Citation: Lei Wang,  Panpan Zhang,  Zhiyuan Guo,  Jing Wang,  Jie Ma,  Zhi-yong Ji. Electrochemical lithium extraction by the faradaic materials: advances, challenges and enhancement approaches[J]. Acta Physico-Chimica Sinica, ;2026, 42(1): 100127. doi: 10.1016/j.actphy.2025.100127 shu

Electrochemical lithium extraction by the faradaic materials: advances, challenges and enhancement approaches

  • Corresponding author: Lei Wang,  Jie Ma,  Zhi-yong Ji, 
  • Received Date: 29 April 2025
    Revised Date: 11 June 2025

  • The rapid growth of the electric vehicle industry has led to a surge in demand for lithium products, driving the development of advanced lithium extraction technologies. Among these, electrochemical lithium extraction has emerged as a promising approach due to its superior lithium selectivity towards competing cations (like Na+ and Mg2+), high energy efficiency, and environmental sustainability. Many works about the faradaic materials, operation modes/parameters, and cell configurations have been published. Although some reviews about electrochemical lithium extraction technology have been published, there remains a lack of comprehensive reviews that systematically summarize advancements of faradaic materials employed in lithium extraction, analyze how their nature affects the lithium extraction performance, and elucidate the relationship between performance-enhancing strategies and their impact on critical extraction metrics. Here, we systematically introduce the principle of electrochemical lithium extraction technologies and all the performance indices reported in the literature, including the lithium intercalation capacity, lithium extraction rate, capacity retention, selectivity factor (or purity), energy consumption, and current efficiency. We present a comprehensive analysis of the reported faradaic materials used to extract lithium, involving LiFePO4, LiMn2O4, layered nickel cobalt manganese oxides, Li3V2(PO4)3, and Li1.6Mn1.6O4, establish the interconnection between their attributes and performance, and compare the advantages and disadvantages of each material. Furthermore, we categorize and evaluate different performance-enhancing strategies, including material-design approaches (e.g., 3D structure fabrication, crystal regulation, element doping, and surface coating) and operation-optimized methods in water-flow direction, circuit operation mode, and operation parameters; we further clarify how each method influences specific aspects of electrochemical lithium extraction performance and the underlying mechanisms responsible for these improvements. The industrialization progress of electrochemical lithium extraction technology based on each faradaic material is reviewed, and the cost of these materials is introduced. By establishing a connection between material design, operational optimization, and performance outcomes, this review aims to provide valuable insights for researchers and engineers working on the next generation of faradaic materials employed in electrochemical lithium extraction and to inspire innovative approaches in faradaic material development and process optimization, paving the way for more sustainable and cost-effective lithium recovery from brines.
  • 加载中
    1. [1]

      A.-M. Desaulty, D. Monfort Climent, G. Lefebvre, A. Cristiano-Tassi, D. Peralta, S. Perret, A. Urban, C. Guerrot, Nat. Commun. 13(2022) 4172, https://doi.org/10.1038/s41467-022-31850-y.

    2. [2]

      B. Swain, Sep. Purif. Technol. 172(2017) 388, https://doi.org/10.1016/j.seppur.2016.08.031.

    3. [3]

      A. Z. Haddad, L. Hackl, B. Akuzum, G. Pohlman, J.-F. Magnan, R. Kostecki, Nature 616(2023) 245, https://doi.org/10.1038/d41586-023-00978-2.

    4. [4]

      J. C. Kelly, M. Wang, Q. Dai, O. Winjobi, Resour. Conserv. Recycl. 174(2021) 105762, https://doi.org/10.1016/j.resconrec.2021.105762.

    5. [5]

      Y. Xiong, J. Zhou, P. Lu, J. Yin, Y. Wang, Z. Fan, Matter 5(2022) 1760, https://doi.org/10.1016/j.matt.2022.04.034.

    6. [6]

      L. Kölbel, T. Kölbel, L. Herrmann, E. Kaymakci, I. Ghergut, A. Poirel, J. Schneider, Hydrometallurgy 221(2023) 106131, https://doi.org/10.1016/j.hydromet.2023.106131.

    7. [7]

      Q. Liu, P. Yang, W. Tu, H. Sun, S. Li, Y. Zhang, J. Water Process Eng. 55(2023) 104148, https://doi.org/10.1016/j.jwpe.2023.104148.

    8. [8]

      W. Zhang, X. Che, D. Pei, X. Zhang, Y. Chen, M. Li, C. Li, Exploration 2(2022) 20220050, https://doi.org/10.1002/EXP.20220050.

    9. [9]

      Y. Zhang, Y. Hu, L. Wang, W. Sun, Miner. Eng. 139(2019) 105868, https://doi.org/10.1016/j.mineng.2019.105868.

    10. [10]

      X. Xu, Y. Chen, P. Wan, K. Gasem, K. Wang, T. He, H. Adidharma, M. Fan, Prog. Mater Sci. 84(2016) 276, https://doi.org/10.1016/j.pmatsci.2016.09.004.

    11. [11]

      J. Hou, H. Zhang, A. W. Thornton, A. J. Hill, H. Wang, K. Konstas, Adv. Funct. Mater. 31(2021) 2105991, https://doi.org/10.1002/adfm.202105991.

    12. [12]

      Q. He, N. J. Williams, J. H. Oh, V. M. Lynch, S. K. Kim, B. A. Moyer, J. L. Sessler, Angew. Chem. Int. Ed. 57(2018) 11924, https://doi.org/10.1002/anie.201805127.

    13. [13]

      Y. Zeng, W. Li, Z. Wan, S. Qin, Q. Huang, W. Cai, Q. Wang, M. Yao, Y. Zhang, Adv. Funct. Mater. 34(2024) 2400416, https://doi.org/10.1002/adfm.202400416.

    14. [14]

      A. Battistel, M. S. Palagonia, D. Brogioli, F. La Mantia, R. Trócoli, Adv. Mater. 32(2020) 1905440, https://doi.org/10.1002/adma.201905440.

    15. [15]

      J. F. Song, L. D. Nghiem, X.-M. Li, T. He, Environ. Sci. Water Res. Technol. 3(2017) 593, https://doi.org/10.1039/C7EW00020K.

    16. [16]

      L. Baudino, C. Santos, C. F. Pirri, F. La Mantia, A. Lamberti, Adv. Sci. 9(2022) 2201380, https://doi.org/10.1002/advs.202201380.

    17. [17]

      S. Xu, J. Song, Q. Bi, Q. Chen, W.-M. Zhang, Z. Qian, L. Zhang, S. Xu, N. Tang, T. He, J. Membr. Sci. 635(2021) 119441, https://doi.org/10.1016/j.memsci.2021.119441.

    18. [18]

      X. Li, Y. Mo, W. Qing, S. Shao, C. Y. Tang, J. Li, J. Membr. Sci. 591(2019) 117317, https://doi.org/10.1016/j.memsci.2019.117317.

    19. [19]

      S. Zavahir, T. Elmakki, M. Gulied, Z. Ahmad, L. Al-Sulaiti, H. K. Shon, Y. Chen, H. Park, B. Batchelor, D. S. Han, Desalination 500(2021) 114883, https://doi.org/10.1016/j.desal.2020.114883.

    20. [20]

      J. Farahbakhsh, F. Arshadi, Z. Mofidi, M. Mohseni-Dargah, C. Kök, M. Assefi, A. Soozanipour, M. Zargar, M. Asadnia, Y. Boroumand, V. Presser, A. Razmjou, Desalination 575(2024) 117249, https://doi.org/10.1016/j.desal.2023.117249.

    21. [21]

      H. Kanoh, K. Ooi, Y. Miyai, S. Katoh, Langmuir 7(1991) 1841, https://doi.org/10.1021/la00057a002.

    22. [22]

      H. Kanoh, K. Ooi, Y. Miyai, S. Katoh, Sep. Sci. Technol. 28(1993) 643, https://doi.org/10.1080/01496399308019512.

    23. [23]

      M. Pasta, A. Battistel, F. La Mantia, Energy Environ. Sci. 5(2012) 9487, https://doi.org/10.1039/C2EE22977C.

    24. [24]

      Z. Zhao, X. Si, X. Liu, L. He, X. Liang, Hydrometallurgy 133(2013) 75, https://doi.org/10.1016/j.hydromet.2012.11.013.

    25. [25]

      L. Wang, K. Frisella, P. Srimuk, O. Janka, G. Kickelbick, V. Presser, Sustainable Energy Fuels 5(2021) 3124, https://doi.org/10.1039/D1SE00450F.

