Citation: Xiaorui Chen, Xuan Luo, Tongming Su, Xinling Xie, Liuyun Chen, Yuejing Bin, Zuzeng Qin, Hongbing Ji. Ga-doped Cu/γ-Al2O3 bifunctional interface sites promote the direct hydrogenation of CO2 to DME[J]. Acta Physico-Chimica Sinica, ;2025, 41(10): 100126. doi: 10.1016/j.actphy.2025.100126 shu

Ga-doped Cu/γ-Al2O3 bifunctional interface sites promote the direct hydrogenation of CO2 to DME

  • Corresponding author: Zuzeng Qin, qinzuzeng@gxu.edu.cn
  • Received Date: 5 May 2025
    Revised Date: 21 June 2025
    Accepted Date: 24 June 2025

    Fund Project: the National Natural Science Foundation of China 22078074the Guangxi Key Research and Development Program GuikeAB25069513

  • The reaction of CO2 catalytic hydrogenation to dimethyl ether (DME) usually relies on a Cu-containing metal oxide/molecular sieve system; however, the migration of copper species to molecular sieves is unavoidable during the reaction, leading to the loss of Cu0 sites and acidic sites. In this work, a Cu/x%Ga-γ-Al2O3 bifunctional catalyst was synthesized via the coprecipitation method. Ga was doped into the γ-Al2O3 lattice at a low concentration, forming interfacial active sites with surface Cu0 species to achieve the hydrogenation of CO2 to DME. Experimental studies combined with Density functional theory (DFT) calculations demonstrate that the catalyst remains stable for 180 h and that the Ga-doped Cu/γ-Al2O3 interface sites exhibit catalytic effects on CO2 hydrogenation to CH3OH and CH3OH dehydration to produce DME. The doping of Ga increases the specific surface area of the catalyst, reduces the particle size of Cu0, enhances the number of acidic and basic sites on the catalyst, and promotes the adsorption of H2 and CO2. In addition, a new reaction pathway for DME synthesis was proposed. This work removes the dehydrated component of a traditional Cu-based bifunctional catalyst, enabling two reactions to occur at the same active sites, thus providing a new strategy for the design of novel dimethyl ether synthesis bifunctional catalysts.
  • 加载中
    1. [1]

      A. Álvarez, A. Bansode, A. Urakawa, A. V. Bavykina, T. A. Wezendonk, M. Makkee, J. Gascon, F. Kapteijn, Chem. Rev. 117 (14) (2017) 9804, https://doi.org/10.1021/acs.chemrev.6b00816.  doi: 10.1021/acs.chemrev.6b00816

    2. [2]

      A. Modak, P. Bhanja, S. Dutta, B. Chowdhury, A. Bhaumik, Green Chem. 22 (13) (2020) 4002, https://doi.org/10.1039/D0GC01092H.  doi: 10.1039/D0GC01092H

    3. [3]

      J. Wang, R. Fu, S. Wen, P. Ning, M. H. Helal, M. A. Salem, B. B. Xu, Z. M. El-Bahy, M. Huang, Z. Guo, L. Huang, Q. Wang, Adv. Compos. Hybrid Mater. 5 (4) (2022) 2721, https://doi.org/10.1007/s42114-022-00567-3.  doi: 10.1007/s42114-022-00567-3

    4. [4]

      X. Guo, J. Yin, S. Xia, J. Gong, J. He, F. Tang, C. Zuo, P. Liu, Fuel 364 (2024) 131057, https://doi.org/10.1016/j.fuel.2024.131057.  doi: 10.1016/j.fuel.2024.131057

    5. [5]

      Y. Song, K. Serikawa, K. Imamura, H. Imai, X. Li, Ind. Eng. Chem. Res. 59 (26) (2020) 11962, https://doi.org/10.1021/acs.iecr.0c01015.  doi: 10.1021/acs.iecr.0c01015

    6. [6]

