Citation: Binbin Liu,  Yang Chen,  Tianci Jia,  Chen Chen,  Zhanghao Wu,  Yuhui Liu,  Yuhang Zhai,  Tianshu Ma,  Changlei Wang. Hydroxyl-functionalized molecular engineering mitigates 2D phase barriers for efficient wide-bandgap and all-perovskite tandem solar cells[J]. Acta Physico-Chimica Sinica, ;2026, 42(1): 100128. doi: 10.1016/j.actphy.2025.100128 shu

Hydroxyl-functionalized molecular engineering mitigates 2D phase barriers for efficient wide-bandgap and all-perovskite tandem solar cells

  • Corresponding author: Tianshu Ma,  Changlei Wang, 
  • Received Date: 19 April 2025
    Revised Date: 11 June 2025

  • All-perovskite tandem solar cells (TSCs) demonstrate exceptional potential to overcome the single-junction efficiency limit through enhanced photon harvesting across the solar spectrum and suppressed thermalization effects, achieving theoretical power conversion efficiencies surpassing 44%. Wide-bandgap perovskites solar cells (WBG PSCs) are crucial for tandem photovoltaics, and have witnessed exponential progress during the last decade. However, these devices suffer from severe open-circuit voltage (VOC) deficits, primarily due to interfacial recombination and carrier transport losses. A major contributor to these losses is the uncontrolled formation of insulating two-dimensional (2D) perovskite phases during surface passivation. Here, we introduce 4-hydroxyphenylethyl ammonium iodide (p-OHPEAI) as a multifunctional molecular additive to address this critical trade-off. Unlike conventional phenethyl ammonium iodide (PEAI), which forms the insulating 2D phase and the invert electric field by vertical molecular orientation that impedes charge extraction, the hydroxyl group (–OH) in p-OHPEAI enables parallel molecular adsorption on perovskite surfaces via synergistic interactions between amino (–NH3) and –OH groups. This configuration effectively eliminates the formation of insulating 2D perovskite phase, passivates undercoordinated halide and lead vacancies, reducing non-radiative recombination. Additionally, the polarity of p-OHPEAI generates a dipole moment at the perovskite/electron transport layer (ETL) interface, optimizing energy-level alignment and facilitating electron extraction. By incorporating p-OHPEAI into 1.77 eV WBG PSCs, we achieved a remarkable VOC of 1.344 V, corresponding to a minimal voltage deficit of 0.426 V, which is among the lowest reported VOC-deficit values for the inverted WBG PSCs with bandgaps ranging from 1.75 to 1.80 eV. The optimized device delivered a power conversion efficiency (PCE) of 19.24%, demonstrating superior performance compared to conventional PEAI-passivated cells. When integrated into all-perovskite TSCs, this strategy enabled a champion PCE of 28.50% (with a certified efficiency of 28.19%). Furthermore, the devices exhibited excellent operational stability, maintaining over 90% of their initial efficiency after 350 h of continuous illumination, highlighting the robustness of the hydroxyl-driven passivation approach. The introduction of hydroxyl groups in passivation molecules provides a versatile strategy to balance defect suppression and charge transport, bridging the gap between high voltage and efficient carrier extraction.
  • 加载中
    1. [1]

      https://www.nrel.gov/pv/cell-efficiency.html. (Accessed 10 February 2025).

    2. [2]

      L. Canil, T. Cramer, B. Fraboni, D. Ricciarelli, D. Meggiolaro, A. Singh, M. N. Liu, M. Rusu, C. M. Wolff, N. Phung, et al., Energy Environ. Sci. 14(2021) 1429, https://doi.org/10.1039/d0ee02216k.

    3. [3]

      H. Chen, A. Maxwell, C. Li, S. Teale, B. Chen, T. Zhu, E. Ugur, G. Harrison, L. Grater, J. Wang, et al., Nature 613(2023) 676, https://doi.org/10.1038/s41586-022-05541-z.