    26. [26]

      H. Zhang, Z. Huang, L. Zhao, Z. Guo, J. Wang, J. Liu, Y. Zhao, F. Li, P. Zhang, Z.-Y. Ji, Chem. Eng. J. 482(2024) 148802, https://doi.org/10.1016/j.cej.2024.148802.

    27. [27]

      X. Meng, Y. Jing, J. Li, Z. Sun, Z. Wu, Chem. Eng. Sci. 283(2024) 119400, https://doi.org/10.1016/j.ces.2023.119400.

    28. [28]

      X. Zhao, H. Yang, Y. Wang, L. Yang, L. Zhu, Sep. Purif. Technol. 274(2021) 119078, https://doi.org/10.1016/j.seppur.2021.119078.

    29. [29]

      L. L. Missoni, F. Marchini, M. Del Pozo, E. J. Calvo, J. Electrochem. Soc. 163(2016) A1898, https://doi.org/10.1149/2.0591609jes.

    30. [30]

      R. Trócoli, C. Erinmwingbovo, F. La Mantia, ChemElectroChem 4(2017) 143, https://doi.org/10.1002/celc.201600509.

    31. [31]

      M.-Y. Zhao, Z.-Y. Ji, Y.-G. Zhang, Z.-Y. Guo, Y.-Y. Zhao, J. Liu, J.-S. Yuan, Electrochim. Acta 252(2017) 350, https://doi.org/10.1016/j.electacta.2017.08.178.

    32. [32]

      S. Kim, J. S. Kang, H. Joo, Y.-E. Sung, J. Yoon, Environ. Sci. Technol. 54(2020) 9044, https://doi.org/10.1021/acs.est.9b07646.

    33. [33]

      K. Sun, M. Tebyetekerwa, X. Zeng, Z. Wang, T. T. Duignan, X. Zhang, Environ. Sci. Technol. 58(2024) 3997, https://doi.org/10.1021/acs.est.3c09111.

    34. [34]

      V. C. E. Romero, D. S. Putrino, M. Tagliazucchi, V. Flexer, E. J. Calvo, J. Electrochem. Soc. 168(2021) 020518, https://doi.org/10.1149/1945-7111/abde81.

    35. [35]

      H. Joo, S. Y. Jung, S. Kim, K. H. Ahn, W. S. Ryoo, J. Yoon, ACS Sustainable Chem. Eng. 8(2020) 9622, https://doi.org/10.1021/acssuschemeng.9b07427.

    36. [36]

      R. Trócoli, A. Battistel, F. La Mantia, ChemSusChem 8(2015) 2514, https://doi.org/10.1002/cssc.201500368.

    37. [37]

      Y. Kondo, T. Abe, Y. Yamada, ACS Appl. Mater. Interfaces 14(2022) 22706, https://doi.org/10.1021/acsami.1c21683.

    38. [38]

      N. V. Kosova, O. A. Podgornova, Y. M. Volfkovich, V. E. Sosenkin, J. Solid State Electrochem. 25(2021) 1029, https://doi.org/10.1007/s10008-020-04877-8.

    39. [39]

      Y. Zhang, C. Prehal, H. Jiang, Y. Liu, G. Feng, V. Presser, Cell Rep. Phys. Sci. 3(2022) 100689, https://doi.org/10.1016/j.xcrp.2021.100689.

    40. [40]

      A. J. Bard, L. R. Faulkner, Electrochemical methods: fundamentals and applications, 2nd ed.; John Wiley & Sons: the United States of America, 2001; pp. 7–20.

    41. [41]

      P. Sebastián-Pascual, Y. Shao-Horn, M. Escudero-Escribano, Curr. Opin. Electrochem. 32(2022) 100918, https://doi.org/10.1016/j.coelec.2021.100918.

    42. [42]

      S. Fleischmann, J. B. Mitchell, R. Wang, C. Zhan, D.-E. Jiang, V. Presser, V. Augustyn, Chem. Rev. 120(2020) 6738, https://doi.org/10.1021/acs.chemrev.0c00170.

    43. [43]

      S. Cui, Y. Wei, T. Liu, W. Deng, Z. Hu, Y. Su, H. Li, M. Li, H. Guo, Y. Duan, W. Wang, M. Rao, J. Zheng, X. Wang, F. Pan, Adv. Energy Mater. 6(2016) 1501309, https://doi.org/10.1002/aenm.201501309.

    44. [44]

      Y. Wei, J. Zheng, S. Cui, X. Song, Y. Su, W. Deng, Z. Wu, X. Wang, W. Wang, M. Rao, Y. Lin, C. Wang, K. Amine, F. Pan, J. Am. Chem. Soc. 137(2015) 8364, https://doi.org/10.1021/jacs.5b04040.

    45. [45]

      Z. Chen, D. L. Danilov, R.-A. Eichel, P. H. L. Notten, Adv. Energy Mater. 12(2022) 2201506, https://doi.org/10.1002/aenm.202201506.

    46. [46]

      M. Weiss, R. Ruess, J. Kasnatscheew, Y. Levartovsky, N. R. Levy, P. Minnmann, L. Stolz, T. Waldmann, M. Wohlfahrt-Mehrens, D. Aurbach, M. Winter, Y. Ein-Eli, J. Janek, Adv. Energy Mater. 11(2021) 2101126, https://doi.org/10.1002/aenm.202101126.

    47. [47]

      G. Yan, M. Wang, G. T. Hill, S. Zou, C. Liu, Proc. Natl. Acad. Sci. 119(2022) e2200751119, https://doi.org/10.1073/pnas.2200751119.

    48. [48]

      W. Xu, D. Liu, X. Liu, D. Wang, L. He, Z. Zhao, Desalination 546(2023) 116188, https://doi.org/10.1016/j.desal.2022.116188.

    49. [49]

      Z. Zhang, J. Zhang, Z. Zhang, X. Du, X. Hao, X. An, G. Guan, J. Li, Z. Liu, Sep. Purif. Technol. 316(2023) 123777, https://doi.org/10.1016/j.seppur.2023.123777.

    50. [50]

      D.-F. Liu, S.-Y. Sun, J.-G. Yu, The Canadian Journal of Chemical Engineering 97(2019) 1589, https://doi.org/10.1002/cjce.23370.

    51. [51]

      M. S. Palagonia, D. Brogioli, F. L. Mantia, J. Electrochem. Soc. 164(2017) E586, https://doi.org/10.1149/2.1531714jes.

    52. [52]

      W.-J. Zhang, J. Power Sources 196(2011) 2962, https://doi.org/10.1016/j.jpowsour.2010.11.113.

    53. [53]

      S.-I. Nishimura, G. Kobayashi, K. Ohoyama, R. Kanno, M. Yashima, A. Yamada, Nat. Mater. 7(2008) 707, https://doi.org/10.1038/nmat2251.

    54. [54]

      H. Zhang, Z. Zou, S. Zhang, J. Liu, S. Zhong, Int. J. Electrochem. Sci. 15(2020) 12041, https://doi.org/10.20964/2020.12.71.

    55. [55]

      D. Morgan, A. Van Der Ven, G. Ceder, Electrochem. Solid-State Lett. 7(2004) A30, https://doi.org/10.1149/1.1633511.

    56. [56]

      M. S. Islam, D. J. Driscoll, C. a. J. Fisher, P. R. Slater, Chem. Mater. 17(2005) 5085, https://doi.org/10.1021/cm050999v.

    57. [57]

      Y. Zou, S. Chen, X. Yang, N. Ma, Y. Xia, D. Yang, S. Guo, Adv. Energy Mater. 6(2016) 1601549, https://doi.org/10.1002/aenm.201601549.

