Ga掺杂Cu/γ-Al2O3双功能界面位点促进CO2加氢直接合成二甲醚

陈晓睿 罗轩 苏通明 谢新玲 陈柳云 宾月景 秦祖赠 纪红兵

引用本文: 陈晓睿, 罗轩, 苏通明, 谢新玲, 陈柳云, 宾月景, 秦祖赠, 纪红兵. Ga掺杂Cu/γ-Al2O3双功能界面位点促进CO2加氢直接合成二甲醚[J]. 物理化学学报, 2025, 41(10): 100126. doi: 10.1016/j.actphy.2025.100126 shu
Citation:  Xiaorui Chen, Xuan Luo, Tongming Su, Xinling Xie, Liuyun Chen, Yuejing Bin, Zuzeng Qin, Hongbing Ji. Ga-doped Cu/γ-Al2O3 bifunctional interface sites promote the direct hydrogenation of CO2 to DME[J]. Acta Physico-Chimica Sinica, 2025, 41(10): 100126. doi: 10.1016/j.actphy.2025.100126 shu

Ga掺杂Cu/γ-Al2O3双功能界面位点促进CO2加氢直接合成二甲醚

    通讯作者: 秦祖赠, qinzuzeng@gxu.edu.cn
  • 基金项目:

    国家自然科学基金 22078074

    广西重大专项计划 GuikeAB25069513

摘要: 二氧化碳催化加氢制二甲醚(DME)通常依赖于含铜金属氧化物/分子筛体系;然而,在反应过程中,铜物种向分子筛的迁移难以避免,这会导致Cu0位点和酸性位点的损失。在本工作中,通过共沉淀法合成了Cu/x%Ga-γ-Al2O3双功能催化剂。Ga以低浓度掺杂到γ-Al2O3晶格中,与表面Cu0物种形成界面活性位点,从而实现CO2加氢制DME。实验研究与DFT计算表明,该催化剂在180 h内保持稳定,且Ga掺杂Cu/γ-Al2O3界面位点对CO2加氢制甲醇和甲醇脱水制DME均表现出催化作用。Ga的掺杂增大了催化剂的比表面积,减小了金属Cu0的粒径,增加了催化剂上的酸性和碱性位点数量,并促进了H2和CO2的吸附。此外,还提出了一种新的DME合成反应路径。本工作去除了传统铜基双功能催化剂中的脱水组分,使两个反应能够在同一活性位点上发生,为新型二甲醚合成双功能催化剂的设计提供了新策略。

English

    1. [1]

      A. Álvarez, A. Bansode, A. Urakawa, A. V. Bavykina, T. A. Wezendonk, M. Makkee, J. Gascon, F. Kapteijn, Chem. Rev. 117 (14) (2017) 9804, https://doi.org/10.1021/acs.chemrev.6b00816. doi: 10.1021/acs.chemrev.6b00816

    2. [2]

      A. Modak, P. Bhanja, S. Dutta, B. Chowdhury, A. Bhaumik, Green Chem. 22 (13) (2020) 4002, https://doi.org/10.1039/D0GC01092H. doi: 10.1039/D0GC01092H

    3. [3]

      J. Wang, R. Fu, S. Wen, P. Ning, M. H. Helal, M. A. Salem, B. B. Xu, Z. M. El-Bahy, M. Huang, Z. Guo, L. Huang, Q. Wang, Adv. Compos. Hybrid Mater. 5 (4) (2022) 2721, https://doi.org/10.1007/s42114-022-00567-3. doi: 10.1007/s42114-022-00567-3

    4. [4]

      X. Guo, J. Yin, S. Xia, J. Gong, J. He, F. Tang, C. Zuo, P. Liu, Fuel 364 (2024) 131057, https://doi.org/10.1016/j.fuel.2024.131057. doi: 10.1016/j.fuel.2024.131057

    5. [5]

      Y. Song, K. Serikawa, K. Imamura, H. Imai, X. Li, Ind. Eng. Chem. Res. 59 (26) (2020) 11962, https://doi.org/10.1021/acs.iecr.0c01015. doi: 10.1021/acs.iecr.0c01015

    6. [6]

      X. Chen, T. Su, X. Luo, X. Xie, Z. Qin, H. Ji, Surf. Interfaces 48 (2024) 104346, https://doi.org/10.1016/j.surfin.2024.104346. doi: 10.1016/j.surfin.2024.104346