    4. [4]

      C. Li, L. Chen, F. Jiang, Z. Song, X. Wang, A. Balvanz, E. Ugur, Y. Liu, C. Liu, A.Maxwell, et al., Nat. Energy 9(2024) 1388, https://doi.org/10.1038/s41560-024-01613-8.

    5. [5]

      W. Shockley, H. J. Queisser, J. Appl. Phys. 32(1961) 510, https://doi.org/10.1063/1.1736034.

    6. [6]

      Z. Yu, M. Leilaeioun, Z. Holman, Nat. Energy 1(2016) 16137, https://doi.org/10.1038/nenergy.2016.137.

    7. [7]

      Y. An, T. Ma, X. Li, Sol. RRL 5(2021) 2100199, https://doi.org/10.1002/solr.202100199.

    8. [8]

      S. Gu, R. Lin, Q. Han, Y. Gao, H. Tan, J. Zhu, Adv. Mater. 32(2020) 1907392, https://doi.org/10.1002/adma.201907392.

    9. [9]

      K. Xiao, Y. H. Lin, M. Zhang, R. D. J. Oliver, X. Wang, Z. Liu, X. Luo, J. Li, D. Lai, H. W. Luo, et al., Science 376(2022) 762, https://doi.org/10.1126/science.abn7696.

    10. [10]

      W. Chen, Y. D. Zhu, J. W. Xiu, G. C. Chen, H. M. Liang, S. C. Liu, H. S. Xue, E. Birgersson, J. W. Ho, X. S. Qin, et al., Nat. Energy 7(2022) 229, https://doi.org/10.1038/s41560-021-00966-8.

    11. [11]

      G. Yang, Z. W. Ren, K. Liu, M. C. Qin, W. Y. Deng, H. K. Zhang, H. B. Wang, J. W. Liang, F. H. Ye, Q. Liang, et al., Nat. Photonics 15(2021) 681, https://doi.org/10.1038/s41566-021-00829-4.

    12. [12]

      Q. Jiang, Y. Zhao, X. W. Zhang, X. L. Yang, Y. Chen, Z. M. Chu, Q. F. Ye, X. X. Li, Z. G. Yin, J. B. You, Nat. Photonics 13(2019) 460, https://doi.org/10.1038/s41566-019-0398-2.

    13. [13]

      T. K. Zhang, M. Z. Long, M. C. Qin, X. H. Lu, S. Chen, F. Y. Xie, L. Gong, J. Chen, M. Chu, Q. Miao, et al., Joule 2(2018) 2706, https://doi.org/10.1016/j.joule.2018.09.022.

    14. [14]

      Y. W. Jang, S. Lee, K. M. Yeom, K. Jeong, K. Choi, M. Choi, J. H. Noh, Nat. Energy 6(2021) 63, https://doi.org/10.1038/s41560-020-00749-7.

    15. [15]

      C. Li, R. Yang, G. Zhao, Y. Yue, W. Zhang, H. Zhang, Y. Zhang, S. Li, H. Zhou, Sol. RRL 8(2024) 2400201, https://doi.org/10.1002/solr.202400201.

    16. [16]

      C. Chen, Z. N. Song, C. X. Xiao, R. A. Awni, C. L. Yao, N. Shrestha, C. W. Li, S. S. Bista, Y. Zhang, L. Chen, et al., ACS Energy Lett. 5(2020) 2560, https://doi.org/10.1021/acsenergylett.0c01350.

    17. [17]

      X. Huo, S. Mariotti, Y. Li, T. Guo, C. Ding, P. Ji, S. Yuan, T. Li, N. Meng, X. Liu, et al., Energy Environ. Sci. 17(2024) 8658, https://doi.org/10.1039/d4ee02133a.