    58. [58]

      C. a. J. Fisher, V. M. Hart Prieto, M. S. Islam, Chem. Mater. 20(2008) 5907, https://doi.org/10.1021/cm801262x.

    59. [59]

      J. Yang, J. S. Tse, The Journal of Physical Chemistry A 115(2011) 13045, https://doi.org/10.1021/jp205057d.

    60. [60]

      S. Zhou, P. Wang, S. Tang, J. Zhang, S. Gu, J. Yu, Desalination 592(2024) 118153, https://doi.org/10.1016/j.desal.2024.118153.

    61. [61]

      M. Du, J.-Z. Guo, S.-H. Zheng, Y. Liu, J.-L. Yang, K.-Y. Zhang, Z.-Y. Gu, X.-T. Wang, X.-L. Wu, Chin. Chem. Lett. 34(2023) 107706, https://doi.org/10.1016/j.cclet.2022.07.049.

    62. [62]

      A. Urban, D.-H. Seo, G. Ceder, npj Comput. Mater. 2(2016) 16002, https://doi.org/10.1038/npjcompumats.2016.2.

    63. [63]

      C. Liu, Z. G. Neale, G. Cao, Mater. Today 19(2016) 109, https://doi.org/10.1016/j.mattod.2015.10.009.

    64. [64]

      A. Van Der Ven, J. Bhattacharya, A. A. Belak, Acc. Chem. Res. 46(2013) 1216, https://doi.org/10.1021/ar200329r.

    65. [65]

      C. Delmas, M. Maccario, L. Croguennec, F. Le Cras, F. Weill, Nat. Mater. 7(2008) 665, https://doi.org/10.1038/nmat2230.

    66. [66]

      C. Delacourt, P. Poizot, J.-M. Tarascon, C. Masquelier, Nat. Mater. 4(2005) 254, https://doi.org/10.1038/nmat1335.

    67. [67]

      G. Kobayashi, S.-I. Nishimura, M.-S. Park, R. Kanno, M. Yashima, T. Ida, A. Yamada, Adv. Funct. Mater. 19(2009) 395, https://doi.org/10.1002/adfm.200801522.

    68. [68]

      N. Sharma, X. Guo, G. Du, Z. Guo, J. Wang, Z. Wang, V. K. Peterson, J. Am. Chem. Soc. 134(2012) 7867, https://doi.org/10.1021/ja301187u.

    69. [69]

      H. Liu, F. C. Strobridge, O. J. Borkiewicz, K. M. Wiaderek, K. W. Chapman, P. J. Chupas, C. P. Grey, Science 344(2014) 1252817, https://doi.org/10.1126/science.1252817.

    70. [70]

      P. Gibot, M. Casas-Cabanas, L. Laffont, S. Levasseur, P. Carlach, S. Hamelet, J.-M. Tarascon, C. Masquelier, Nat. Mater. 7(2008) 741, https://doi.org/10.1038/nmat2245.

    71. [71]

      J. Lu, S. C. Chung, S.-I. Nishimura, A. Yamada, Chem. Mater. 25(2013) 4557, https://doi.org/10.1021/cm402617b.

    72. [72]

      Z.-W. Zhao, X.-F. Si, X.-X. Liang, X.-H. Liu, L.-H. He, Transactions of Nonferrous Metals Society of China 23(2013) 1157, https://doi.org/10.1016/S1003-6326(13)62578-9.

    73. [73]

      S. P. Ong, V. L. Chevrier, G. Hautier, A. Jain, C. Moore, S. Kim, X. Ma, G. Ceder, Energy Environ. Sci. 4(2011) 3680, https://doi.org/10.1039/C1EE01782A.

    74. [74]

      T. Zhang, D. Li, Z. Tao, J. Chen, Prog. Nat. Sci.: Mater. Int. 23(2013) 256, https://doi.org/10.1016/j.pnsc.2013.04.005.

    75. [75]

      Y. Huang, Y. Dong, S. Li, J. Lee, C. Wang, Z. Zhu, W. Xue, Y. Li, J. Li, Adv. Energy Mater. 11(2021) 2000997, https://doi.org/10.1002/aenm.202000997.

    76. [76]

      R. A. House, G. J. Rees, M. A. Pérez-Osorio, J.-J. Marie, E. Boivin, A. W. Robertson, A. Nag, M. Garcia-Fernandez, K.-J. Zhou, P. G. Bruce, Nat. Energy 5(2020) 777, https://doi.org/10.1038/s41560-020-00697-2.

    77. [77]

      W. Xu, L. He, Z. Zhao, Desalination 503(2021) 114935, https://doi.org/10.1016/j.desal.2021.114935.

    78. [78]

      J. Rodríguez-Carvajal, G. Rousse, C. Masquelier, M. Hervieu, Phys. Rev. Lett. 81(1998) 4660, https://doi.org/10.1103/PhysRevLett.81.4660.

    79. [79]

      S. Liu, B. Wang, X. Zhang, S. Zhao, Z. Zhang, H. Yu, Matter 4(2021) 1511, https://doi.org/10.1016/j.matt.2021.02.023.

    80. [80]

      M. A. Halcrow, Chem. Soc. Rev. 42(2013) 1784, https://doi.org/10.1039/C2CS35253B.

    81. [81]

      J. B. Goodenough, K.-S. Park, J. Am. Chem. Soc. 135(2013) 1167, https://doi.org/10.1021/ja3091438.

    82. [82]

      J. Ren, H. Zhu, Y. Fang, W. Li, S. Lan, S. Wei, Z. Yin, Y. Tang, Y. Ren, Q. Liu, Carbon Neutralization 2(2023) 339, https://doi.org/10.1002/cnl2.62.

    83. [83]

      M. Okubo, Y. Mizuno, H. Yamada, J. Kim, E. Hosono, H. Zhou, T. Kudo, I. Honma, ACS Nano 4(2010) 741, https://doi.org/10.1021/nn9012065.

    84. [84]

      T. Liu, A. Dai, J. Lu, Y. Yuan, Y. Xiao, L. Yu, M. Li, J. Gim, L. Ma, J. Liu, C. Zhan, L. Li, J. Zheng, Y. Ren, T. Wu, R. Shahbazian-Yassar, J. Wen, F. Pan, K. Amine, Nat. Commun. 10(2019) 4721, https://doi.org/10.1038/s41467-019-12626-3.

    85. [85]

      P. Wang, S. Zhou, Y. Fu, H. Fang, S. Gu, J. Yu, Desalination 581(2024) 117618, https://doi.org/10.1016/j.desal.2024.117618.

    86. [86]

      J. Yu, D. Fang, H. Zhang, Z. Y. Leong, J. Zhang, X. Li, H. Y. Yang, ACS Mater. Lett. 2(2020) 1662, https://doi.org/10.1021/acsmaterialslett.0c00385.

    87. [87]

      M. D. Radin, S. Hy, M. Sina, C. Fang, H. Liu, J. Vinckeviciute, M. Zhang, M. S. Whittingham, Y. S. Meng, A. Van Der Ven, Adv. Energy Mater. 7(2017) 1602888, https://doi.org/10.1002/aenm.201602888.

    88. [88]

      K. Kang, Y. S. Meng, J. Bréger, C. P. Grey, G. Ceder, Science 311(2006) 977, https://doi.org/10.1126/science.1122152.

    89. [89]

      J. U. Choi, N. Voronina, Y.-K. Sun, S.-T. Myung, Adv. Energy Mater. 10(2020) 2002027, https://doi.org/10.1002/aenm.202002027.

    90. [90]

      Z. Xu, K. Song, X. Chang, L. Li, W. Zhang, Y. Xue, J. Zhang, D. Lin, Z. Liu, Q. Wang, Y. Yu, C. Yang, Carbon Neutralization 3(2024) 832, https://doi.org/10.1002/cnl2.162.