    7. [7]

      N. Nintao, P. Chadawong, W. Sangthong, W. Donphai, A. Seubsai, C. Niamnuy, Top. Catal. 66 (19) (2023) 1478, https://doi.org/10.1007/s11244-023-01844-1. doi: 10.1007/s11244-023-01844-1

    8. [8]

      H. Li, S. Ren, S. Zhang, S. Padinjarekutt, B. Sengupta, X. Liang, S. Li, M. Yu, J. Mater. Chem. A 9 (5) (2021) 2678, https://doi.org/10.1039/D0TA10417E. doi: 10.1039/D0TA10417E

    9. [9]

      U. Mondal, G. D. Yadav, Reaction Chemistry & Engineering 7 (6) (2022) 1391, https://doi.org/10.1039/D2RE00025C. doi: 10.1039/D2RE00025C

    10. [10]

      X. Cui, W. Yan, H. Yang, Y. Shi, Y. Xue, H. Zhang, Y. Niu, W. Fan, T. Deng, ACS Sustain. Chem. Eng. 9 (7) (2021) 2661, https://doi.org/10.1021/acssuschemeng.0c07258. doi: 10.1021/acssuschemeng.0c07258

    11. [11]

      P. Rodriguez-Vega, A. Ateka, I. Kumakiri, H. Vicente, J. Ereña, A. T. Aguayo, J. Bilbao, Chem. Eng. Sci. 234 (2021) 116396, https://doi.org/10.1016/j.ces.2020.116396. doi: 10.1016/j.ces.2020.116396

    12. [12]

      M. Sánchez-Contador, A. Ateka, P. Rodriguez-Vega, J. Bilbao, A. T. Aguayo, Ind. Eng. Chem. Res. 57 (4) (2018) 1169, https://doi.org/10.1021/acs.iecr.7b04345. doi: 10.1021/acs.iecr.7b04345

    13. [13]

      D. Kubas, M. Semmel, O. Salem, I. Krossing, ACS Catal. 13 (6) (2023) 3960, https://doi.org/10.1021/acscatal.2c06207. doi: 10.1021/acscatal.2c06207

    14. [14]

      C. Sun, Y. Xia, X. Ye, W. Xu, H. Shi, X. Gao, J. Yu, L. Guo, J. Li, Ind. Eng. Chem. Res. 63 (5) (2024) 2113, https://doi.org/10.1021/acs.iecr.3c03606. doi: 10.1021/acs.iecr.3c03606

    15. [15]

      J. Du, Y. Zhang, K. Wang, F. Ding, S. Jia, G. Liu, L. Tan, RSC Adv. 11 (24) (2021) 14426, https://doi.org/10.1039/D0RA10849A. doi: 10.1039/D0RA10849A

    16. [16]

      W. Yue, Z. Wan, Y. Li, X. He, J. Caro, A. Huang, J. Membr. Sci. 660 (2022) 120845, https://doi.org/10.1016/j.memsci.2022.120845. doi: 10.1016/j.memsci.2022.120845

    17. [17]

      X. Fan, B. Jin, S. Ren, S. Li, M. Yu, X. Liang, AlChE J. 67 (11) (2021) e17353, https://doi.org/10.1002/aic.17353. doi: 10.1002/aic.17353

    18. [18]

      R. -W. Liu, Z. -Z. Qin, H. -B. Ji, T. -M. Su, Ind. Eng. Chem. Res. 52 (47) (2013) 16648, https://doi.org/10.1021/ie401763g. doi: 10.1021/ie401763g

    19. [19]

      Z. -Z. Qin, X. -H. Zhou, T. -M. Su, Y. -X. Jiang, H. -B. Ji, Catal. Commun. 75 (2016) 78, https://doi.org/10.1016/j.catcom.2015.12.010. doi: 10.1016/j.catcom.2015.12.010

    20. [20]

      X. Zhou, T. Su, Y. Jiang, Z. Qin, H. Ji, Z. Guo, Chem. Eng. Sci. 153 (2016) 10, https://doi.org/10.1016/j.ces.2016.07.007. doi: 10.1016/j.ces.2016.07.007

    21. [21]

