Citation: Bowen Liu, Jianjun Zhang, Han Li, Bei Cheng, Chuanbiao Bie. MOF-derived ZnO/PANI S-scheme heterojunction for efficient photocatalytic phenol mineralization coupled with H2O2 generation[J]. Acta Physico-Chimica Sinica, ;2025, 41(10): 100121. doi: 10.1016/j.actphy.2025.100121 shu

MOF-derived ZnO/PANI S-scheme heterojunction for efficient photocatalytic phenol mineralization coupled with H2O2 generation

  • Corresponding author: Chuanbiao Bie, biechuanbiao@cug.edu.cn
  • Received Date: 3 June 2025
    Revised Date: 13 June 2025
    Accepted Date: 15 June 2025

    Fund Project: the National Key Research and Development Program of China 2022YFB3803600the National Natural Science Foundation of China 22202187the National Natural Science Foundation of China U24A2071the National Natural Science Foundation of China 22278324the National Natural Science Foundation of China 22361142704the National Natural Science Foundation of China U23A20102Hubei Provincial Natural Science Foundation 2025AFB492Hubei Provincial Natural Science Foundation 2022CFA001the Key R&D Program Projects in Hubei Province 2023BAB113

  • Complete mineralization of persistent organic pollutants in wastewater remains a formidable challenge. Here, we report the rational design of a ZIF-8-derived ZnO/polyaniline (PANI) S-scheme heterojunction synthesized via in situ oxidative polymerization. Advanced characterizations confirm the S-scheme charge transfer mechanism within the ZnO/PANI heterojunction. The optimized composite achieves complete phenol mineralization within 60 min while concurrently generating H2O2 at a rate of 0.75 mmol∙L−1·h–1 under simulated solar irradiation. Mechanistic studies verify that the S-scheme heterojunction retains strong redox potentials, driving the formation of reactive oxygen species for H2O2 production and phenol degradation. This work establishes a universal design paradigm for MOF-derived inorganic/organic S-scheme heterojunctions, effectively coupling solar-driven energy conversion with environmental remediation.
  • 加载中
    1. [1]

      Z. H. Jabbar, B. H. Graimed, J. Water Process. Eng. 47 (2022) 102671, https://doi.org/10.1016/j.jwpe.2022.102671  doi: 10.1016/j.jwpe.2022.102671

    2. [2]

      A. Bibi, S. Bibi, M. Abu-Dieyeh, M. A. Al-Ghouti, J. Cleaner Prod. 417 (2023) 137810, https://doi.org/10.1016/j.jclepro.2023.137810  doi: 10.1016/j.jclepro.2023.137810

    3. [3]

      L. K. Rathore, A. Bera, ACS Appl. Mater. Interfaces 16 (2024) 43670, https://doi.org/10.1021/acsami.4c10367  doi: 10.1021/acsami.4c10367

    4. [4]

      S. Yadav, S. Kumar, A. K. Haritash, J. Environ. Manage. 342 (2023) 118254, https://doi.org/10.1016/j.jenvman.2023.118254  doi: 10.1016/j.jenvman.2023.118254

    5. [5]

      Y. Lin, L. Gan, X. Zhao, G. Che, S. Wang, Q. Pan, Chem. Synth. 5 (2024) 4, https://doi.org/10.20517/cs.2024.17  doi: 10.20517/cs.2024.17

    6. [6]

      Y. Dai, L. Yin, S. Wang, Y. Song, J. Hazard. Mater. 392 (2020) 122314, https://doi.org/10.1016/j.jhazmat.2020.122314  doi: 10.1016/j.jhazmat.2020.122314

    7. [7]

      N. Goyal, P. Gao, Z. Wang, S. Cheng, Y. Ok, G. Li, L. Liu, J. Hazard. Mater. 392 (2020) 122494, https://doi.org/10.1016/j.jhazmat.2020.122494  doi: 10.1016/j.jhazmat.2020.122494

    8. [8]

      H. Wu, Z. Hu, R. Liang, O. V. Nkwachukwu, O. A. Arotiba, M. Zhou, Appl. Catal. B 321 (2023) 122053, https://doi.org/10.1016/j.apcatb.2022.122053  doi: 10.1016/j.apcatb.2022.122053

    9. [9]

      Z. Li, S. Li, Y. Tang, X. Li, J. Wang, L. Li, Chem. Eng. J. 391 (2020) 123533, https://doi.org/10.1016/j.cej.2019.123533  doi: 10.1016/j.cej.2019.123533

    10. [10]

      L. Guo, L. Lu, M. Yin, R. Yang, Z. Zhang, W. Zhao, Chem. Eng. J. 397 (2020) 125420, https://doi.org/10.1016/j.cej.2020.125420  doi: 10.1016/j.cej.2020.125420

    11. [11]

      A. E. Gahrouei, S. Vakili, A. Zandifar, S. Pourebrahimi, Environ. Res. 252 (2024) 119029, https://doi.org/10.1016/j.envres.2024.119029  doi: 10.1016/j.envres.2024.119029

    12. [12]

      M. Gar Alalm, D. C. Boffito, Chem. Eng. J. 450 (2022) 138352, https://doi.org/10.1016/j.cej.2022.138352  doi: 10.1016/j.cej.2022.138352

    13. [13]

      Y. Zhao, Y. Zhang, H. Tan, C. Ai, J. Zhang, J. Materiomics 11 (2025) 100970, https://doi.org/10.1016/j.jmat.2024.100970  doi: 10.1016/j.jmat.2024.100970

    14. [14]

      S. Li, Y. Wu, H. Zheng, H. Li, Y. Zheng, J. Nan, J. Ma, D. Nagarajan, J. Chang, Chemosphere 311 (2023) 136977, https://doi.org/10.1016/j.chemosphere.2022.136977  doi: 10.1016/j.chemosphere.2022.136977

    15. [15]

      B. Zhang, C. Fang, J. Ning, R. Dai, Y. Liu, Q. Wu, F. Zhang, W. Zhang, S. Dou, X. Liu, Carbon Neutralization 2 (2023) 646, https://doi.org/10.1002/cnl2.96  doi: 10.1002/cnl2.96

    16. [16]

      J. Yang, H. Yin, A. Du, M. Tebyetekerwa, C. Bie, Z. Wang, Z. Sun, Z. Zhang, X. Zeng, X. Zhang, Appl. Catal. B 361 (2025) 124586, https://doi.org/10.1016/j.apcatb.2024.124586  doi: 10.1016/j.apcatb.2024.124586

    17. [17]

      Y. Zhang, J. Qiu, B. Zhu, G. Sun, B. Cheng, L. Wang, Chin. J. Catal. 57 (2024) 143, https://doi.org/10.1016/S1872-2067(23)64580-2  doi: 10.1016/S1872-2067(23)64580-2

    18. [18]

      Y. Zhang, Y. Wang, Y. Liu, S. Zhang, Y. Zhao, J. Zhang, J. Materiomics 11 (2025) 100985, https://doi.org/10.1016/j.jmat.2024.100985  doi: 10.1016/j.jmat.2024.100985

    19. [19]

      C. Jiang, C. Yuan, K. Xu, X. Zhou, C. Bie, J. Mater. Sci. Technol. 231 (2025) 36, https://doi.org/10.1016/j.jmst.2024.12.071  doi: 10.1016/j.jmst.2024.12.071

    20. [20]

      M. Gu, Y. Yang, B. Cheng, L. Zhang, P. Xiao, T. Chen, Chin. J. Catal. 59 (2024) 185, https://doi.org/10.1016/s1872-2067(23)64610-8  doi: 10.1016/s1872-2067(23)64610-8

    21. [21]

      Y. Ma, S. Wang, Y. Zhang, B. Cheng, L. Zhang, J. Materiomics 11 (2025) 100978, https://doi.org/10.1016/j.jmat.2024.100978  doi: 10.1016/j.jmat.2024.100978

    22. [22]

      W. Zhong, D. Zheng, Y. Ou, A. Meng, Y. Su, Acta Phys. -Chim. Sin. 40 (2024) 2406005, https://doi.org/10.3866/PKU.WHXB202406005  doi: 10.3866/PKU.WHXB202406005

    23. [23]

      A. Meng, X. Ma, D. Wen, W. Zhong, S. Zhou, Y. Su, Chin. J. Catal. 60 (2024) 231, https://doi.org/10.1016/S1872-2067(24)60008-2  doi: 10.1016/S1872-2067(24)60008-2

    24. [24]

      X. Zhang, H. Su, P. Cui, Y. Cao, Z. Teng, Q. Zhang, Y. Wang, Y. Feng, R. Feng, J. Hou, X. Zhou, P. Ma, H. Hu, K. Wang, C. Wang, L. Gan, Y. Zhao, Q. Liu, T. Zhang, K. Zheng, Nat. Commun. 14 (2023) 7115, https://doi.org/10.1038/s41467-023-42887-y  doi: 10.1038/s41467-023-42887-y

    25. [25]

      C. Bie, J. Yang, X. Zeng, Z. Wang, X. Sun, Z. Yang, J. Yu, X. Zhang, Small 21 (2025) 2411184, https://doi.org/10.1002/smll.202411184  doi: 10.1002/smll.202411184

    26. [26]

      Y. Wu, Y. Yang, M. Gu, C. Bie, H. Tan, B. Cheng, J. Xu, Chin. J. Catal. 53 (2023) 123, https://doi.org/10.1016/s1872-2067(23)64514-0  doi: 10.1016/s1872-2067(23)64514-0

    27. [27]

      Z. Jiang, B. Cheng, L. Zhang, Z. Zhang, C. Bie, Chin. J. Catal. 52 (2023) 32, https://doi.org/10.1016/s1872-2067(23)64502-4  doi: 10.1016/s1872-2067(23)64502-4

    28. [28]

      Y. Wang, H. Sun, Z. Yang, Y. Zhu, Y. Xia, Carbon Neutralization 3 (2024) 737, https://doi.org/10.1002/cnl2.153  doi: 10.1002/cnl2.153

    29. [29]

      Y. Ouyang, S. Zheng, G. Guan, Q. Yang, ACS Appl. Energy Mater. 5 (2022) 14455, https://doi.org/10.1021/acsaem.2c02993  doi: 10.1021/acsaem.2c02993

    30. [30]

      J. Zhu, Q. Bi, Y. Tao, W. Guo, J. Fan, Y. Min, G. Li, Adv. Funct. Mater. 33 (2023) 2213131, https://doi.org/10.1002/adfm.202213131  doi: 10.1002/adfm.202213131

    31. [31]

      S. Wan, W. Wang, B. Cheng, G. Luo, Q. Shen, J. Yu, J. Zhang, S. Cao, L. Zhang, Nat. Commun. 15 (2024) 9612, https://doi.org/10.1038/s41467-024-53951-6  doi: 10.1038/s41467-024-53951-6

    32. [32]

      L. Zhang, J. Zhang, J. Yu, H. García, Nat. Rev. Chem. 9 (2025) 328, https://doi.org/10.1038/s41570-025-00698-3  doi: 10.1038/s41570-025-00698-3

    33. [33]

      J. Yan, L. Wei, Acta Phys. -Chim. Sin. 40 (2024) 2312024, https://doi.org/10.3866/PKU.WHXB202312024  doi: 10.3866/PKU.WHXB202312024

    34. [34]

      Y. Shiraishi, S. Kanazawa, Y. Sugano, D. Tsukamoto, H. Sakamoto, S. Ichikawa, T. Hirai, ACS Catal. 4 (2014) 774, https://doi.org/10.1021/cs401208c  doi: 10.1021/cs401208c

    35. [35]

      B. Zhu, C. Jiang, J. Xu, Z. Zhang, J. Fu, J. Yu, Mater. Today 82 (2025) 251, https://doi.org/10.1016/j.mattod.2024.11.012  doi: 10.1016/j.mattod.2024.11.012

    36. [36]

      Q. Xia, C. Wang, N. Xu, J. Yang, G. Gao, J. Ding, Adv. Funct. Mater. 33 (2023) 2214769, https://doi.org/10.1002/adfm.202214769  doi: 10.1002/adfm.202214769

    37. [37]

      Z. Cui, R. Yuan, H. Chen, B. Zhou, B. Zhu, C. Zhang, J. Water Process. Eng. 59 (2024) 104900, https://doi.org/10.1016/j.jwpe.2024.104900  doi: 10.1016/j.jwpe.2024.104900

    38. [38]

      Y. Zhang, Y. Gao, R. Deng, Z. Qin, F. Shi, J. Zeng, C. Zhao, Y. Pu, T. Duan, Sep. Purif. Technol. 354 (2025) 129331, https://doi.org/10.1016/j.seppur.2024.129331  doi: 10.1016/j.seppur.2024.129331

    39. [39]

      B. Liu, C. Bie, Y. Zhang, L. Wang, Y. Li, J. Yu, Langmuir 37 (2021) 14114, https://doi.org/10.1021/acs.langmuir.1c02360  doi: 10.1021/acs.langmuir.1c02360

    40. [40]