    91. [91]

      C. Zhao, C. Wang, X. Liu, I. Hwang, T. Li, X. Zhou, J. Diao, J. Deng, Y. Qin, Z. Yang, G. Wang, W. Xu, C. Sun, L. Wu, W. Cha, I. Robinson, R. Harder, Y. Jiang, T. Bicer, J.-T. Li, W. Lu, L. Li, Y. Liu, S.-G. Sun, G.-L. Xu, K. Amine, Nat. Energy 9(2024) 345, https://doi.org/10.1038/s41560-024-01465-2.

    92. [92]

      H.-H. Ryu, K.-J. Park, C. S. Yoon, Y.-K. Sun, Chem. Mater. 30(2018) 1155, https://doi.org/10.1021/acs.chemmater.7b05269.

    93. [93]

      D. Goonetilleke, N. Sharma, W. K. Pang, V. K. Peterson, R. Petibon, J. Li, J. R. Dahn, Chem. Mater. 31(2019) 376, https://doi.org/10.1021/acs.chemmater.8b03525.

    94. [94]

      C. P. Lawagon, G. M. Nisola, R. a. I. Cuevas, R. E. C. Torrejos, H. Kim, S.-P. Lee, W.-J. Chung, Sep. Purif. Technol. 212(2019) 416, https://doi.org/10.1016/j.seppur.2018.11.046.

    95. [95]

      X. Zhao, M. Feng, Y. Jiao, Y. Zhang, Y. Wang, Z. Sha, Desalination 481(2020) 114360, https://doi.org/10.1016/j.desal.2020.114360.

    96. [96]

      C. P. Lawagon, G. M. Nisola, R. a. I. Cuevas, H. Kim, S.-P. Lee, W.-J. Chung, Chem. Eng. J. 348(2018) 1000, https://doi.org/10.1016/j.cej.2018.05.030.

    97. [97]

      L. Britala, M. Marinaro, G. Kucinskis, J. Energy Storage 73(2023) 108875, https://doi.org/10.1016/j.est.2023.108875.

    98. [98]

      M. Jiang, P. Wang, Q. Chen, Y. Zhang, Q. Wu, L. Tan, T. Ning, L. Li, K. Zou, Chin. Chem. Lett. 36(2025) 110040, https://doi.org/10.1016/j.cclet.2024.110040.

    99. [99]

      W. Lin, W. Bao, J. Cai, X. Cai, H. Zhao, Y. Zhang, Y. Deng, S. Yang, Z. Zhou, Z. Liu, J. Xie, Appl. Surf. Sci. 615(2023) 156278, https://doi.org/10.1016/j.apsusc.2022.156278.

    100. [100]

      M. Yang, L. Chen, H. Li, F. Wu, Energy Mater. Adv. 2022(2022) 9842651, https://doi.org/10.34133/2022/9842651.

    101. [101]

      D. Tao, S. Wang, Y. Liu, Y. Dai, J. Yu, X. Lei, Ionics 21(2015) 1201, https://doi.org/10.1007/s11581-015-1405-3.

    102. [102]

      X.-F. Sun, Y.-L. Xu, X.-Y. Zheng, X.-F. Meng, P. Ding, H. Ren, L. Li, Acta Phys. Chim. Sin. 31(2015) 1513, https://doi.org/10.3866/pku.Whxb201506082.

    103. [103]

      C. Ahmani Ferdi, M. Belaiche, E. Iffer, J. Solid State Electrochem. 25(2021) 301, https://doi.org/10.1007/s10008-020-04808-7.

    104. [104]

      X. Rui, Q. Yan, M. Skyllas-Kazacos, T. M. Lim, J. Power Sources 258(2014) 19, https://doi.org/10.1016/j.jpowsour.2014.01.126.

    105. [105]

      J. Zhou, S. Xiang, X. Wang, D.-M. Shin, H. Zhou, Chem. Eng. J. 482(2024) 148985, https://doi.org/10.1016/j.cej.2024.148985.

    106. [106]

      A. Gao, X. Hou, Z. Sun, S. Li, H. Li, J. Zhang, J. Mater. Chem. A 7(2019) 20878, https://doi.org/10.1039/C9TA06080D.

    107. [107]

      S. C. Yin, H. Grondey, P. Strobel, M. Anne, L. F. Nazar, J. Am. Chem. Soc. 125(2003) 10402, https://doi.org/10.1021/ja034565h.

    108. [108]

      J. Gaubicher, C. Wurm, G. Goward, C. Masquelier, L. Nazar, Chem. Mater. 12(2000) 3240, https://doi.org/10.1021/cm000345g.

    109. [109]

      J. Zhang, J. Shen, H. Chu, Y. Xie, Z. Jiang, D. Gao, T. Deng, X. Yu, Chem. Eng. J. 516(2025) 164011, https://doi.org/10.1016/j.cej.2025.164011.

    110. [110]

      J. Zhou, Y. Xu, D.-M. Shin, H. Zhou, Desalination 600(2025) 118530, https://doi.org/10.1016/j.desal.2025.118530.

    111. [111]

      A. Gao, Z. Sun, S. Li, X. Hou, H. Li, Q. Wu, X. Xi, Dalton Trans. 47(2018) 3864, https://doi.org/10.1039/C8DT00033F.

    112. [112]

      Y. Tu, Z. Zhou, W. Wei, L. Guan, Y. Liu, Z. Xu, H. Liu, Z. Liu, Chem. Eng. J. 503(2025) 158533, https://doi.org/10.1016/j.cej.2024.158533.

    113. [113]

      Y. Zhang, H. Xing, Q. Meng, Q. Liu, H. Liu, L. Yang, Sep. Purif. Technol. 348(2024) 127739, https://doi.org/10.1016/j.seppur.2024.127739.

    114. [114]

      F. Qian, B. Zhao, M. Guo, Z. Qian, Z. Wu, Z. Liu, Mater. Des. 194(2020) 108867, https://doi.org/10.1016/j.matdes.2020.108867.

    115. [115]

      H. Zhan, Y. Qiao, Z. Qian, B. Lv, Z. Wu, Z. Liu, Chem. Eng. J. 497(2024) 154859, https://doi.org/10.1016/j.cej.2024.154859.

    116. [116]

      H. Zhan, Y. Qiao, Z. Qian, J. Li, Z. Wu, X. Hao, Z. Liu, J. Ind. Eng. Chem. 114(2022) 142, https://doi.org/10.1016/j.jiec.2022.07.003.

    117. [117]

      R. Trócoli, A. Battistel, F. L. Mantia, Chemistry – A European Journal 20(2014) 9888, https://doi.org/10.1002/chem.201403535.

    118. [118]

      C. Liu, R. Massé, X. Nan, G. Cao, Energy Storage Mater. 4(2016) 15, https://doi.org/10.1016/j.ensm.2016.02.002.

    119. [119]

      P.-C. Tsai, B. Wen, M. Wolfman, M.-J. Choe, M. S. Pan, L. Su, K. Thornton, J. Cabana, Y.-M. Chiang, Energy Environ. Sci. 11(2018) 860, https://doi.org/10.1039/C8EE00001H.

    120. [120]

      M. Park, X. Zhang, M. Chung, G. B. Less, A. M. Sastry, J. Power Sources 195(2010) 7904, https://doi.org/10.1016/j.jpowsour.2010.06.060.

    121. [121]

      M. M. Thackeray, K. Amine, Nat. Energy 6 (2021) 566, https://doi.org/10.1038/s41560-021-00815-8.

    122. [122]

      M. M. Thackeray, K. Amine, Nat. Energy 6 (2021) 933, https://doi.org/10.1038/s41560-021-00860-3.

    123. [123]

      J. Li, Z.-F. Ma, Chem 5 (2019) 3, https://doi.org/10.1016/j.chempr.2018.12.012.

    124. [124]

      W. Zhu, W. Xu, D. Liu, L. He, X. Liu, Z. Zhao, Electrochim. Acta 475 (2024) 143519, https://doi.org/10.1016/j.electacta.2023.143519.

    125. [125]

      P. Wang, S. Zhou, X. Yao, Y. Fu, S. Gu, J. Yu, Sep. Purif. Technol. 357 (2025) 130184, https://doi.org/10.1016/j.seppur.2024.130184.