      L. Yao, X. Shen, Y. Pan, Z. Peng, Energy Fuels 34 (7) (2020) 8635, https://doi.org/10.1021/acs.energyfuels.0c01256. doi: 10.1021/acs.energyfuels.0c01256

    22. [22]

      G. Bonura, S. Todaro, L. Frusteri, I. Majchrzak-Kucęba, D. Wawrzyńczak, Z. Pászti, E. Tálas, A. Tompos, L. Ferenc, H. Solt, C. Cannilla, F. Frusteri, Appl. Catal., B 294 (2021) 120255, https://doi.org/10.1016/j.apcatb.2021.120255. doi: 10.1016/j.apcatb.2021.120255

    23. [23]

      H. H. Koybasi, A. K. Avci, Ind. Eng. Chem. Res. 61 (30) (2022) 10846, https://doi.org/10.1021/acs.iecr.2c01764. doi: 10.1021/acs.iecr.2c01764

    24. [24]

      H. R. Godini, S. R. Kumar, N. Tadikamalla, F. Gallucci, Int. J. Hydrog. Energy 47 (21) (2022) 11341, https://doi.org/10.1016/j.ijhydene.2021.11.073. doi: 10.1016/j.ijhydene.2021.11.073

    25. [25]

      R. Dalebout, L. Barberis, N. L. Visser, J. E. S. van der Hoeven, A. M. J. van der Eerden, J. A. Stewart, F. Meirer, K. P. de Jong, P. E. de Jongh, ChemCatChem 14 (19) (2022) e202200451, https://doi.org/10.1002/cctc.202200451. doi: 10.1002/cctc.202200451

    26. [26]

      H. Guo, S. Ding, H. Zhang, C. Wang, F. Peng, S. Yao, L. Xiong, X. Chen, Mol. Catal. 513 (2021) 111820, https://doi.org/10.1016/j.mcat.2021.111820. doi: 10.1016/j.mcat.2021.111820

    27. [27]

      C. Fritsch, J. Dornseiffer, J. Blankenstein, M. Noyong, C. Groteklaes, U. Simon, ChemCatChem 16 (2024) e202400731, https://doi.org/10.1002/cctc.202400731. doi: 10.1002/cctc.202400731

    28. [28]

      Q. He, Z. Li, D. Li, F. Ning, Q. Wang, W. Liu, W. Zhang, Y. Cui, J. Zhang, C. Liu, Mol. Catal. 558 (2024) 114008, https://doi.org/10.1016/j.mcat.2024.114008. doi: 10.1016/j.mcat.2024.114008

    29. [29]

      V. K. Shrivastaw, J. Kaishyop, T. S. Khan, D. Khurana, G. Singh, S. Paul, B. Chowdhury, A. Bordoloi, ChemCatChem 16 (2024) e202400534, https://doi.org/10.1002/cctc.202400534. doi: 10.1002/cctc.202400534

    30. [30]

      J. Wang, Y. Song, J. Li, F. Liu, J. Wang, J. Lv, S. Wang, M. Li, X. Bao, X. Ma, Appl. Catal. A 674 (2024) 119618, https://doi.org/10.1016/j.apcata.2024.119618. doi: 10.1016/j.apcata.2024.119618

    31. [31]

      H. Zhou, Z. Chen, A. V. López, E. D. López, E. Lam, A. Tsoukalou, E. Willinger, D. A. Kuznetsov, D. Mance, A. Kierzkowska, F. Donat, P. M. Abdala, A. Comas-Vives, C. Copéret, A. Fedorov, C. R. Müller, Nat. Catal. 4 (10) (2021) 860, https://doi.org/10.1038/s41929-021-00684-0. doi: 10.1038/s41929-021-00684-0

    32. [32]

      F. C. Meunier, I. Dansette, A. Paredes-Nunez, Y. Schuurman, Angew. Chem. Int. Ed. 62 (29) (2023) e202303939, https://doi.org/10.1002/anie.202303939. doi: 10.1002/anie.202303939

    33. [33]

      W. Wu, Y. Wang, L. Luo, M. Wang, Z. Li, Y. Chen, Z. Wang, J. Chai, Z. Cen, Y. Shi, J. Zhao, J. Zeng, H. Li, Angew. Chem. Int. Ed. 61 (48) (2022) e202213024, https://doi.org/10.1002/anie.202213024. doi: 10.1002/anie.202213024

    34. [34]

      A. Feng, T. He, W. Jin, D. Li, B. Qu, R. Zhou, Mol. Catal. 563 (2024) 114259, https://doi.org/10.1016/j.mcat.2024.114259. doi: 10.1016/j.mcat.2024.114259

    35. [35]

      H. Zhang, J. Yang, S. Wang, N. Zhao, F. Xiao, Y. Wang, Catal. Sci. Technol. 14 (8) (2024) 2153, https://doi.org/10.1039/D3CY01753B. doi: 10.1039/D3CY01753B

    36. [36]

      A. Ghorbanpour, J. D. Rimer, L. C. Grabow, ACS Catal. 6 (4) (2016) 2287, https://doi.org/10.1021/acscatal.5b02367. doi: 10.1021/acscatal.5b02367

    37. [37]

      A. Das, S. C. Mandal, S. Das, B. Pathak, J. Phys. Chem. C 126 (51) (2022) 21628, https://doi.org/10.1021/acs.jpcc.2c07240. doi: 10.1021/acs.jpcc.2c07240

    38. [38]

      A. Lotfollahzade Moghaddam, M. Ghavipour, J. Kopyscinski, M. J. Hazlett, Appl. Catal., A 672 (2024) 119594, https://doi.org/10.1016/j.apcata.2024.119594. doi: 10.1016/j.apcata.2024.119594

    39. [39]

      G. Kresse, J. Furthmüller, Physical Review B 54 (16) (1996) 11169, https://doi.org/10.1103/PhysRevB.54.11169. doi: 10.1103/PhysRevB.54.11169

    40. [40]

      J. P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77 (18) (1996) 3865, https://doi.org/10.1103/PhysRevLett.77.3865. doi: 10.1103/PhysRevLett.77.3865

    41. [41]

      M. -C. Silaghi, A. Comas-Vives, C. Copéret, ACS Catal. 6 (7) (2016) 4501, https://doi.org/10.1021/acscatal.6b00822. doi: 10.1021/acscatal.6b00822

    42. [42]

      Z. Cui, S. Meng, Y. Yi, A. Jafarzadeh, S. Li, E. C. Neyts, Y. Hao, L. Li, X. Zhang, X. Wang, A. Bogaerts, ACS Catal. 12 (2) (2022) 1326, https://doi.org/10.1021/acscatal.1c04678. doi: 10.1021/acscatal.1c04678

    43. [43]

      Q. Wang, Z. Yu, J. Feng, P. Fornasiero, Y. He, D. Li, ACS Sustain. Chem. Eng. 8 (40) (2020) 15288, https://doi.org/10.1021/acssuschemeng.0c05235. doi: 10.1021/acssuschemeng.0c05235

    44. [44]

      S. Lu, J. Zhang, H. Meng, X. Qin, J. Huang, Y. Liang, F. -S. Xiao, Appl. Catal. B 325 (2023) 122329, https://doi.org/10.1016/j.apcatb.2022.122329. doi: 10.1016/j.apcatb.2022.122329

    45. [45]

      S. Poulston, P. M. Parlett, P. Stone, M. Bowker, Surf. Interface Anal. 24 (12) (1996) 811, https://doi.org/10.1002/ (SICI)1096-9918(199611)24: 12<811: : AID-SIA191>3.0.CO;2-Z.

    46. [46]

      C. Wang, T. Su, Z. Qin, H. Ji, Catal. Sci. Technol. 12 (15) (2022) 4826, https://doi.org/10.1039/D2CY00582D. doi: 10.1039/D2CY00582D

    47. [47]

      A. Beck, M. Zabilskiy, M. A. Newton, O. Safonova, M. G. Willinger, J. A. van Bokhoven, Nat. Catal. 4 (6) (2021) 488, https://doi.org/10.1038/s41929-021-00625-x. doi: 10.1038/s41929-021-00625-x

    48. [48]

      K. Chen, B. Chu, Q. Qin, X. Ou, R. Zhao, X. Wei, H. Wu, B. Li, L. Dong, Appl. Surf. Sci. 589 (2022) 153052, https://doi.org/10.1016/j.apsusc.2022.153052. doi: 10.1016/j.apsusc.2022.153052