    18. [18]

      Z. Wu, Y. Zhao, C. Wang, T. Ma, C. Chen, Y. Liu, T. Jia, Y. Zhai, C. Chen, C. Zhang, et al., Adv. Mater. 37(2025) 2412943, https://doi.org/10.1002/adma.202412943.

    19. [19]

      S. Wang, A. Wang, X. Deng, L. Xie, A. Xiao, C. Li, Y. Xiang, T. Li, L. Ding, F. Hao, J. Mater. Chem. A 8(2020) 12201, https://doi.org/10.1039/D0TA03957H.

    20. [20]

      T. Yu, Z. Ma, Z. Huang, Y. Li, J. Tan, G. Li, S. Hou, Z. Du, Z. Liu, Y. Li, et al., ACS Appl. Mater. Interfaces 15(2023) 55813, https://doi.org/10.1021/acsami.3c12898.

    21. [21]

      J. Liu, C. Ai, C. Hu, B. Cheng, J. Zhang, Acta Phys. Chim. Sin. 40(2024) 2402006, https://doi.org/10.3866/PKU.WHXB202402006.

    22. [22]

      C. Chen, J. W. Liang, J. J. Zhang, X. X. Liu, X. X. Yin, H. S. Cui, H. B. Wang, C. Wang, Z. F. Li, J. B. Gong, et al., Nano Energy 90(2021) 106608, https://doi.org/10.1016/j.nanoen.2021.106608.

    23. [23]

      J. Zhuang, P. Mao, Y. Luan, X. Yi, Z. Tu, Y. Zhang, Y. Yi, Y. Wei, N. Chen, T. Lin, et al., ACS Energy Lett. 4(2019) 2913, https://doi.org/10.1021/acsenergylett.9b02375.

    24. [24]

      A. Ray, B. Martin-Garcia, M. Prato, A. Moliterni, S. Bordignon, D. Spirito, S. Marras, L. Goldoni, K. M. Boopathi, F. Moro, et al., ACS Appl. Mater. Interfaces 15(2023) 28166, https://doi.org/10.1021/acsami.3c03366.

    25. [25]

      G. Sadoughi, D. E. Starr, E. Handick, S. D. Stranks, M. Gorgoi, R. G. Wilks, M. Baer, H. J. Snaith, ACS Appl. Mater. Interfaces 7(2015) 13440, https://doi.org/10.1021/acsami.5b02237.

    26. [26]

      X. Chen, J. Zhang, C. Liu, Q. Lou, K. Zheng, X. Yin, L. Xie, P. Wen, C. Liu, Z. Ge, ACS Appl. Energy Mater. 4(2021) 11112, https://doi.org/10.1021/acsaem.1c02033.

    27. [27]

      Y. Shi, Z. Zhu, D. Miao, Y. Ding, Q. Mi, ACS Energy Lett. 9(2024) 1895, https://doi.org/10.1021/acsenergylett.4c00529.

    28. [28]

      J. Zhang, Y. Sun, C. Huang, B. Yu, H. Yu, Adv. Energy Mater. 12(2022) 2202542, https://doi.org/10.1002/aenm.202202542.

    29. [29]

      S. Xiong, F. Tian, F. Wang, A. Cao, Z. Chen, S. Jiang, D. Li, B. Xu, H. Wu, Y. Zhang, et al., Nat. Commun. 15(2024) 5607, https://doi.org/10.1038/s41467-024-50019-3.

    30. [30]

      T. Li, J. Xu, R. Lin, S. Teale, H. Li, Z. Liu, C. Duan, Q. Zhao, K. Xiao, P. Wu, et al., Nat. Energy 8(2023) 610, https://doi.org/10.1038/s41560-023-01250-7.

    31. [31]

      R. He, W. Wang, Z. Yi, F. Lang, C. Chen, J. Luo, J. Zhu, J. Thiesbrummel, S. Shah, K. Wei, et al., Nature 618(2023) 80, https://doi.org/10.1038/s41586-023-05992-y.

    32. [32]

      S. Liu, J. Li, W. Xiao, R. Chen, Z. Sun, Y. Zhang, X. Lei, S. Hu, M. Kober-Czerny, J. Wang, et al., Nature 632(2024) 536, https://doi.org/10.1038/s41586-024-07723-3.

    33. [33]

      H. D. Sun, S. W. Liu, X. X. Liu, Y. Gao, J. A. Wang, C. Y. Shi, H. Raza, Z. X. Sun, Y. Y. Pan, Y. Cai, et al., Small Methods 8(2024) 2400067, https://doi.org/10.1002/smtd.202400067.

    34. [34]

      X. Lin, H. Su, S. He, Y. Song, Y. Wang, Z. Qin, Y. Wu, X. Yang, Q. Han, J. Fang, et al., Nat. Energy 7(2022) 520, https://doi.org/10.1038/s41560-022-01038-1.

    35. [35]

      X. Li, W. Zhang, X. Guo, C. Lu, J. Wei, J. Fang, Science 375(2022) 434, https://doi.org/10.1126/science.abl5676.

    36. [36]

      C. Wang, Y. Zhao, T. Ma, Y. An, R. He, J. Zhu, C. Chen, S. Ren, F. Fu, D. Zhao, et al., Nat. Energy 7(2022) 744, https://doi.org/10.1038/s41560-022-01076-9.

    37. [37]

      S. F. Hu, K. Otsuka, R. Murdey, T. Nakamura, M. A. Truong, T. Yamada, T. Handa, K. Matsuda, K. Nakano, A. Sato, et al., Energy Environ. Sci. 15(2022) 2096, https://doi.org/10.1039/d2ee00288d.

    38. [38]

      Q. Jiang, J. H. Tong, Y. M. Xian, R. A. Kerner, S. P. Dunfield, C. X. Xiao, R. A. Scheidt, D. Kuciauskas, X. M. Wang, M. P. Hautzinger, et al., Nature 611(2022) 278, https://doi.org/10.1038/s41586-022-05268-x.

    39. [39]

      C. L. Wang, D. W. Zhao, C. R. Grice, W. Q. Liao, Y. Yu, A. Cimaroli, N. Shrestha, P. J. Roland, J. Chen, Z. H. Yu, et al., J. Mater. Chem. A 4(2016) 12080, https://doi.org/10.1039/c6ta04503k.

    40. [40]

      D. W. Zhao, Y. Yu, C. L. Wang, W. Q. Liao, N. Shrestha, C. R. Grice, A. J. Cimaroli, L. Guan, R. J. Ellingson, K. Zhu, et al., Nat. Energy 2(2017) 17018, https://doi.org/10.1038/nenergy.2017.18.

    41. [41]

      R. A. Awni, Z. N. Song, C. Chen, C. W. Li, C. L. Wang, M. A. Razooqi, L. Chen, X. M. Wang, R. J. Ellingson, J. V. Li, et al., Joule 4(2020) 644, https://doi.org/10.1016/j.joule.2020.01.012.

    42. [42]

      R. Chen, S. Liu, X. Xu, F. Ren, J. Zhou, X. Tian, Z. Yang, X. Guanz, Z. Liu, S. Zhang, et al., Energy Environ. Sci. 15(2022) 2567, https://doi.org/10.1039/d2ee00433j.

    43. [43]

      D. Zhao, C. Chen, C. Wang, M. M. Junda, Z. Song, C. R. Grice, Y. Yu, C. Li, B. Subedi, N. J. Podraza, et al., Nat. Energy 3(2018) 1093, https://doi.org/10.1038/s41560-018-0278-x.

    44. [44]

      N. Koch, L. Naumann, F. Pretis, N. Ritter, M. Schwarz, Nat. Energy 7(2022) 844, https://doi.org/10.1038/s41560-022-01095-6.