      X. Chen, T. Su, X. Luo, X. Xie, Z. Qin, H. Ji, Surf. Interfaces 48 (2024) 104346, https://doi.org/10.1016/j.surfin.2024.104346.  doi: 10.1016/j.surfin.2024.104346

    7. [7]

      N. Nintao, P. Chadawong, W. Sangthong, W. Donphai, A. Seubsai, C. Niamnuy, Top. Catal. 66 (19) (2023) 1478, https://doi.org/10.1007/s11244-023-01844-1.  doi: 10.1007/s11244-023-01844-1

    8. [8]

      H. Li, S. Ren, S. Zhang, S. Padinjarekutt, B. Sengupta, X. Liang, S. Li, M. Yu, J. Mater. Chem. A 9 (5) (2021) 2678, https://doi.org/10.1039/D0TA10417E.  doi: 10.1039/D0TA10417E

    9. [9]

      U. Mondal, G. D. Yadav, Reaction Chemistry & Engineering 7 (6) (2022) 1391, https://doi.org/10.1039/D2RE00025C.  doi: 10.1039/D2RE00025C

    10. [10]

      X. Cui, W. Yan, H. Yang, Y. Shi, Y. Xue, H. Zhang, Y. Niu, W. Fan, T. Deng, ACS Sustain. Chem. Eng. 9 (7) (2021) 2661, https://doi.org/10.1021/acssuschemeng.0c07258.  doi: 10.1021/acssuschemeng.0c07258

    11. [11]

      P. Rodriguez-Vega, A. Ateka, I. Kumakiri, H. Vicente, J. Ereña, A. T. Aguayo, J. Bilbao, Chem. Eng. Sci. 234 (2021) 116396, https://doi.org/10.1016/j.ces.2020.116396.  doi: 10.1016/j.ces.2020.116396

    12. [12]

      M. Sánchez-Contador, A. Ateka, P. Rodriguez-Vega, J. Bilbao, A. T. Aguayo, Ind. Eng. Chem. Res. 57 (4) (2018) 1169, https://doi.org/10.1021/acs.iecr.7b04345.  doi: 10.1021/acs.iecr.7b04345

    13. [13]

      D. Kubas, M. Semmel, O. Salem, I. Krossing, ACS Catal. 13 (6) (2023) 3960, https://doi.org/10.1021/acscatal.2c06207.  doi: 10.1021/acscatal.2c06207

    14. [14]

      C. Sun, Y. Xia, X. Ye, W. Xu, H. Shi, X. Gao, J. Yu, L. Guo, J. Li, Ind. Eng. Chem. Res. 63 (5) (2024) 2113, https://doi.org/10.1021/acs.iecr.3c03606.  doi: 10.1021/acs.iecr.3c03606

    15. [15]

      J. Du, Y. Zhang, K. Wang, F. Ding, S. Jia, G. Liu, L. Tan, RSC Adv. 11 (24) (2021) 14426, https://doi.org/10.1039/D0RA10849A.  doi: 10.1039/D0RA10849A

    16. [16]

      W. Yue, Z. Wan, Y. Li, X. He, J. Caro, A. Huang, J. Membr. Sci. 660 (2022) 120845, https://doi.org/10.1016/j.memsci.2022.120845.  doi: 10.1016/j.memsci.2022.120845

    17. [17]

      X. Fan, B. Jin, S. Ren, S. Li, M. Yu, X. Liang, AlChE J. 67 (11) (2021) e17353, https://doi.org/10.1002/aic.17353.  doi: 10.1002/aic.17353

    18. [18]

      R. -W. Liu, Z. -Z. Qin, H. -B. Ji, T. -M. Su, Ind. Eng. Chem. Res. 52 (47) (2013) 16648, https://doi.org/10.1021/ie401763g.  doi: 10.1021/ie401763g

    19. [19]

      Z. -Z. Qin, X. -H. Zhou, T. -M. Su, Y. -X. Jiang, H. -B. Ji, Catal. Commun. 75 (2016) 78, https://doi.org/10.1016/j.catcom.2015.12.010.  doi: 10.1016/j.catcom.2015.12.010

    20. [20]

      X. Zhou, T. Su, Y. Jiang, Z. Qin, H. Ji, Z. Guo, Chem. Eng. Sci. 153 (2016) 10, https://doi.org/10.1016/j.ces.2016.07.007.  doi: 10.1016/j.ces.2016.07.007

    21. [21]

      L. Yao, X. Shen, Y. Pan, Z. Peng, Energy Fuels 34 (7) (2020) 8635, https://doi.org/10.1021/acs.energyfuels.0c01256.  doi: 10.1021/acs.energyfuels.0c01256

    22. [22]

      G. Bonura, S. Todaro, L. Frusteri, I. Majchrzak-Kucęba, D. Wawrzyńczak, Z. Pászti, E. Tálas, A. Tompos, L. Ferenc, H. Solt, C. Cannilla, F. Frusteri, Appl. Catal., B 294 (2021) 120255, https://doi.org/10.1016/j.apcatb.2021.120255.  doi: 10.1016/j.apcatb.2021.120255

    23. [23]

      H. H. Koybasi, A. K. Avci, Ind. Eng. Chem. Res. 61 (30) (2022) 10846, https://doi.org/10.1021/acs.iecr.2c01764.  doi: 10.1021/acs.iecr.2c01764

    24. [24]

      H. R. Godini, S. R. Kumar, N. Tadikamalla, F. Gallucci, Int. J. Hydrog. Energy 47 (21) (2022) 11341, https://doi.org/10.1016/j.ijhydene.2021.11.073.  doi: 10.1016/j.ijhydene.2021.11.073

    25. [25]

      R. Dalebout, L. Barberis, N. L. Visser, J. E. S. van der Hoeven, A. M. J. van der Eerden, J. A. Stewart, F. Meirer, K. P. de Jong, P. E. de Jongh, ChemCatChem 14 (19) (2022) e202200451, https://doi.org/10.1002/cctc.202200451.  doi: 10.1002/cctc.202200451

    26. [26]

      H. Guo, S. Ding, H. Zhang, C. Wang, F. Peng, S. Yao, L. Xiong, X. Chen, Mol. Catal. 513 (2021) 111820, https://doi.org/10.1016/j.mcat.2021.111820.  doi: 10.1016/j.mcat.2021.111820

    27. [27]

      C. Fritsch, J. Dornseiffer, J. Blankenstein, M. Noyong, C. Groteklaes, U. Simon, ChemCatChem 16 (2024) e202400731, https://doi.org/10.1002/cctc.202400731.  doi: 10.1002/cctc.202400731

    28. [28]

      Q. He, Z. Li, D. Li, F. Ning, Q. Wang, W. Liu, W. Zhang, Y. Cui, J. Zhang, C. Liu, Mol. Catal. 558 (2024) 114008, https://doi.org/10.1016/j.mcat.2024.114008.  doi: 10.1016/j.mcat.2024.114008

    29. [29]

      V. K. Shrivastaw, J. Kaishyop, T. S. Khan, D. Khurana, G. Singh, S. Paul, B. Chowdhury, A. Bordoloi, ChemCatChem 16 (2024) e202400534, https://doi.org/10.1002/cctc.202400534.  doi: 10.1002/cctc.202400534

    30. [30]

      J. Wang, Y. Song, J. Li, F. Liu, J. Wang, J. Lv, S. Wang, M. Li, X. Bao, X. Ma, Appl. Catal. A 674 (2024) 119618, https://doi.org/10.1016/j.apcata.2024.119618.  doi: 10.1016/j.apcata.2024.119618

    31. [31]

      H. Zhou, Z. Chen, A. V. López, E. D. López, E. Lam, A. Tsoukalou, E. Willinger, D. A. Kuznetsov, D. Mance, A. Kierzkowska, F. Donat, P. M. Abdala, A. Comas-Vives, C. Copéret, A. Fedorov, C. R. Müller, Nat. Catal. 4 (10) (2021) 860, https://doi.org/10.1038/s41929-021-00684-0.  doi: 10.1038/s41929-021-00684-0

    32. [32]

      F. C. Meunier, I. Dansette, A. Paredes-Nunez, Y. Schuurman, Angew. Chem. Int. Ed. 62 (29) (2023) e202303939, https://doi.org/10.1002/anie.202303939.  doi: 10.1002/anie.202303939

    33. [33]

      W. Wu, Y. Wang, L. Luo, M. Wang, Z. Li, Y. Chen, Z. Wang, J. Chai, Z. Cen, Y. Shi, J. Zhao, J. Zeng, H. Li, Angew. Chem. Int. Ed. 61 (48) (2022) e202213024, https://doi.org/10.1002/anie.202213024.  doi: 10.1002/anie.202213024

    34. [34]

      A. Feng, T. He, W. Jin, D. Li, B. Qu, R. Zhou, Mol. Catal. 563 (2024) 114259, https://doi.org/10.1016/j.mcat.2024.114259.  doi: 10.1016/j.mcat.2024.114259

    35. [35]

      H. Zhang, J. Yang, S. Wang, N. Zhao, F. Xiao, Y. Wang, Catal. Sci. Technol. 14 (8) (2024) 2153, https://doi.org/10.1039/D3CY01753B.  doi: 10.1039/D3CY01753B

    36. [36]

      A. Ghorbanpour, J. D. Rimer, L. C. Grabow, ACS Catal. 6 (4) (2016) 2287, https://doi.org/10.1021/acscatal.5b02367.  doi: 10.1021/acscatal.5b02367

    37. [37]

      A. Das, S. C. Mandal, S. Das, B. Pathak, J. Phys. Chem. C 126 (51) (2022) 21628, https://doi.org/10.1021/acs.jpcc.2c07240.  doi: 10.1021/acs.jpcc.2c07240

    38. [38]

      A. Lotfollahzade Moghaddam, M. Ghavipour, J. Kopyscinski, M. J. Hazlett, Appl. Catal., A 672 (2024) 119594, https://doi.org/10.1016/j.apcata.2024.119594.  doi: 10.1016/j.apcata.2024.119594

    39. [39]

      G. Kresse, J. Furthmüller, Physical Review B 54 (16) (1996) 11169, https://doi.org/10.1103/PhysRevB.54.11169.  doi: 10.1103/PhysRevB.54.11169

    40. [40]

      J. P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77 (18) (1996) 3865, https://doi.org/10.1103/PhysRevLett.77.3865.  doi: 10.1103/PhysRevLett.77.3865

    41. [41]

      M. -C. Silaghi, A. Comas-Vives, C. Copéret, ACS Catal. 6 (7) (2016) 4501, https://doi.org/10.1021/acscatal.6b00822.  doi: 10.1021/acscatal.6b00822

    42. [42]

      Z. Cui, S. Meng, Y. Yi, A. Jafarzadeh, S. Li, E. C. Neyts, Y. Hao, L. Li, X. Zhang, X. Wang, A. Bogaerts, ACS Catal. 12 (2) (2022) 1326, https://doi.org/10.1021/acscatal.1c04678.  doi: 10.1021/acscatal.1c04678

    43. [43]

      Q. Wang, Z. Yu, J. Feng, P. Fornasiero, Y. He, D. Li, ACS Sustain. Chem. Eng. 8 (40) (2020) 15288, https://doi.org/10.1021/acssuschemeng.0c05235.  doi: 10.1021/acssuschemeng.0c05235

    44. [44]

      S. Lu, J. Zhang, H. Meng, X. Qin, J. Huang, Y. Liang, F. -S. Xiao, Appl. Catal. B 325 (2023) 122329, https://doi.org/10.1016/j.apcatb.2022.122329.  doi: 10.1016/j.apcatb.2022.122329

    45. [45]

      S. Poulston, P. M. Parlett, P. Stone, M. Bowker, Surf. Interface Anal. 24 (12) (1996) 811, https://doi.org/10.1002/ (SICI)1096-9918(199611)24: 12<811: : AID-SIA191>3.0.CO;2-Z.

    46. [46]

      C. Wang, T. Su, Z. Qin, H. Ji, Catal. Sci. Technol. 12 (15) (2022) 4826, https://doi.org/10.1039/D2CY00582D.  doi: 10.1039/D2CY00582D

    47. [47]

      A. Beck, M. Zabilskiy, M. A. Newton, O. Safonova, M. G. Willinger, J. A. van Bokhoven, Nat. Catal. 4 (6) (2021) 488, https://doi.org/10.1038/s41929-021-00625-x.  doi: 10.1038/s41929-021-00625-x

    48. [48]

      K. Chen, B. Chu, Q. Qin, X. Ou, R. Zhao, X. Wei, H. Wu, B. Li, L. Dong, Appl. Surf. Sci. 589 (2022) 153052, https://doi.org/10.1016/j.apsusc.2022.153052.  doi: 10.1016/j.apsusc.2022.153052

    49. [49]

      C. V. Hidalgo, H. Itoh, T. Hattori, M. Niwa, Y. Murakami, J. Catal. 85 (2) (1984) 362, https://doi.org/10.1016/0021-9517(84)90225-2.  doi: 10.1016/0021-9517(84)90225-2

    50. [50]

      L. J. Lobree, I. -C. Hwang, J. A. Reimer, A. T. Bell, J. Catal. 186 (2) (1999) 242, https://doi.org/10.1006/jcat.1999.2548.  doi: 10.1006/jcat.1999.2548

    51. [51]

      N. Katada, H. Igi, J. -H. Kim, J. Phys. Chem. B 101 (31) (1997) 5969, https://doi.org/10.1021/jp9639152.  doi: 10.1021/jp9639152

    52. [52]

      Y. Yang, T. Su, X. Xie, X. Luo, H. Ji, J. -C. Sin, S. -M. Lam, Z. Qin, Catal. Lett. 154 (12) (2024) 6454, https://doi.org/10.1007/s10562-024-04828-2.  doi: 10.1007/s10562-024-04828-2

    53. [53]

      L. Chen, W. Wang, T. Lu, X. Luo, X. Xie, K. Huang, S. Qin, T. Su, Z. Qin, H. Ji, Acta Phys. -Chim. Sin. 41 (6) (2025) 100054, https://doi. org/https://doi.org/10.1016/j.actphy.2025.100054.  doi: 10.1016/j.actphy.2025.100054

    54. [54]

      H. Li, S. Zhao, W. Zhang, H. Du, X. Yang, Y. Peng, D. Han, B. Wang, Z. Li, Fuel 342 (2023) 127786, https://doi.org/10.1016/j.fuel.2023.127786.  doi: 10.1016/j.fuel.2023.127786

    55. [55]

      G. Xie, R. Jin, P. Ren, Y. Fang, R. Zhang, Z. -j. Wang, Appl. Catal., B 324 (2023) 122233, https://doi.org/10.1016/j.apcatb.2022.122233.  doi: 10.1016/j.apcatb.2022.122233

    56. [56]

      Y. Xiao, C. Men, B. Chu, Z. Qin, H. Ji, J. Chen, T. Su, Chem. Eng. J. 446 (2022) 137028, https://doi.org/https://doi.org/10.1016/j.cej.2022.137028.  doi: 10.1016/j.cej.2022.137028

    57. [57]

      X. -L. Zhang, X. Su, Y. -R. Zheng, S. -J. Hu, L. Shi, F. -Y. Gao, P. -P. Yang, Z. -Z. Niu, Z. -Z. Wu, S. Qin, R. Wu, Y. Duan, C. Gu, X. -S. Zheng, J. -F. Zhu, M. -R. Gao, Angew. Chem. Int. Ed. 60 (52) (2021) 26922, https://doi.org/10.1002/anie.202111075.  doi: 10.1002/anie.202111075

