Zhou , Chenxin Ran , Zhongbin Wu . Metacognitive Enhancement in Diversifying Ideological and Political Education within Graduate Course: A Case Study on “Solar Cell Performance Enhancement Technology”. University Chemistry, 2024, 39(6): 151-159. doi: 10.3866/PKU.DXHX202312096
-
[15]
Yikai Wang , Xiaolin Jiang , Haoming Song , Nan Wei , Yifan Wang , Xinjun Xu , Cuihong Li , Hao Lu , Yahui Liu , Zhishan Bo . Thickness-Insensitive, Cyano-Modified Perylene Diimide Derivative as a Cathode Interlayer Material for High-Efficiency Organic Solar Cells. Acta Physico-Chimica Sinica, 2025, 41(3): 2406007-0. doi: 10.3866/PKU.WHXB202406007
-
[16]
Xinyuan Shi , Chenyangjiang , Changyu Zhai , Xuemei Lu , Jia Li , Zhu Mao . Preparation and Photoelectric Performance Characterization of Perovskite CsPbBr3 Thin Films. University Chemistry, 2024, 39(6): 383-389. doi: 10.3866/PKU.DXHX202312019
-
[17]
Jian Li , Yu Zhang , Rongrong Yan , Kaiyuan Sun , Xiaoqing Liu , Zishang Liang , Yinan Jiao , Hui Bu , Xin Chen , Jinjin Zhao , Jianlin Shi . Highly Efficient, Targeted, and Traceable Perovskite Nanocrystals for Photoelectrocatalytic Oncotherapy. Acta Physico-Chimica Sinica, 2025, 41(5): 100042-0. doi: 10.1016/j.actphy.2024.100042
-
[18]
Weicheng Feng , Jingcheng Yu , Yilan Yang , Yige Guo , Geng Zou , Xiaoju Liu , Zhou Chen , Kun Dong , Yuefeng Song , Guoxiong Wang , Xinhe Bao . Regulating the High Entropy Component of Double Perovskite for High-Temperature Oxygen Evolution Reaction. Acta Physico-Chimica Sinica, 2024, 40(6): 2306013-0. doi: 10.3866/PKU.WHXB202306013
-
[19]
Yao Ma , Xin Zhao , Hongxu Chen , Wei Wei , Liang Shen . Progress and Perspective of Perovskite Thin Single Crystal Photodetectors. Acta Physico-Chimica Sinica, 2025, 41(4): 2309045-0. doi: 10.3866/PKU.WHXB202309045
-
[20]
Rui Li , Huan Liu , Yinan Jiao , Shengjian Qin , Jie Meng , Jiayu Song , Rongrong Yan , Hang Su , Hengbin Chen , Zixuan Shang , Jinjin Zhao . Emerging Irreversible and Reversible Ion Migrations in Perovskites. Acta Physico-Chimica Sinica, 2024, 40(11): 2311011-0. doi: 10.3866/PKU.WHXB202311011
-
[1]
Metrics
- PDF Downloads(1)
- Abstract views(13)
- HTML views(3)
Login In
DownLoad: