Citation: Ziyang Long, Quanzheng Li, Chengliang Zhang, Haifeng Shi. BiVO4/WO3-x S-scheme heterojunctions with amplified internal electric field for boosting photothermal-catalytic activity[J]. Acta Physico-Chimica Sinica, ;2025, 41(10): 100122. doi: 10.1016/j.actphy.2025.100122 shu

BiVO4/WO3-x S-scheme heterojunctions with amplified internal electric field for boosting photothermal-catalytic activity

  • Corresponding author: Haifeng Shi, hfshi@jiangnan.edu.cn
  • Received Date: 13 May 2025
    Revised Date: 13 June 2025
    Accepted Date: 15 June 2025

    Fund Project: the National Natural Science Foundation of China 52271175National Laboratory of Solid State Microstructures, Nanjing University M34047

  • Modulating the internal electric field (IEF) remains a critical challenge for S-scheme heterojunction photocatalysts. The BiVO4/WO3-x S-scheme heterojunctions were successfully prepared to purify the wastewater environment where tetracycline (TC) and Cr(Ⅵ) coexist under visible light illumination. The BiVO4/WO3-x with 10% (wt) WO3-x (BVO/WO3-x-10) demonstrated superior photocatalytic efficiency, which could degrade 78.5% of TC and reduce 85.3% of Cr(Ⅵ) in 60 min. The photocatalytic activity of BVO/WO3-x-10 displayed enhanced removal efficiency in the mixed system. The removal ability of TC and Cr(Ⅵ) was increased by 1.29 and 1.32 times, respectively. Based on infrared thermography (IR) thermography measurements, the elevated reaction system temperatures were ascribed to the photothermal effect of WO3-x. Oxygen vacancies (OVs) could amplify the energy band difference between WO3-x and BiVO4, which strengthens the IEF and accelerates the separation of carriers. A detailed degradation pathway and intermediate toxicity were carried out using the mung bean experiment and the results of the Liquid Chromatograph Mass Spectrometer (LC-MS). In general, this work provided new insights for regulating IEF to enhance the degradation efficiency in mixed wastewater and the carriers separation in the S-scheme heterojunction of the photothermal-catalytic system.
  • 加载中
    1. [1]

      T. Han, H. Shi, Y. Chen, J. Mater. Sci. Technol. 174 (2024) 30, https://doi.org/10.1016/j.jmst.2023.03.053.  doi: 10.1016/j.jmst.2023.03.053

    2. [2]

      R. Chen, J. Xia, Y. Chen, H. Shi, Acta Phys. -Chim. Sin. 39 (2023) 2209012, https://doi.org/10.3866/PKU.WHXB202209012.  doi: 10.3866/PKU.WHXB202209012

    3. [3]

      X. Liu, L. Wang, S. Li, H. Liu, D. Zhang, M. Jiang, W. Chen, F. Jiao, X. Zhang, W. Hu, Adv. Funct. Mater. 33 (2023) 2306871, https://doi.org/10.1002/adfm.202306871.  doi: 10.1002/adfm.202306871

    4. [4]

      H. Ren, F. Qi, A. Labidi, J. Zhao, H. Wang, Y. Xin, J. Luo, C. Wang, Appl. Catal. B 330 (2023) 122587, https://doi.org/10.1016/j.apcatb.2023.122587.  doi: 10.1016/j.apcatb.2023.122587

    5. [5]

      C. Liu, H. Yu, J. Li, X. Yu, Z. Yu, Y. Song, F. Zhang, Q. Zhang, Z. Zou, Acta Phys. -Chim. Sin. 41 (2025) 100075, https://doi.org/10.1016/j.actphy.2025.100075.  doi: 10.1016/j.actphy.2025.100075

    6. [6]

      R. Chen, H. Zhang, Y. Dong, H. Shi, J. Mater. Sci. Technol. 170 (2024) 11, https://doi.org/10.1016/j.jmst.2023.07.005.  doi: 10.1016/j.jmst.2023.07.005

    7. [7]

      G. Yuan, K. Li, J. Zhang, L. Dong, Y. Li, G. Yang, L. Huang, F. Li, H. Zhang, S. Zhang, Chem. Eng. J. 488 (2024) 150766, https://doi.org/10.1016/j.cej.2024.150766.  doi: 10.1016/j.cej.2024.150766

    8. [8]

      J. Wu, Q. Xie, C. Zhang, H. Shi, Acta Phys. -Chim. Sin. 41 (2025) 100050, https://doi.org/10.1016/j.actphy.2025.100050.  doi: 10.1016/j.actphy.2025.100050

    9. [9]

      F. Liu, B. Sun, Z. Liu, Y. Wei, T. Gao, G. Zhou. Chin. J. Catal. 64 (2024) 152, https://doi.org/10.1016/S1872-2067(24)60099-9.  doi: 10.1016/S1872-2067(24)60099-9

    10. [10]

      J. Kang, Y. Tang, M. Wang, C. Jin, J. Liu, S. Li, Z. Li, J. Zhu, J. Environ. Chem. Eng. 9 (2021) 105524, https://doi.org/10.1016/j.jece.2021.105524.  doi: 10.1016/j.jece.2021.105524

    11. [11]

      M. Lv, S. Wang, H. Shi, J. Mater. Sci. Technol. 201 (2024) 21, https://doi.org/10.1016/j.jmst.2024.02.073.  doi: 10.1016/j.jmst.2024.02.073

    12. [12]

      X. Wang, N. Su, X. Wang, D. Cao, C. Xu, X. Wang, Q. Yan, C. Lu, H. Zhao, J. Colloid Interface Sci. 661 (2024) 943, https://doi.org/10.1016/j.jcis.2024.01.209.  doi: 10.1016/j.jcis.2024.01.209

    13. [13]

      Y. Sun, J. Suriyaprakash, L. Shan, H. Xu, J. Zhang, G. Chen, Y. Zhang, H. Wu, X. Li, L. Dong, M. Pang, D. Li, J. Li, Appl. Catal. B 355 (2024) 124209, https://doi.org/10.1016/j.apcatb.2024.124209.  doi: 10.1016/j.apcatb.2024.124209

    14. [14]

      Q. Yang, G. Tan, L. Yin, W. Liu, B. Zhang, S. Feng, Y. Bi, Y. Liu, T. Liu, Z. Wang, H. Ren, A. Xia, Chem. Eng. J. 467 (2023) 143450, https://doi.org/10.1016/j.cej.2023.143450.  doi: 10.1016/j.cej.2023.143450

    15. [15]

      L. Zheng, J. Chen, J. Yu, T. Lei, D. Wang, T. Dai, Y. Chen, Q. Fu, J. Zou, Appl. Catal. B 371 (2025) 125162, https://doi.org/10.1016/j.apcatb.2025.125162.  doi: 10.1016/j.apcatb.2025.125162

    16. [16]

      V. Bui, T. P. Tran, T. Vu, T. Dao, T. Aminabhavi, Y. Vasseghian, S. Joo, Appl. Catal. B 365 (2025) 124924, https://doi.org/10.1016/j.apcatb.2024.124924.  doi: 10.1016/j.apcatb.2024.124924

    17. [17]

      W. Guo, H. Luo, Z. Jiang, W. Shangguan, Chin. J. Catal. 43 (2022) 316, https://doi.org/10.1016/S1872-2067(21)63846-9.  doi: 10.1016/S1872-2067(21)63846-9

    18. [18]

      W. Wang, B. Li, J. Shi, K. Zhu, Y. Zhang, X. Liu, C. Li, F. Hu, X. Xi, S. Kawi, Appl. Catal. B 362 (2025) 124766, https://doi.org/10.1016/j.apcatb.2024.124766.  doi: 10.1016/j.apcatb.2024.124766

    19. [19]

      X. Deng, J. Zhang, K. Qi, G. Liang, F. Xu, J. Yu, Nat. Commun. 15 (2024) 4807, https://doi.org/10.1038/s41467-024-49004-7.  doi: 10.1038/s41467-024-49004-7

    20. [20]

      L. Zhang, J. Zhang, H. Yu, J. Yu, Adv. Mater. 34 (2022) 2107668, https://doi.org/10.1002/adma.202107668.  doi: 10.1002/adma.202107668

    21. [21]

      F. Xu, Y. He, J. Zhang, G. Liang, C. Liu, J. Yu, Angew. Chem. Int. Ed. 64 (2025) 202414672, https://doi.org/10.1002/anie.202414672.  doi: 10.1002/anie.202414672

    22. [22]

      C. Wang, C. You, K. Rong, C. Shen, F. Yang, S. Li, Acta Phys. -Chim. Sin. 40 (2024) 2307045, https://doi.org/10.3866/PKU.WHXB202307045.  doi: 10.3866/PKU.WHXB202307045

    23. [23]

      S. Wan, W. Wang, B. Cheng, G. Luo, Q. Shen, J. Yu, J. Zhang, S. Cao, L. Zhang, Nat. Commun. 15 (2024) 9612, https://doi.org/10.1038/s41467-024-53951-6.  doi: 10.1038/s41467-024-53951-6

    24. [24]

      H. Li, S. Tao, S. Wan, G. Qiu, Q. Long, J. Yu, S. Cao, Chin. J. Catal. 46 (2023) 167, https://doi.org/10.1016/S1872-2067(22)64201-3.  doi: 10.1016/S1872-2067(22)64201-3

    25. [25]

      J. Luo, K. Wang, Y. Qiu, X. Zhou, X. Ning, L. Zhan, X. Zhou, J. Alloy. Compd. 1008 (2024) 176572, https://doi.org/10.1016/j.jallcom.2024.176572.  doi: 10.1016/j.jallcom.2024.176572

    26. [26]

      P. Lia, Y. Cui, Z. Wang, G. Dawsonc, C. Shao, K. Dai, Acta Phys. -Chim. Sin. 41 (2025) 100065, https://doi.org/10.1016/j.actphy.2025.100065.  doi: 10.1016/j.actphy.2025.100065

    27. [27]

      Y. Cui, J. Zhang, H. Chu, L. Sun, K. Dai, Acta Phys. -Chim. Sin. 40 (2024) 2405016, https://doi.org/10.3866/PKU.WHXB202405016.  doi: 10.3866/PKU.WHXB202405016

    28. [28]

      C. Chen, J. Zhan, H. Chu, L. Sun, G. Dawson, K. Dai, Chin. J. Catal. 63 (2024) 81, https://doi.org/10.1016/S1872-2067(24)60072-0.  doi: 10.1016/S1872-2067(24)60072-0

    29. [29]

      C. Nie, X. Wang, P. Lu, Y. Zhu, X. Li, H. Tang, J. Mater. Sci. Technol. 169 (2024) 182, https://doi.org/10.1016/j.jmst.2023.06.011.  doi: 10.1016/j.jmst.2023.06.011

    30. [30]

      H. Ding, R. Shen, K. Huang, C. Huang, G. Liang, P. Zhang, X. Li, Adv. Funct. Mater. 34 (2024) 2400065, https://doi.org/10.1002/adfm.202400065.  doi: 10.1002/adfm.202400065

    31. [31]

      S. Li, C. Wang, K. Dong, P. Zhang, X. Chen, X. Li, Chin. J. Catal. 51 (2023) 101, https://doi.org/10.1016/S1872-2067(23)64479-1.  doi: 10.1016/S1872-2067(23)64479-1

    32. [32]

      T. Yang, J. Wang, Z. Wang, J. Zhang, K. Dai, Chin. J. Catal. 58 (2024) 157, https://doi.org/10.1016/S1872-2067(23)64607-8.  doi: 10.1016/S1872-2067(23)64607-8

    33. [33]

      R. Gao, R. Shen, C. Huang, K. Huang, G. Liang, P. Zhang, X. Li, Angew. Chem. Int. Ed. 64 (2025) e202414229, https://doi.org/10.1002/ange.202414229.  doi: 10.1002/ange.202414229

    34. [34]

      A. Bahadoran, S. Masudy-Panah, J. Lile, J. Li, J. Gu, B. Sadeghi, S. Ramakrishna, Q. Liu, Int. J. Hydrog. Energy 46 (2021) 24094, https://doi.org/10.1016/j.ijhydene.2021.04.208.  doi: 10.1016/j.ijhydene.2021.04.208

    35. [35]

      K. Dong, C. Shen, R. Yan, Y. Liu, C. Zhuang, S. Li, Acta Phys. -Chim. Sin. 40 (2024) 2310013, https://doi.org/10.3866/PKU.WHXB202310013.  doi: 10.3866/PKU.WHXB202310013

    36. [36]

      G. Sun, Z. Tai, F. Li, Q. Ye, T. Wang, Z. Fang, L. Jia, W. Liu, H. Wang, Small 19 (2023) 2207758, https://doi.org/10.1002/smll.202207758.  doi: 10.1002/smll.202207758

    37. [37]

      C. Wang, K. Rong, Y. Liu, F. Yang, S. Li, Sci. China Mater. 67 (2024) 562, https://doi.org/10.1007/s40843-023-2764-8.  doi: 10.1007/s40843-023-2764-8

    38. [38]

      T. Liu, Y. Wang, P. Shan, Y. Chen, X. Zhao, W. Tian, Y. Zhang, R. Feng, H. Yuan, H. Cui, Appl. Surf. Sci. 564 (2021) 150117, https://doi.org/10.1016/j.apsusc.2021.150117.  doi: 10.1016/j.apsusc.2021.150117

    39. [39]

      X. Zhang, J. Wang, P. Li, Z. Tan, J. Zeng, Y. He, N. Habibul, Chem. Eng. J. 428 (2022) 131209, https://doi.org/10.1016/j.cej.2021.131209.  doi: 10.1016/j.cej.2021.131209

    40. [40]

      Y. Shang, X. Cheng, R. Shi, Q. Ma, Y. Wang, P. Yang, Mater. Sci. Eng. B 262 (2020) 114724, https://doi.org/10.1016/j.mseb.2020.114724.  doi: 10.1016/j.mseb.2020.114724

    41. [41]

      S. Li, R. Yan, M. Cai, W. Jiang, M. Zhang, X. Li, J. Mater. Sci. Technol. 164 (2023) 59, https://doi.org/10.1016/j.jmst.2023.05.009.  doi: 10.1016/j.jmst.2023.05.009

    42. [42]

      N. Lin, Y. Lin, X. Qian, X. Wang, W. Su, ACS Sustain. Chem. Eng. 9 (2021) 13686, https://doi.org/10.1021/acssuschemeng.1c05356.  doi: 10.1021/acssuschemeng.1c05356

    43. [43]

      C. Wang, X. Li, X. Lv, X. Huang, Y. Zhao, T. Deng, J. Zhang, J. Wan, Y. Zhen, T. Wang, J. Clean. Prod. 472 (2024) 143521, https://doi.org/10.1016/j.jclepro.2024.143521.  doi: 10.1016/j.jclepro.2024.143521

    44. [44]

      K. Huang, D. Chen, X. Zhang, R. Shen, P. Zhang, D. Xu, X. Li, Acta Phys. Chim. Sin. 40 (2024) 2407020, https://doi.org/10.3866/PKU.WHXB202407020.  doi: 10.3866/PKU.WHXB202407020

    45. [45]

      X. Li, B. Kang, F. Dong, Z. Zhang, X. Luo, L. Han, J. Huang, Z. Feng, Z. Chen, J. Xu, B. Peng, Z. Wang, Nano Energy 81 (2021) 11, https://doi.org/10.1016/j.nanoen.2020.105671.  doi: 10.1016/j.nanoen.2020.105671

    46. [46]

      Y. Liu, C. Zhang, J. Feng, X. Wang, Z. Ding, L. He, Q. Zhang, J. Chen, Y. Yin, Angew. Chem. Int. Ed. 62 (2023) e202308930, https://doi.org/10.1002/ange.202308930.  doi: 10.1002/ange.202308930

    47. [47]

      H. Wei, F. Meng, H. Zhang, W. Yu, J. Li, S. Yao, J. Mater. Sci. Technol. 185 (2024) 107, https://doi.org/10.1016/j.jmst.2023.11.007.  doi: 10.1016/j.jmst.2023.11.007

    48. [48]

      Q. Zhu, Y. Wang, J. Wang, J. Luo, J. Xu, C. Wang, Appl. Catal. B 346 (2024) 123734, https://doi.org/10.1016/j.apcatb.2024.123734.  doi: 10.1016/j.apcatb.2024.123734

    49. [49]

      C. Liu, S. Mao, M. Shi, X. Hong, D. Wang, F. Wang, M. Xia, Q. Chen, Chem. Eng. J. 449 (2022) 137757, https://doi.org/10.1016/j.cej.2022.137757.  doi: 10.1016/j.cej.2022.137757

    50. [50]

      Z. Zhang, X. Wang, J. Qian, J. Xu, J. Energy Chem. 92 (2024) 521, https://doi.org/10.1016/j.jechem.2024.01.006.  doi: 10.1016/j.jechem.2024.01.006

    51. [51]

      R. Chen, W. Gan, J. Guo, Y. Lu, S. Ding, R. Liu, M. Zhang, Z. Sun, Chem. Eng. J. 489 (2024) 151260, https://doi.org/10.1016/j.cej.2024.151260.  doi: 10.1016/j.cej.2024.151260

    52. [52]

      J. Wang, Z. Wang, K. Dai, J. Zhang, J. Mater. Sci. Technol. 165 (2023) 187, https://doi.org/10.1016/j.jmst.2023.03.067.  doi: 10.1016/j.jmst.2023.03.067

    53. [53]

      X. Zhu, Y. Zhang, Y. Wang, Y. Liu, Z. Wu, Chem. Eng. J. 491 (2024) 152193, https://doi.org/10.1016/j.cej.2024.152193.  doi: 10.1016/j.cej.2024.152193

    54. [54]

      W. Zhou, X. Wang, F. Lin, S. Xue, W. Lin, Y. Hou, Z. Yu, M. Anpo, J. C. Yu, J. Zhang, X. Wang, Angew. Chem. Int. Ed. 64 (2024) e202417703, https://doi.org/10.1002/ange.202417703.  doi: 10.1002/ange.202417703

    55. [55]

      S. Yan, L. Wang, Y. Wu, T. Hou, Y. Li, K. Shen, Appl. Catal. B 357 (2024) 124337.https://doi.org/10.1016/j.apcatb.2024.124337.  doi: 10.1016/j.apcatb.2024.124337

    56. [56]

      S. Cui, Y. Cong, W. Zhao, R. Guo, X. Wang, B. Lv, H. Liu, Y. Liu, Q. Zhang, J. Colloid. Interf. Sci. 654 (2024) 356, https://doi.org/10.1016/j.jcis.2023.10.051.  doi: 10.1016/j.jcis.2023.10.051

    57. [57]

      W. Zeng, X. Ye, Y. Dong, Y. Zhang, C. Sun, T. Zhang, X. Guan, L. Guo, Coord. Chem. Rev. 508 (2024) 215753, https://doi.org/10.1016/j.ccr.2024.215753.  doi: 10.1016/j.ccr.2024.215753

    58. [58]

      W. Yang, Z. Yang, L. Shao, S. Li, Y. Liu, X. Xia, J. Environ. Sci. 107 (2021) 194, https://doi.org/10.1016/j.jes.2021.02.006.  doi: 10.1016/j.jes.2021.02.006

    59. [59]

      Z. Long, H. Shi, Y. Chen, J. Colloid. Interf. Sci. 678 (2024) 1169, https://doi.org/10.1016/j.jcis.2024.09.112.  doi: 10.1016/j.jcis.2024.09.112

    60. [60]

      I. Gul, M. Sayed, N. Shah, J. Ali Khan, K. Polychronopoulou, J. Iqbal, F. Rehman, Chem. Eng. J. 384 (2020) 123255, https://doi.org/10.1016/j.cej.2019.123255.  doi: 10.1016/j.cej.2019.123255

    61. [61]

      Z. Long, X, Zheng, H. Shi, Sci. China Mater. 67 (2024) 550, https://doi.org/10.1007/s40843-023-2773-9.  doi: 10.1007/s40843-023-2773-9

    62. [62]

      Y. Wang, L. Ding, C. Liu, Y. Lu, Q. Wu, C. Wang, Q. Hu, Sep. Purif. Technol. 283 (2022) 120164, https://doi.org/10.1016/j.seppur.2021.120164.  doi: 10.1016/j.seppur.2021.120164

    63. [63]

      X. Wang, J. Luo, Q. Yan, Y. Shen, Z. Liu, S. Lu, C. Lu, W. Shi, J. Colloid Interface Sci. 687 (2025) 105, https://doi.org/10.1016/j.jcis.2025.02.054.  doi: 10.1016/j.jcis.2025.02.054

    64. [64]

      F. Li, G. Zhu, J. Jiang, L. Yang, F. Deng, Arramel, X. Li, J. Mater. Sci. Technol. 177 (2024) 142, https://doi.org/10.1016/j.jmst.2023.08.038.  doi: 10.1016/j.jmst.2023.08.038

    65. [65]

      G. Yang, Y. Liang, J. Yang, X. Zhang, Z. Zeng, Z. Xiong, J. Jia, K. Sa, J. Environ. Chem. Eng. 11 (2023) 109328, https://doi.org/10.1016/j.jece.2023.109328.  doi: 10.1016/j.jece.2023.109328

    66. [66]

      X. Huang, N. Zhu, F. Mao, Y. Ding, S. Zhang, H. Liu, F. Li, P. Wu, Z. Dang, Y. Ke, Chem. Eng. J. 392 (2020) 123636, https://doi.org/10.1016/j.cej.2019.123636.  doi: 10.1016/j.cej.2019.123636

  • 加载中
    1. [1]

      Kexin DongChuqi ShenRuyu YanYanping LiuChunqiang ZhuangShijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-0. doi: 10.3866/PKU.WHXB202310013

    2. [2]

      Deyun MaFenglan LiangQingquan XueYanping LiuChunqiang ZhuangShijie Li . Interfacial engineering of Cd0.5Zn0.5S/BiOBr S-scheme heterojunction with oxygen vacancies for effective photocatalytic antibiotic removal. Acta Physico-Chimica Sinica, 2025, 41(12): 100190-0. doi: 10.1016/j.actphy.2025.100190

    3. [3]

      Weikang WangYadong WuJianjun ZhangKai MengJinhe LiLele WangQinqin Liu . Green H2O2 synthesis via melamine-foam supported S-scheme Cd0.5Zn0.5In2S4/S-doped carbon nitride heterojunction: synergistic interfacial charge transfer and local photothermal effect. Acta Physico-Chimica Sinica, 2025, 41(8): 100093-0. doi: 10.1016/j.actphy.2025.100093

    4. [4]

      Chao LiuHuan YuJiaming LiXi YuZhuangzhi YuYuxi SongFeng ZhangQinfang ZhangZhigang Zou . 具有光热效应的多级Ti3C2/Bi12O17Br2肖特基异质结简单合成及其太阳能驱动抗生素光降解的研究. Acta Physico-Chimica Sinica, 2025, 41(7): 100075-0. doi: 10.1016/j.actphy.2025.100075

    5. [5]

      Changjun YouChunchun WangMingjie CaiYanping LiuBaikang ZhuShijie Li . Improved Photo-Carrier Transfer by an Internal Electric Field in BiOBr/N-rich C3N5 3D/2D S-Scheme Heterojunction for Efficiently Photocatalytic Micropollutant Removal. Acta Physico-Chimica Sinica, 2024, 40(11): 2407014-0. doi: 10.3866/PKU.WHXB202407014

    6. [6]

      Chengyan GeJiawei HuXingyu LiuYuxi SongChao LiuZhigang Zou . Self-integrated black NiO clusters with ZnIn2S4 microspheres for photothermal-assisted hydrogen evolution by S-scheme electron transfer mechanism. Acta Physico-Chimica Sinica, 2026, 42(1): 100154-0. doi: 10.1016/j.actphy.2025.100154

    7. [7]

      Rui LIUXinjun ZHOUTao WANG . Photocatalytic degradation performance of tetracycline by MOF-74-Mn/g-C3N4 Z-type heterojunction. Chinese Journal of Inorganic Chemistry, 2025, 41(9): 1796-1804. doi: 10.11862/CJIC.20250033

    8. [8]

      Qianqian LiuXing DuWanfei LiWei-Lin DaiBo Liu . Synergistic Effects of Internal Electric and Dipole Fields in SnNb2O6/Nitrogen-Enriched C3N5 S-Scheme Heterojunction for Boosting Photocatalytic Performance. Acta Physico-Chimica Sinica, 2024, 40(10): 2311016-0. doi: 10.3866/PKU.WHXB202311016

    9. [9]

      Jinwang WuQijing XieChengliang ZhangHaifeng Shi . Rationally Designed ZnFe1.2Co0.8O4/BiVO4 S-Scheme Heterojunction with Spin-Polarization for the Elimination of Antibiotic. Acta Physico-Chimica Sinica, 2025, 41(5): 100050-0. doi: 10.1016/j.actphy.2025.100050

    10. [10]

      Ruolin CHENGYue WANGXiyao NIUHuagen LIANGLing LIUShijian LU . Efficient photothermal catalytic CO2 cycloaddition over W18O49/rGO composites. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1276-1284. doi: 10.11862/CJIC.20240424

    11. [11]

      Shumin ZhangYaqi WangZelin WangLibo WangChangsheng AnDifa Xu . Ultrafast electron transfer at the ZIS1−x/UCN S-scheme interface enables efficient H2O2 photosynthesis coupled with tetracycline degradation. Acta Physico-Chimica Sinica, 2025, 41(11): 100136-0. doi: 10.1016/j.actphy.2025.100136

    12. [12]

      Shijie LiKe RongXiaoqin WangChuqi ShenFang YangQinghong Zhang . Design of Carbon Quantum Dots/CdS/Ta3N5 S-scheme Heterojunction Nanofibers for Efficient Photocatalytic Antibiotic Removal. Acta Physico-Chimica Sinica, 2024, 40(12): 2403005-0. doi: 10.3866/PKU.WHXB202403005

    13. [13]

      Junjie Zhang Yue Wang Qiuhan Wu Ruquan Shen Han Liu Xinhua Duan . Preparation and Selective Separation of Lightweight Magnetic Molecularly Imprinted Polymers for Trace Tetracycline Detection in Milk. University Chemistry, 2024, 39(5): 251-257. doi: 10.3866/PKU.DXHX202311084

    14. [14]

      Tieping CAOYuejun LIDawei SUN . Surface plasmon resonance effect enhanced photocatalytic CO2 reduction performance of S-scheme Bi2S3/TiO2 heterojunction. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 903-912. doi: 10.11862/CJIC.20240366

    15. [15]

      Fugui XIDu LIZhourui YANHui WANGJunyu XIANGZhiyun DONG . Functionalized zirconium metal-organic frameworks for the removal of tetracycline from water. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 683-694. doi: 10.11862/CJIC.20240291

    16. [16]

      Fanpeng MengFei ZhaoJingkai LinJinsheng ZhaoHuayang ZhangShaobin Wang . Optimizing interfacial electric fields in carbon nitride nanosheet/spherical conjugated polymer S-scheme heterojunction for hydrogen evolution. Acta Physico-Chimica Sinica, 2025, 41(8): 100095-0. doi: 10.1016/j.actphy.2025.100095

    17. [17]

      Jiahui YUJixian DONGYutong ZHAOFuping ZHAOBo GEXipeng PUDafeng ZHANG . The morphology control and full-spectrum photodegradation tetracycline performance of microwave-hydrothermal synthesized BiVO4:Yb3+,Er3+ photocatalyst. Journal of Fuel Chemistry and Technology, 2025, 53(3): 348-359. doi: 10.1016/S1872-5813(24)60514-1

    18. [18]

      Jinhui JiangJiaqi SunYongyi ChenLei ZhangPengyu Dong . W18O49/Al-doped SrTiO3 S-scheme heterojunction aided by the LSPR effect for full-spectrum solar light-driven photocatalytic hydrogen evolution. Acta Physico-Chimica Sinica, 2025, 41(11): 100145-0. doi: 10.1016/j.actphy.2025.100145

    19. [19]

      Peipei SunJinyuan ZhangYanhua SongZhao MoZhigang ChenHui Xu . Built-in Electric Fields Enhancing Photocarrier Separation and H2 Evolution. Acta Physico-Chimica Sinica, 2024, 40(11): 2311001-0. doi: 10.3866/PKU.WHXB202311001

    20. [20]

      Qiang ZHAOZhinan GUOShuying LIJunli WANGZuopeng LIZhifang JIAKewei WANGYong GUO . Cu2O/Bi2MoO6 Z-type heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 885-894. doi: 10.11862/CJIC.20230435

Metrics
  • PDF Downloads(0)
  • Abstract views(12)
  • HTML views(1)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return