    126. [126]

      J. Gu, G. Zhou, L. Chen, X. Li, G. Luo, L. Fan, Y. Chao, H. Ji, W. Zhu, J. Electroanal. Chem. 940 (2023) 117487, https://doi.org/10.1016/j.jelechem.2023.117487.

    127. [127]

      D. Liu, W. Xu, J. Xiong, L. He, Z. Zhao, Sep. Purif. Technol. 270 (2021) 118809, https://doi.org/10.1016/j.seppur.2021.118809.

    128. [128]

      Z.-Y. Guo, Z.-Y. Ji, H.-Y. Chen, J. Liu, Y.-Y. Zhao, F. Li, J.-S. Yuan, ACS Sustainable Chem. Eng. 8 (2020) 11834, https://doi.org/10.1021/acssuschemeng.0c04359.

    129. [129]

      Z.-Y. Guo, Z.-Y. Ji, J. Wang, H.-Y. Chen, J. Liu, Y.-Y. Zhao, F. Li, J.-S. Yuan, Sep. Purif. Technol. 259 (2021) 118154, https://doi.org/10.1016/j.seppur.2020.118154.

    130. [130]

      H. Zhan, Z. Qian, Y. Qiao, B. Lv, R. Liu, H. Chen, Z. Liu, ACS Nano 18 (2024) 31204, https://doi.org/10.1021/acsnano.4c09379.

    131. [131]

      L. He, W. Xu, Y. Song, Y. Luo, X. Liu, Z. Zhao, Global Challenges 2 (2018) 1700079, https://doi.org/10.1002/gch2.201700079.

    132. [132]

      J. Xiong, L. He, Z. Zhao, Desalination 535 (2022) 115822, https://doi.org/10.1016/j.desal.2022.115822.

    133. [133]

      L. Wang, Y. Zhou, W. Chen, J.-L. Jiang, Z.-H. Guo, Sep. Purif. Technol. 306 (2023) 122605, https://doi.org/10.1016/j.seppur.2022.122605.

    134. [134]

      Z. Huang, W. Xu, Z. Zhao, D. Liu, L. He, X. Liu, Chem. Eng. J. 467 (2023) 143247, https://doi.org/10.1016/j.cej.2023.143247.

    135. [135]

      S. Sun, X. Yu, M. Li, J. Duo, Y. Guo, T. Deng, J. Cleaner Prod. 247 (2020) 119178, https://doi.org/10.1016/j.jclepro.2019.119178.

    136. [136]

      J. Yang, X. Shang, B. Hu, B. Zhang, Y. Wang, J. Yang, J. Liu, J. Solid State Electrochem. 27 (2023) 2029, https://doi.org/10.1007/s10008-023-05461-6.

    137. [137]

      X. Zhao, Y. Gong, K. Gao, Y. Wang, H. Y. Yang, Chem. Eng. J. 474 (2023) 145975, https://doi.org/10.1016/j.cej.2023.145975.

    138. [138]

      G. Tan, S. Wan, J.-J. Chen, H.-Q. Yu, Y. Yu, Adv. Mater. 36 (2024) 2310657, https://doi.org/10.1002/adma.202310657.

    139. [139]

      G. Tian, J. Gao, M. Wang, X. Wen, Y. Liu, J. Xiang, L. Zhang, P. Cheng, J. Zhang, N. Tang, Electrochim. Acta 475 (2024) 143361, https://doi.org/10.1016/j.electacta.2023.143361.

    140. [140]

      J. Gu, L. Chen, X. Li, G. Luo, L. Fan, Y. Chao, H. Ji, W. Zhu, J. Energy Chem. 89 (2024) 410, https://doi.org/10.1016/j.jechem.2023.10.005.

    141. [141]

      G. Luo, X. Li, L. Chen, Y. Zhang, J. Gu, Y. Chao, W. Zhu, Z. Liu, C. Xu, Chem. Eng. J. 455 (2023) 140928, https://doi.org/10.1016/j.cej.2022.140928.

    142. [142]

      J. Gu, L. Chen, L. Fan, G. Luo, X. Li, X. Chen, H. Ji, Y. Chao, W. Zhu, Desalination 586 (2024) 117828, https://doi.org/10.1016/j.desal.2024.117828.

    143. [143]

      G. Luo, M. Zhou, Y. Chao, P. Cui, X. Li, L. Chen, G. Jiang, W. Zhu, Z. Liu, C. Xu, Sep. Purif. Technol. 354 (2025) 128683, https://doi.org/10.1016/j.seppur.2024.128683.

    144. [144]

      Z. Li, I.-C. Chen, L. Cao, X. Liu, K.-W. Huang, Z. Lai, Science 385 (2024) 1438, https://doi.org/10.1126/science.adg8487.

    145. [145]

      X. Zhao, S. Yang, X. Song, Y. Wang, H. Zhang, M. Li, Y. Wang, Adv. Sci. 11 (2024) 2405176, https://doi.org/10.1002/advs.202405176.

    146. [146]

      D. Chen, Z. Zhang, T. Ma, Q. Luo, X. Du, X. Ye, X. Hao, Z. Wu, X. Wang, J. Li, Process Safety and Environmental Protection 191 (2024) 112, https://doi.org/10.1016/j.psep.2024.08.113.

    147. [147]

      G. Liao, L. Yu, Y. Xia, Z. Wang, Z. Lu, J. Mei, H. Liu, C. Liu, Water Res. 274 (2025) 123131, https://doi.org/10.1016/j.watres.2025.123131.

    148. [148]

      Z. Hui, J. An, J. Zhou, W. Huang, G. Sun, Exploration 2 (2022) 20210237, https://doi.org/10.1002/EXP.20210237.

    149. [149]

      R.-X. Yin, W.-G. Zhu, Z.-W. Zhao, W.-H. Xu, X.-H. Liu, L.-H. He, Sep. Purif. Technol. 338 (2024) 126375, https://doi.org/10.1016/j.seppur.2024.126375.

    150. [150]

      J. Wang, J.-W. Fang, Z.-Y. Ji, Z.-Y. Guo, X.-W. Li, J. Liu, Y.-Y. Zhao, Z. Liu, F.-F. Gao, Y. Zhong, J.-S. Yuan, J. Environ. Chem. Eng. 11 (2023) 110878, https://doi.org/10.1016/j.jece.2023.110878.

    151. [151]

      Y. Mu, C. Zhang, W. Zhang, Y. Wang, Desalination 511 (2021) 115112, https://doi.org/10.1016/j.desal.2021.115112.

    152. [152]

      G. Ma, Y. Xu, A. Cai, H. Mao, X. Zhang, D.-M. Shin, L. Wang, H. Zhou, Small 20 (2024) 2306530, https://doi.org/10.1002/smll.202306530.

    153. [153]

      H. Zhang, L. Zhao, Z. Guo, L. Wang, Y. Ma, P. Zhang, J. Wang, Z.-Y. Ji, Environ. Sci. Technol. 59 (2025) 6881, https://doi.org/10.1021/acs.est.4c13308.

    154. [154]

      M. Nakayama, H. Taki, T. Nakamura, S. Tokuda, R. Jalem, T. Kasuga, J. Phys. Chem. C 118 (2014) 27245, https://doi.org/10.1021/jp509232m.

    155. [155]

      G. Zhou, L. Chen, X. Li, G. Luo, Z. Yu, J. Yin, L. Fan, Y. Chao, L. Jiang, W. Zhu, Green Energy Environ. 8 (2023) 1081, https://doi.org/10.1016/j.gee.2021.12.002.

    156. [156]

      L. Peng, X. Zhang, Z. Fang, Y. Zhu, Y. Xie, J. J. Cha, G. Yu, Chem. Mater. 29 (2017) 10526, https://doi.org/10.1021/acs.chemmater.7b04514.

    157. [157]

      Y. Zhao, L. Peng, B. Liu, G. Yu, Nano Lett. 14 (2014) 2849, https://doi.org/10.1021/nl5008568.

    158. [158]

      A. Yamada, H. Koizumi, S. I. Nishimura, N. Sonoyama, R. Kanno, M. Yonemura, T. Nakamura, Y. Kobayashi, Nat. Mater. 5 (2006) 357, https://doi.org/10.1038/nmat1634.

    159. [159]

      X.-C. Tang, L.-X. Li, Q.-L. Lai, X.-W. Song, L.-H. Jiang, Electrochim. Acta 54 (2009) 2329, https://doi.org/10.1016/j.electacta.2008.10.065.

    160. [160]

      P. P. Prosini, M. Lisi, D. Zane, M. Pasquali, Solid State Ionics 148 (2002) 45, https://doi.org/10.1016/S0167-2738(02)00134-0.

    161. [161]

      G. Yan, G. Kim, R. Yuan, E. Hoenig, F. Shi, W. Chen, Y. Han, Q. Chen, J.-M. Zuo, W. Chen, C. Liu, Nat. Commun. 13 (2022) 4579, https://doi.org/10.1038/s41467-022-32369-y.

    162. [162]

      Y. Wu, P. Shi, Y. Zhong, R. Cai, Energy & Fuels 37 (2023) 4083, https://doi.org/10.1021/acs.energyfuels.2c04113.

    163. [163]

      C. Cai, G. M. Koenig, Electrochim. Acta 401 (2022) 139484, https://doi.org/10.1016/j.electacta.2021.139484.

    164. [164]

      Y. K. Lee, J. Park, W. Lu, J. Electrochem. Soc. 163 (2016) A1359, https://doi.org/10.1149/2.0991607jes.

    165. [165]

      X. Sun, R. Xiao, X. Yu, H. Li, ACS Appl. Mater. Interfaces 14 (2022) 10353, https://doi.org/10.1021/acsami.1c23478.

    166. [166]

      Z. Ahaliabadeh, X. Kong, E. Fedorovskaya, T. Kallio, J. Power Sources 540 (2022) 231633, https://doi.org/10.1016/j.jpowsour.2022.231633.

    167. [167]

      J. Choi, S.-Y. Lee, S. Yoon, K.-H. Kim, M. Kim, S.-H. Hong, ChemSusChem 12 (2019) 2439, https://doi.org/10.1002/cssc.201900500.

    168. [168]

      S.-Y. Chung, J. T. Bloking, Y.-M. Chiang, Nat. Mater. 1 (2002) 123, https://doi.org/10.1038/nmat732.

    169. [169]

      P. S. Herle, B. Ellis, N. Coombs, L. F. Nazar, Nat. Mater. 3 (2004) 147, https://doi.org/10.1038/nmat1063.

    170. [170]

      M. Wagemaker, B. L. Ellis, D. Lützenkirchen-Hecht, F. M. Mulder, L. F. Nazar, Chem. Mater. 20 (2008) 6313, https://doi.org/10.1021/cm801781k.

    171. [171]

      M. D. Johannes, K. Hoang, J. L. Allen, K. Gaskell, Phys. Rev. B 85 (2012) 115106, https://doi.org/10.1103/PhysRevB.85.115106.

    172. [172]

      C. Ban, W.-J. Yin, H. Tang, S.-H. Wei, Y. Yan, A. C. Dillon, Adv. Energy Mater. 2 (2012) 1028, https://doi.org/10.1002/aenm.201200085.

    173. [173]

      K. Hoang, M. D. Johannes, J. Power Sources 206 (2012) 274, https://doi.org/10.1016/j.jpowsour.2012.01.126.

    174. [174]

      Y. Zhang, J. A. Alarco, J. Y. Nerkar, A. S. Best, G. A. Snook, P. C. Talbot, B. C. C. Cowie, ACS Appl. Energy Mater. 3 (2020) 9158, https://doi.org/10.1021/acsaem.0c01536.

    175. [175]

      F. Bizzotto, W. Dachraoui, R. Grissa, W. Zhao, F. Pagani, E. Querel, R.-S. Kühnel, C. Battaglia, Electrochim. Acta 462 (2023) 142758, https://doi.org/10.1016/j.electacta.2023.142758.

    176. [176]

      F. Schipper, H. Bouzaglo, M. Dixit, E. M. Erickson, T. Weigel, M. Talianker, J. Grinblat, L. Burstein, M. Schmidt, J. Lampert, C. Erk, B. Markovsky, D. T. Major, D. Aurbach, Adv. Energy Mater. 8 (2018) 1701682, https://doi.org/10.1002/aenm.201701682.

    177. [177]

      U. Nisar, N. Muralidharan, R. Essehli, R. Amin, I. Belharouak, Energy Storage Mater. 38 (2021) 309, https://doi.org/10.1016/j.ensm.2021.03.015.

    178. [178]

      P. Zhu, Z. Yang, H. Zhang, J. Yu, Z. Zhang, J. Cai, C. Li, J. Alloys Compd. 745 (2018) 164, https://doi.org/10.1016/j.jallcom.2018.02.119.

    179. [179]

      B. Xiao, B. Wang, J. Liu, K. Kaliyappan, Q. Sun, Y. Liu, G. Dadheech, M. P. Balogh, L. Yang, T.-K. Sham, R. Li, M. Cai, X. Sun, Nano Energy 34 (2017) 120, https://doi.org/10.1016/j.nanoen.2017.02.015.

    180. [180]

      Y. He, H. Pham, X. Liang, J. Park, Chem. Eng. J. 440 (2022) 135565, https://doi.org/10.1016/j.cej.2022.135565.

    181. [181]

      X. Li, J. Liu, M. N. Banis, A. Lushington, R. Li, M. Cai, X. Sun, Energy Environ. Sci. 7 (2014) 768, https://doi.org/10.1039/C3EE42704H.

    182. [182]

      P. Guan, L. Zhou, Z. Yu, Y. Sun, Y. Liu, F. Wu, Y. Jiang, D. Chu, J. Energy Chem. 43 (2020) 220, https://doi.org/10.1016/j.jechem.2019.08.022.

    183. [183]

      J. Li, Q. Wu, J. Wu, Synthesis of Nanoparticles via Solvothermal and Hydrothermal Methods. In Handbook of Nanoparticles; M. Aliofkhazraei, Eds.; Springer Cham: Switzerland, 2016; pp. 295–328.

    184. [184]

      H.-H. Ryu, H.-W. Lim, S. G. Lee, Y.-K. Sun, Nat. Energy 9 (2023) 47, https://doi.org/10.1038/s41560-023-01403-8.

    185. [185]

      Y. Lin, Y. Lin, T. Zhou, G. Zhao, Y. Huang, Z. Huang, J. Power Sources 226 (2013) 20, https://doi.org/10.1016/j.jpowsour.2012.10.074.

    186. [186]

      Y. Liu, X.-J. Lin, Y.-G. Sun, Y.-S. Xu, B.-B. Chang, C.-T. Liu, A.-M. Cao, L.-J. Wan, Small 15 (2019) 1901019, https://doi.org/10.1002/smll.201901019.

    187. [187]

      Y.-F. Deng, S.-X. Zhao, Y.-H. Xu, C.-W. Nan, J. Mater. Chem. A 2 (2014) 18889, https://doi.org/10.1039/C4TA03772C.

    188. [188]

      F. Xiong, Z. Chen, C. Huang, T. Wang, W. Zhang, Z. Yang, F. Chen, Inorg. Chem. 58 (2019) 15498, https://doi.org/10.1021/acs.inorgchem.9b02533.

    189. [189]

      Z.-X. Chi, W. Zhang, X.-S. Wang, F.-Q. Cheng, J.-T. Chen, A.-M. Cao, L.-J. Wan, ACS Appl. Mater. Interfaces 6 (2014) 22719, https://doi.org/10.1021/am506860e.

    190. [190]

      Y. Kwon, Y. Lee, S.-O. Kim, H.-S. Kim, K. J. Kim, D. Byun, W. Choi, ACS Appl. Mater. Interfaces 10 (2018) 29457, https://doi.org/10.1021/acsami.8b08200.

    191. [191]

      Q. Wang, Y. Lei, Y. Wang, Y. Liu, C. Song, J. Zeng, Y. Song, X. Duan, D. Wang, Y. Li, Energy Environ. Sci. 13 (2020) 1593, https://doi.org/10.1039/D0EE00450B.