    49. [49]

      C. V. Hidalgo, H. Itoh, T. Hattori, M. Niwa, Y. Murakami, J. Catal. 85 (2) (1984) 362, https://doi.org/10.1016/0021-9517(84)90225-2. doi: 10.1016/0021-9517(84)90225-2

    50. [50]

      L. J. Lobree, I. -C. Hwang, J. A. Reimer, A. T. Bell, J. Catal. 186 (2) (1999) 242, https://doi.org/10.1006/jcat.1999.2548. doi: 10.1006/jcat.1999.2548

    51. [51]

      N. Katada, H. Igi, J. -H. Kim, J. Phys. Chem. B 101 (31) (1997) 5969, https://doi.org/10.1021/jp9639152. doi: 10.1021/jp9639152

    52. [52]

      Y. Yang, T. Su, X. Xie, X. Luo, H. Ji, J. -C. Sin, S. -M. Lam, Z. Qin, Catal. Lett. 154 (12) (2024) 6454, https://doi.org/10.1007/s10562-024-04828-2. doi: 10.1007/s10562-024-04828-2

    53. [53]

      L. Chen, W. Wang, T. Lu, X. Luo, X. Xie, K. Huang, S. Qin, T. Su, Z. Qin, H. Ji, Acta Phys. -Chim. Sin. 41 (6) (2025) 100054, https://doi. org/https://doi.org/10.1016/j.actphy.2025.100054. doi: 10.1016/j.actphy.2025.100054

    54. [54]

      H. Li, S. Zhao, W. Zhang, H. Du, X. Yang, Y. Peng, D. Han, B. Wang, Z. Li, Fuel 342 (2023) 127786, https://doi.org/10.1016/j.fuel.2023.127786. doi: 10.1016/j.fuel.2023.127786

    55. [55]

      G. Xie, R. Jin, P. Ren, Y. Fang, R. Zhang, Z. -j. Wang, Appl. Catal., B 324 (2023) 122233, https://doi.org/10.1016/j.apcatb.2022.122233. doi: 10.1016/j.apcatb.2022.122233

    56. [56]

      Y. Xiao, C. Men, B. Chu, Z. Qin, H. Ji, J. Chen, T. Su, Chem. Eng. J. 446 (2022) 137028, https://doi.org/https://doi.org/10.1016/j.cej.2022.137028. doi: 10.1016/j.cej.2022.137028

    57. [57]

      X. -L. Zhang, X. Su, Y. -R. Zheng, S. -J. Hu, L. Shi, F. -Y. Gao, P. -P. Yang, Z. -Z. Niu, Z. -Z. Wu, S. Qin, R. Wu, Y. Duan, C. Gu, X. -S. Zheng, J. -F. Zhu, M. -R. Gao, Angew. Chem. Int. Ed. 60 (52) (2021) 26922, https://doi.org/10.1002/anie.202111075. doi: 10.1002/anie.202111075

    58. [58]

      Y. Yang, F. -Y. Gao, X. -L. Zhang, S. Qin, L. -R. Zheng, Y. -H. Wang, J. Liao, Q. Yang, M. -R. Gao, Angew. Chem. Int. Ed. 61 (42) (2022) e202208040, https://doi.org/10.1002/anie.202208040. doi: 10.1002/anie.202208040

    59. [59]

      H. Zhao, R. Yu, S. Ma, K. Xu, Y. Chen, K. Jiang, Y. Fang, C. Zhu, X. Liu, Y. Tang, L. Wu, Y. Wu, Q. Jiang, P. He, Z. Liu, L. Tan, Nat. Catal. 5 (9) (2022) 818, https://doi.org/10.1038/s41929-022-00840-0. doi: 10.1038/s41929-022-00840-0

    60. [60]

      R. Zou, M. Liu, C. Shen, K. Sun, C. -j. Liu, Chem. Commun. 60 (14) (2024) 1872, https://doi.org/10.1039/D3CC05973A. doi: 10.1039/D3CC05973A

  • 加载中
计量
  • PDF下载量:  0
  • 文章访问数:  2
  • HTML全文浏览量:  0
文章相关
  • 发布日期:  2025-10-15
  • 收稿日期:  2025-05-05
  • 接受日期:  2025-06-24
  • 修回日期:  2025-06-21
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章