  • 加载中
    1. [1]

      Yixuan Gao Lingxing Zan Wenlin Zhang Qingbo Wei . Comprehensive Innovation Experiment: Preparation and Characterization of Carbon-based Perovskite Solar Cells. University Chemistry, 2024, 39(4): 178-183. doi: 10.3866/PKU.DXHX202311091

    2. [2]

      Nengmin ZHUWenhao ZHUXiaoyao YINSongzhi ZHENGHao LIZeyuan WANGWenhao WEIXuanheng CHENWeihai SUN . Preparation of high-performance CsPbBr3 perovskite solar cells by the aqueous solution solvent method. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1131-1140. doi: 10.11862/CJIC.20240419

    3. [3]

      Yameen AhmedXiangxiang FengYuanji GaoYang DingCaoyu LongMustafa HaiderHengyue LiZhuan LiShicheng HuangMakhsud I. SaidaminovJunliang Yang . Interface Modification by Ionic Liquid for Efficient and Stable FAPbI3 Perovskite Solar Cells. Acta Physico-Chimica Sinica, 2024, 40(6): 2303057-0. doi: 10.3866/PKU.WHXB202303057

    4. [4]

      Zongsheng LIYichao WANGYujie WANGWenhao ZHUXiaoyao YINWudan YANGSongzhi ZHENGWeihai SUN . Preparation of CsPbBr3 perovskite solar cells via bottom interface modification with methylammonium chloride. Chinese Journal of Inorganic Chemistry, 2025, 41(9): 1805-1816. doi: 10.11862/CJIC.20250066

    5. [5]

      Zeyuan WANGSongzhi ZHENGHao LIJingbo WENGWei WANGYang WANGWeihai SUN . Effect of I2 interface modification engineering on the performance of all-inorganic CsPbBr3 perovskite solar cells. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1290-1300. doi: 10.11862/CJIC.20240021

    6. [6]

      Xiaoyao YINWenhao ZHUPuyao SHIZongsheng LIYichao WANGNengmin ZHUYang WANGWeihai SUN . Fabrication of all-inorganic CsPbBr3 perovskite solar cells with SnCl2 interface modification. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 469-479. doi: 10.11862/CJIC.20240309

    7. [7]

      Mingxuan QiLanyu JinHonghe YaoZipeng XuTeng ChengQi ChenCheng ZhuYang Bai . Recent progress on electrical failure and stability of perovskite solar cells under reverse bias. Acta Physico-Chimica Sinica, 2025, 41(8): 100088-0. doi: 10.1016/j.actphy.2025.100088

    8. [8]

      Ying LiangYuheng DengShilv YuJiahao ChengJiawei SongJun YaoYichen YangWanlei ZhangWenjing ZhouXin ZhangWenjian ShenGuijie LiangBin LiYong PengRun HuWangnan Li . Machine learning-guided antireflection coatings architectures and interface modification for synergistically optimizing efficient and stable perovskite solar cells. Acta Physico-Chimica Sinica, 2025, 41(9): 100098-0. doi: 10.1016/j.actphy.2025.100098

    9. [9]

      Jizhou LiuChenbin AiChenrui HuBei ChengJianjun Zhang . Accelerated Interfacial Electron Transfer in Perovskite Solar Cell by Ammonium Hexachlorostannate Modification and fs-TAS Investigation. Acta Physico-Chimica Sinica, 2024, 40(11): 2402006-0. doi: 10.3866/PKU.WHXB202402006

    10. [10]

      Chuan′an DINGWeibo YANShaoying WANGHao XIN . Preparation of wide-band gap copper indium gallium sulfide solar cells by solution method. Chinese Journal of Inorganic Chemistry, 2025, 41(9): 1755-1764. doi: 10.11862/CJIC.20250198

    11. [11]