    192. [192]

      I. Gómez-Palos, M. Vazquez-Pufleau, R. S. Schäufele, A. Mikhalchan, A. Pendashteh, Á. Ridruejo, J. J. Vilatela, Nanoscale 15 (2023) 6052, https://doi.org/10.1039/D3NR00289F.

    193. [193]

      Q. Hou, G. Cao, P. Wang, D. Zhao, X. Cui, S. Li, C. Li, J. Alloys Compd. 747 (2018) 796, https://doi.org/10.1016/j.jallcom.2018.03.115.

    194. [194]

      C. Gao, J. Zhou, G. Liu, L. Wang, Appl. Surf. Sci. 433 (2018) 35, https://doi.org/10.1016/j.apsusc.2017.10.034.

    195. [195]

      Q. Gong, Y.-S. He, Y. Yang, X.-Z. Liao, Z.-F. Ma, J. Solid State Electrochem. 16 (2012) 1383, https://doi.org/10.1007/s10008-011-1538-x.

    196. [196]

      Q. Liu, Y.-T. Liu, C. Zhao, Q.-S. Weng, J. Deng, I. Hwang, Y. Jiang, C. Sun, T. Li, W. Xu, K. Du, A. Daali, G.-L. Xu, K. Amine, G. Chen, ACS Nano 16 (2022) 14527, https://doi.org/10.1021/acsnano.2c04959.

    197. [197]

      L. Sun, G. Yuan, L. Gao, J. Yang, M. Chhowalla, M. H. Gharahcheshmeh, K. K. Gleason, Y. S. Choi, B. H. Hong, Z. Liu, Nat. Rev. Methods Primers 1 (2021) 5, https://doi.org/10.1038/s43586-020-00005-y.

    198. [198]

      R. W. Johnson, A. Hultqvist, S. F. Bent, Mater. Today 17 (2014) 236, https://doi.org/10.1016/j.mattod.2014.04.026.

    199. [199]

      S. M. George, Chem. Rev. 110 (2010) 111, https://doi.org/10.1021/cr900056b.

    200. [200]

      M. Zhang, N. Garcia-Araez, Electrochim. Acta 499 (2024) 144686, https://doi.org/10.1016/j.electacta.2024.144686.

    201. [201]

      X. Zhao, L. Zheng, Y. Hou, Y. Wang, L. Zhu, Chem. Eng. J. 450 (2022) 138454, https://doi.org/10.1016/j.cej.2022.138454.

    202. [202]

      T. Han, X. Yu, Y. Guo, M. Li, J. Duo, T. Deng, Electrochim. Acta 350 (2020) 136385, https://doi.org/10.1016/j.electacta.2020.136385.

    203. [203]

      J. Zhang, W. Pan, Y. Zhou, C. Hai, Y. Xu, Y. Zhao, Y. Sun, S. Dong, X. He, Q. Xu, J. Chen, H. Su, L. Ma, Chemosphere 360 (2024) 142325, https://doi.org/10.1016/j.chemosphere.2024.142325.

    204. [204]

      J. Zhang, Y. Zhou, C. Hai, H. Su, Y. Zhao, Y. Sun, S. Dong, X. He, Q. Xu, T. Chen, J. Xiang, S. Huang, L. Ma, Sep. Purif. Technol. 334 (2024) 126010, https://doi.org/10.1016/j.seppur.2023.126010.

    205. [205]

      J. Zhang, Y. Zhou, C. Hai, Y. Gao, Y. Zhao, Y. Sun, S. Dong, X. He, Q. Xu, J. Chen, H. Su, L. Ma, Desalination 579 (2024) 117457, https://doi.org/10.1016/j.desal.2024.117457.

    206. [206]

      B. Hu, X. Shang, P. Nie, B. Zhang, J. Yang, J. Liu, J. Colloid Interface Sci. 612 (2022) 392, https://doi.org/10.1016/j.jcis.2021.12.181.

    207. [207]

      X. Du, G. Guan, X. Li, A. D. Jagadale, X. Ma, Z. Wang, X. Hao, A. Abudula, J. Mater. Chem. A 4 (2016) 13989, https://doi.org/10.1039/C6TA05985F.

    208. [208]

      X. Zhao, G. Li, M. Feng, Y. Wang, Electrochim. Acta 331 (2020) 135285, https://doi.org/10.1016/j.electacta.2019.135285.

    209. [209]

      B. Hu, Y. Wang, B. Zhang, X. Song, H. Jiang, J. Ma, J. Liu, Sep. Purif. Technol. 348 (2024) 127693, https://doi.org/10.1016/j.seppur.2024.127693.

    210. [210]

      B. Mojtahedi, M. Askari, A. Dolati, N. Shahcheraghi, M. Ghorbanzadeh, Energy & Fuels 38 (2024) 19878, https://doi.org/10.1021/acs.energyfuels.4c03409.

    211. [211]

      L. Gou, Y.-F. Zhang, W. Wang, J.-Y. Ying, X.-Y. Fan, Z.-Z. Zhang, Chem. Eng. J. 498 (2024) 155755, https://doi.org/10.1016/j.cej.2024.155755.

    212. [212]

      N. Xue, X. Wu, H. Shi, Y. Zhang, Y. Zhang, Y. Lv, X. Zhang, X. Chen, Y. Yu, W. Liu, ACS Nano 18 (2024) 33743, https://doi.org/10.1021/acsnano.4c15473.

    213. [213]

      J. Li, L. Han, R. Wang, T. Wang, L. Pan, X. Zhang, C. Wang, Desalination 591 (2024) 118035, https://doi.org/10.1016/j.desal.2024.118035.

    214. [214]

      G. Luo, X. Li, L. Chen, J. Gu, Y. Huang, J. Sun, H. Liu, Y. Chao, W. Zhu, Z. Liu, Appl. Energy 337 (2023) 120890, https://doi.org/10.1016/j.apenergy.2023.120890.

    215. [215]

      L. Chen, L. Fan, D. Lan, J. Gu, C. Xiaojun, H. Ji, Y. Chao, P. Wu, W. Zhu, Chem. Eng. J. 505 (2025) 159815, https://doi.org/10.1016/j.cej.2025.159815.

    216. [216]

      Y. Bao, Z. Ji, H. Zhou, C. Zhang, S. Song, F. Jia, J. Li, M. Quintana, Small (2024) 2406951, https://doi.org/10.1002/smll.202406951.

    217. [217]

      Y. Chen, H. Zhan, Y. Qiao, Z. Qian, B. Lv, Z. Wu, Z. Liu, Chem. Eng. J. 477 (2023) 147136, https://doi.org/10.1016/j.cej.2023.147136.

    218. [218]

      G. T. Hill, F. Shi, H. Zhou, Y. Han, C. Liu, Matter 4 (2021) 1611, https://doi.org/10.1016/j.matt.2021.02.005.

    219. [219]

      V. C. E. Romero, K. Llano, E. J. Calvo, Electrochem. Commun. 125 (2021) 106980, https://doi.org/10.1016/j.elecom.2021.106980.

    220. [220]

      E. N. Guyes, A. N. Shocron, A. Simanovski, P. M. Biesheuvel, M. E. Suss, Desalination 415 (2017) 8, https://doi.org/10.1016/j.desal.2017.03.013.

    221. [221]

      Z.-Y. Guo, Z.-Y. Ji, J. Wang, X.-F. Guo, J.-S. Liang, Desalination 533 (2022) 115767, https://doi.org/10.1016/j.desal.2022.115767.

    222. [222]

      D. Liu, Z. Zhao, W. Xu, J. Xiong, L. He, Desalination 519 (2021) 115302, https://doi.org/10.1016/j.desal.2021.115302.

    223. [223]

      J. Xiong, L. He, D. Liu, W. Xu, Z. Zhao, Desalination 520 (2021) 115326, https://doi.org/10.1016/j.desal.2021.115326.

    224. [224]

      C. Liu, Y. Li, D. Lin, P.-C. Hsu, B. Liu, G. Yan, T. Wu, Y. Cui, S. Chu, Joule 4 (2020) 1459, https://doi.org/10.1016/j.joule.2020.05.017.