    58. [58]

      Y. Yang, F. -Y. Gao, X. -L. Zhang, S. Qin, L. -R. Zheng, Y. -H. Wang, J. Liao, Q. Yang, M. -R. Gao, Angew. Chem. Int. Ed. 61 (42) (2022) e202208040, https://doi.org/10.1002/anie.202208040.  doi: 10.1002/anie.202208040

    59. [59]

      H. Zhao, R. Yu, S. Ma, K. Xu, Y. Chen, K. Jiang, Y. Fang, C. Zhu, X. Liu, Y. Tang, L. Wu, Y. Wu, Q. Jiang, P. He, Z. Liu, L. Tan, Nat. Catal. 5 (9) (2022) 818, https://doi.org/10.1038/s41929-022-00840-0.  doi: 10.1038/s41929-022-00840-0

    60. [60]

      R. Zou, M. Liu, C. Shen, K. Sun, C. -j. Liu, Chem. Commun. 60 (14) (2024) 1872, https://doi.org/10.1039/D3CC05973A.  doi: 10.1039/D3CC05973A

  • 加载中
    1. [1]

      Liuyun ChenWenju WangTairong LuXuan LuoXinling XieKelin HuangShanli QinTongming SuZuzeng QinHongbing Ji . Soft template-induced deep pore structure of Cu/Al2O3 for promoting plasma-catalyzed CO2 hydrogenation to DME. Acta Physico-Chimica Sinica, 2025, 41(6): 100054-0. doi: 10.1016/j.actphy.2025.100054

    2. [2]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    3. [3]

      Feifei YangWei ZhouChaoran YangTianyu ZhangYanqiang Huang . Enhanced Methanol Selectivity in CO2 Hydrogenation by Decoration of K on MoS2 Catalyst. Acta Physico-Chimica Sinica, 2024, 40(7): 2308017-0. doi: 10.3866/PKU.WHXB202308017

    4. [4]

      Qinhui GuanYuhao GuoNa LiJing LiTingjiang Yan . Molecular sieve-mediated indium oxide catalysts for enhancing photocatalytic CO2 hydrogenation. Acta Physico-Chimica Sinica, 2025, 41(11): 100133-0. doi: 10.1016/j.actphy.2025.100133

    5. [5]

      Yongqing XuYuyao YangMengna WuXiaoxiao YangXuan BieShiyu ZhangQinghai LiYanguo ZhangChenwei ZhangRobert E. PrzekopBogna SztorchDariusz BrzakalskiHui Zhou . Review on Using Molybdenum Carbides for the Thermal Catalysis of CO2 Hydrogenation to Produce High-Value-Added Chemicals and Fuels. Acta Physico-Chimica Sinica, 2024, 40(4): 2304003-0. doi: 10.3866/PKU.WHXB202304003

    6. [6]

      Hao GUOTong WEIQingqing SHENAnqi HONGZeting DENGZheng FANGJichao SHIRenhong LI . Electrocatalytic decoupling of urea solution for hydrogen production by nickel foam-supported Co9S8/Ni3S2 heterojunction. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2141-2154. doi: 10.11862/CJIC.20240085

    7. [7]

      Chengxin ChenHongfei ShiXiaoyan CaiLiang MaoZhe Chen . Enhanced bifunctional photocatalytic performances for H2 evolution and HCHO elimination with an S-scheme CoWO4/CdIn2S4 heterojunction. Acta Physico-Chimica Sinica, 2025, 41(12): 100155-0. doi: 10.1016/j.actphy.2025.100155

    8. [8]

      Tao XuWei SunTianci KongJie ZhouYitai Qian . Stable Graphite Interface for Potassium Ion Battery Achieving Ultralong Cycling Performance. Acta Physico-Chimica Sinica, 2024, 40(2): 2303021-0. doi: 10.3866/PKU.WHXB202303021