      Pengyu DongYue JiangZhengchi YangLicheng LiuGu LiXinyang WenZhen WangXinbo ShiGuofu ZhouJun-Ming LiuJinwei Gao . NbSe2 Nanosheets Improved the Buried Interface for Perovskite Solar Cells. Acta Physico-Chimica Sinica, 2025, 41(3): 2407025-0. doi: 10.3866/PKU.WHXB202407025

    12. [12]

      Ruonan LiShijie LiangYunhua XuCuifen ZhangZheng TangBaiqiao LiuWeiwei Li . Chlorine-Substituted Double-Cable Conjugated Polymers with Near-Infrared Absorption for Low Energy Loss Single-Component Organic Solar Cells. Acta Physico-Chimica Sinica, 2024, 40(8): 2307037-0. doi: 10.3866/PKU.WHXB202307037

    13. [13]

      Yawen GuoDawei LiYang GaoCuihong Li . Recent Progress on Stability of Organic Solar Cells Based on Non-Fullerene Acceptors. Acta Physico-Chimica Sinica, 2024, 40(6): 2306050-0. doi: 10.3866/PKU.WHXB202306050

    14. [14]

      Yipeng Zhou Chenxin Ran Zhongbin Wu . Metacognitive Enhancement in Diversifying Ideological and Political Education within Graduate Course: A Case Study on “Solar Cell Performance Enhancement Technology”. University Chemistry, 2024, 39(6): 151-159. doi: 10.3866/PKU.DXHX202312096

    15. [15]

      Yikai WangXiaolin JiangHaoming SongNan WeiYifan WangXinjun XuCuihong LiHao LuYahui LiuZhishan Bo . Thickness-Insensitive, Cyano-Modified Perylene Diimide Derivative as a Cathode Interlayer Material for High-Efficiency Organic Solar Cells. Acta Physico-Chimica Sinica, 2025, 41(3): 2406007-0. doi: 10.3866/PKU.WHXB202406007

    16. [16]

      Xinyuan Shi Chenyangjiang Changyu Zhai Xuemei Lu Jia Li Zhu Mao . Preparation and Photoelectric Performance Characterization of Perovskite CsPbBr3 Thin Films. University Chemistry, 2024, 39(6): 383-389. doi: 10.3866/PKU.DXHX202312019

    17. [17]

      Jian LiYu ZhangRongrong YanKaiyuan SunXiaoqing LiuZishang LiangYinan JiaoHui BuXin ChenJinjin ZhaoJianlin Shi . Highly Efficient, Targeted, and Traceable Perovskite Nanocrystals for Photoelectrocatalytic Oncotherapy. Acta Physico-Chimica Sinica, 2025, 41(5): 100042-0. doi: 10.1016/j.actphy.2024.100042

    18. [18]

      Weicheng FengJingcheng YuYilan YangYige GuoGeng ZouXiaoju LiuZhou ChenKun DongYuefeng SongGuoxiong WangXinhe Bao . Regulating the High Entropy Component of Double Perovskite for High-Temperature Oxygen Evolution Reaction. Acta Physico-Chimica Sinica, 2024, 40(6): 2306013-0. doi: 10.3866/PKU.WHXB202306013

    19. [19]

      Yao MaXin ZhaoHongxu ChenWei WeiLiang Shen . Progress and Perspective of Perovskite Thin Single Crystal Photodetectors. Acta Physico-Chimica Sinica, 2025, 41(4): 2309045-0. doi: 10.3866/PKU.WHXB202309045

    20. [20]

      Rui LiHuan LiuYinan JiaoShengjian QinJie MengJiayu SongRongrong YanHang SuHengbin ChenZixuan ShangJinjin Zhao . Emerging Irreversible and Reversible Ion Migrations in Perovskites. Acta Physico-Chimica Sinica, 2024, 40(11): 2311011-0. doi: 10.3866/PKU.WHXB202311011

Metrics
  • PDF Downloads(1)
  • Abstract views(13)
  • HTML views(3)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return