    225. [225]

      M. S. Palagonia, D. Brogioli, F. La Mantia, J. Electrochem. Soc. 166 (2019) E286, https://doi.org/10.1149/2.0221910jes.

    226. [226]

      S. Kim, J. Lee, S. Kim, S. Kim, J. Yoon, Energy Technol. 6 (2018) 340, https://doi.org/10.1002/ente.201700488.

    227. [227]

      A. Zhao, J. Liu, X. Ai, H. Yang, Y. Cao, ChemSusChem 12 (2019) 1361, https://doi.org/10.1002/cssc.201803045.

    228. [228]

      C.-T. Hsieh, C.-T. Pai, Y.-F. Chen, P.-Y. Yu, R.-S. Juang, Electrochim. Acta 115 (2014) 96, https://doi.org/10.1016/j.electacta.2013.10.082.

    229. [229]

      Z. Wang, Z. Chen, Y. Li, X. Ren, X. Xiong, Z. Lu, L. Deng, Nano Energy 131 (2024) 110249, https://doi.org/10.1016/j.nanoen.2024.110249.

    230. [230]

      C. P. Graettinger, S. Garcia, J. Siviy, R. J. Schenk, P. J. Van Syckle, Using the Technology Readiness Levels Scale to Support Technology Management in the DoD's ATD/STO Environments. [2025-04-01]. https://insights.sei.cmu.edu/library/using-the-technology-readiness-levels-scale-to-support-technology-management-in-the-dods-atdsto-environments-a-findings-and-recommendations-report-conducted-for-army-cecom/.

    231. [231]

      L. Wu, C. Zhang, S. Kim, T. A. Hatton, H. Mo, T. D. Waite, Water Res. 221 (2022) 118822, https://doi.org/10.1016/j.watres.2022.118822.

    232. [232]

      H. Joo, S. Kim, S. Kim, M. Choi, S.-H. Kim, J. Yoon, Environ. Sci. Water Res. Technol. 6 (2020) 290, https://doi.org/10.1039/C9EW00756C.

    233. [233]

      J. Zhang, S. Dong, X. He, Q. Xu, C. Hai, Y. Zhou, X. Zhang, L. Ma, Chemistry 86 (2023) 1044, https://doi.org/10.14159/j.cnki.0441-3776.2023.09.013.

    234. [234]

  • 加载中
    1. [1]

      Yuanyuan JIANGFangfang TUYuhong ZHANGShi CHENJiayuan XIANGXinhui XIA . Preparation and electrochemical properties of high-stability cathode prelithiation additive. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1101-1111. doi: 10.11862/CJIC.20240441

    2. [2]

      Zeqiu ChenLimiao CaiJie GuanZhanyang LiHao WangYaoguang GuoXingtao XuLikun Pan . Advanced electrode materials in capacitive deionization for efficient lithium extraction. Acta Physico-Chimica Sinica, 2025, 41(8): 100089-0. doi: 10.1016/j.actphy.2025.100089

    3. [3]

      Xiangyu CAOJiaying ZHANGYun FENGLinkun SHENXiuling ZHANGJuanzhi YAN . Synthesis and electrochemical properties of bimetallic-doped porous carbon cathode material. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 509-520. doi: 10.11862/CJIC.20240270

    4. [4]

      Jiahong ZHENGJiajun SHENXin BAI . Preparation and electrochemical properties of nickel foam loaded NiMoO4/NiMoS4 composites. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 581-590. doi: 10.11862/CJIC.20230253

    5. [5]

      Qin ZHUJiao MAZhihui QIANYuxu LUOYujiao GUOMingwu XIANGXiaofang LIUPing NINGJunming GUO . Morphological evolution and electrochemical properties of cathode material LiAl0.08Mn1.92O4 single crystal particles. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1549-1562. doi: 10.11862/CJIC.20240022

    6. [6]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    7. [7]

      Feng Lin Zhongxin Jin Caiying Li Cheng Shao Yang Xu Fangze Li Siqi Liu Ruining Gu . Preparation and Electrochemical Properties of Nickel Foam-Supported Ni(OH)2-NiMoO4 Electrode Material. University Chemistry, 2025, 40(10): 225-232. doi: 10.12461/PKU.DXHX202412017

    8. [8]

      Yuanchao LIWeifeng HUANGPengchao LIANGZifang ZHAOBaoyan XINGDongliang YANLi YANGSonglin WANG . Effect of heterogeneous dual carbon sources on electrochemical properties of LiMn0.8Fe0.2PO4/C composites. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 751-760. doi: 10.11862/CJIC.20230252

    9. [9]

      Xinpeng LIULiuyang ZHAOHongyi LIYatu CHENAimin WUAikui LIHao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488

    10. [10]

      Yuting ZHANGZunyi LIUNing LIDongqiang ZHANGShiling ZHAOYu ZHAO . Nickel vanadate anode material with high specific surface area through improved co-precipitation method: Preparation and electrochemical properties. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2163-2174. doi: 10.11862/CJIC.20240204

    11. [11]

      Ru SONGBiao WANGChunling LUBingbing NIUDongchao QIU . Electrochemical properties of stable and highly active PrBa0.5Sr0.5Fe1.6Ni0.4O5+δ cathode material. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 639-649. doi: 10.11862/CJIC.20240397

    12. [12]

      Pengcheng YanPeng WangJing HuangZhao MoLi XuYun ChenYu ZhangZhichong QiHui XuHenan Li . Engineering Multiple Optimization Strategy on Bismuth Oxyhalide Photoactive Materials for Efficient Photoelectrochemical Applications. Acta Physico-Chimica Sinica, 2025, 41(2): 2309047-0. doi: 10.3866/PKU.WHXB202309047

    13. [13]

      Huirong BAOJun YANGXiaomiao FENG . Preparation and electrochemical properties of NiCoP/polypyrrole/carbon cloth by electrodeposition. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1083-1093. doi: 10.11862/CJIC.20250008

    14. [14]

      Tinghui ANDong XIANGJiaqi LIJiawei WANGShuming YUNan WANGKedi CAI . Research progress on the application of laser synthesis technology for electrochemical functional materials. Chinese Journal of Inorganic Chemistry, 2025, 41(9): 1731-1754. doi: 10.11862/CJIC.20240412

    15. [15]

      Yue-Zhou ZhuKun WangShi-Sheng ZhengHong-Jia WangJin-Chao DongJian-Feng Li . Application and Development of Electrochemical Spectroscopy Methods. Acta Physico-Chimica Sinica, 2024, 40(3): 2304040-0. doi: 10.3866/PKU.WHXB202304040

    16. [16]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    17. [17]

      Kun Xu Xinxin Song Zhilei Yin Jian Yang Qisheng Song . Comprehensive Experimental Design of Preferential Orientation of Zinc Metal by Heat Treatment for Enhanced Electrochemical Performance. University Chemistry, 2024, 39(4): 192-197. doi: 10.3866/PKU.DXHX202309050

    18. [18]

      Xuechen HuQiuying XiaFan YueXinyi HeZhenghao MeiJinshi WangHui XiaXiaodong Huang . Electrochemical Characteristics of LiNbO3 Anode Film and Its Applications in All-Solid-State Thin-Film Lithium-Ion Battery. Acta Physico-Chimica Sinica, 2024, 40(2): 2309046-0. doi: 10.3866/PKU.WHXB202309046

    19. [19]

      Zhuo WangXue BaiKexin ZhangHongzhi WangJiabao DongYuan GaoBin Zhao . MOF-Templated Synthesis of Nitrogen-Doped Carbon for Enhanced Electrochemical Sodium Ion Storage and Removal. Acta Physico-Chimica Sinica, 2025, 41(3): 2405002-0. doi: 10.3866/PKU.WHXB202405002

    20. [20]

      Jiahong ZHENGJingyun YANG . Preparation and electrochemical properties of hollow dodecahedral CoNi2S4 supported by MnO2 nanowires. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1881-1891. doi: 10.11862/CJIC.20240170

Metrics
  • PDF Downloads(1)
  • Abstract views(9)
  • HTML views(3)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return