    9. [9]

      Jiabo Huang Quanxin Li Zhongyan Cao Li Dang Shaofei Ni . Elucidating the Mechanism of Beckmann Rearrangement Reaction Using Quantum Chemical Calculations. University Chemistry, 2025, 40(3): 153-159. doi: 10.12461/PKU.DXHX202405172

    10. [10]

      Xuechen HuQiuying XiaFan YueXinyi HeZhenghao MeiJinshi WangHui XiaXiaodong Huang . Electrochemical Characteristics of LiNbO3 Anode Film and Its Applications in All-Solid-State Thin-Film Lithium-Ion Battery. Acta Physico-Chimica Sinica, 2024, 40(2): 2309046-0. doi: 10.3866/PKU.WHXB202309046

    11. [11]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    12. [12]

      Zelong LIANGShijia QINPengfei GUOHang XUBin ZHAO . Synthesis and electrocatalytic CO2 reduction performance of metal-organic framework catalysts loaded with silver particles. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 165-173. doi: 10.11862/CJIC.20240409

    13. [13]

      Wei ZhongDan ZhengYuanxin OuAiyun MengYaorong Su . Simultaneously Improving Inter-Plane Crystallization and Incorporating K Atoms in g-C3N4 Photocatalyst for Highly-Efficient H2O2 Photosynthesis. Acta Physico-Chimica Sinica, 2024, 40(11): 2406005-0. doi: 10.3866/PKU.WHXB202406005

    14. [14]

      Haotong MaMingyu HengYang XuWei BiYingchun MiaoShuning Xiao . Synergistic carbon doping and Cu loading on boron nitride via microwave synthesis for enhanced atmospheric CO2 photoreduction. Acta Physico-Chimica Sinica, 2025, 41(11): 100132-0. doi: 10.1016/j.actphy.2025.100132

    15. [15]

      Jiaqi YangXuqiang HaoJiejie JingYuqiang HaoZhiliang Jin . 3D/2D ReSe2/ZnCdS S-scheme photocatalyst with efficient interfacial charge separation for optimized hydrogen production. Acta Physico-Chimica Sinica, 2025, 41(10): 100131-0. doi: 10.1016/j.actphy.2025.100131

    16. [16]

      Xianghai SongXiaoying LiuZhixiang RenXiang LiuMei WangYuanfeng WuWeiqiang ZhouZhi ZhuPengwei Huo . Insights into the greatly improved catalytic performance of N-doped BiOBr for CO2 photoreduction. Acta Physico-Chimica Sinica, 2025, 41(6): 100055-0. doi: 10.1016/j.actphy.2025.100055

    17. [17]

      Dong XiangKunzhen LiKanghua MiaoRan LongYujie XiongXiongwu Kang . Amine-Functionalized Copper Catalysts: Hydrogen Bonding Mediated Electrochemical CO2 Reduction to C2 Products and Superior Rechargeable Zn-CO2 Battery Performance. Acta Physico-Chimica Sinica, 2024, 40(8): 2308027-0. doi: 10.3866/PKU.WHXB202308027

    18. [18]

      Xiting Zhou Zhipeng Han Xinlei Zhang Shixuan Zhu Cheng Che Liang Xu Zhenyu Sun Leiduan Hao Zhiyu Yang . Dual Modulation via Ag-Doped CuO Catalyst and Iodide-Containing Electrolyte for Enhanced Electrocatalytic CO2 Reduction to Multi-Carbon Products: A Comprehensive Chemistry Experiment. University Chemistry, 2025, 40(7): 336-344. doi: 10.12461/PKU.DXHX202412070

    19. [19]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    20. [20]

      Xueting FengZiang ShangRong QinYunhu Han . Advances in Single-Atom Catalysts for Electrocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2305005-0. doi: 10.3866/PKU.WHXB202305005

Metrics
  • PDF Downloads(1)
  • Abstract views(56)
  • HTML views(6)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return