      B. Zhou, S. Ding, K. Yang, J. Zhang, G. Huang, A. Pan, W. Hu, K. Li, W. Huang, Adv. Funct. Mater. 31 (2020) 2009230, https://doi.org/10.1002/adfm.202009230  doi: 10.1002/adfm.202009230

    41. [41]

      S. Liu, H. Fu, F. Wang, Y. Wei, B. Meng, P. Wang, C. Zhao, W. Liu, C. Wang, Appl. Catal. B 346 (2024) 123753, https://doi.org/10.1016/j.apcatb.2024.123753  doi: 10.1016/j.apcatb.2024.123753

    42. [42]

      T. Zou, C. Wang, R. Tan, W. Song, Y. Cheng, J. Hazard. Mater. 338 (2017) 276, https://doi.org/10.1016/j.jhazmat.2017.05.042  doi: 10.1016/j.jhazmat.2017.05.042

    43. [43]

      B. A. Tahoun, E. M. Farag, M. A. Tony, S. A. Mansour, Appl. Water Sci. 13 (2023) 225, https://doi.org/10.1007/s13201-023-02020-2  doi: 10.1007/s13201-023-02020-2

    44. [44]

      X. Wu, S. Liu, Y. Li, M. Yan, H. Lin, J. Chen, S. Liu, S. Wang, X. Duan, Angew. Chem. Int. Ed. 62 (2023) e202305639, https://doi.org/10.1002/anie.202305639  doi: 10.1002/anie.202305639

    45. [45]

      A. Wang, J. Ni, W. Wang, X. Wang, D. Liu, Q. Zhu, J. Hazard. Mater. 426 (2022) 128106, https://doi.org/10.1016/j.jhazmat.2021.128106  doi: 10.1016/j.jhazmat.2021.128106

    46. [46]

      B. Liu, K. Meng, B. Cheng, L. Wang, G. Liang, C. Bie, J. Mater. Sci. Technol. 231 (2025) 286, https://doi.org/10.1016/j.jmst.2025.02.013  doi: 10.1016/j.jmst.2025.02.013

    47. [47]

      J. S. Algethami, M. S. Hassan, T. Amna, L. S. Alqarni, M. A. M. Alhamami, A. F. Seliem, Materials 16 (2023) 3314, https://doi.org/10.3390/ma16093314  doi: 10.3390/ma16093314

    48. [48]

      C. Bie, C. Jiang, J. Yang, X. Sun, X. Zeng, J. Zhang, B. Zhu, J. Mater. Sci. Technol. 229 (2025) 48, https://doi.org/10.1016/j.jmst.2024.12.047  doi: 10.1016/j.jmst.2024.12.047

    49. [49]

      Z. Zhou, C. Bie, P. Li, B. Tan, Y. Shen, Chin. J. Catal. 43 (2022) 2699, https://doi.org/10.1016/S1872-2067(22)64118-4  doi: 10.1016/S1872-2067(22)64118-4

    50. [50]

      S. Cao, B. Zhong, C. Bie, B. Cheng, F. Xu, Acta Phys. -Chim. Sin. 40 (2024) 2307016, https://doi.org/10.3866/PKU.WHXB202307016  doi: 10.3866/PKU.WHXB202307016

    51. [51]

      F. Zhang, X. Li, Q. Zhao, G. Chen, Q. Zhang, Appl. Catal. B 263 (2020) 118278, https://doi.org/10.1016/j.apcatb.2019.118278  doi: 10.1016/j.apcatb.2019.118278

    52. [52]

      H. Zuo, C. Wu, H. Du, Z. Guo, Y. Cheng, Q. Yan, Appl. Surf. Sci. 633 (2023) 157600, https://doi.org/10.1016/j.apsusc.2023.157600  doi: 10.1016/j.apsusc.2023.157600

    53. [53]

      Y. Zhang, J. Qiu, B. Zhu, M. V. Fedin, B. Cheng, J. Yu, L. Zhang, Chem. Eng. J. 444 (2022) 136584, https://doi.org/10.1016/j.cej.2022.136584  doi: 10.1016/j.cej.2022.136584

    54. [54]

      C. Bie, Z. Meng, B. He, B. Cheng, G. Liu, B. Zhu, J. Mater. Sci. Technol. 173 (2024) 11, https://doi.org/10.1016/j.jmst.2023.07.019  doi: 10.1016/j.jmst.2023.07.019

    55. [55]

      Z. Meng, J. Zhang, H. Long, H. García, L. Zhang, B. Zhu, J. Yu, Angew. Chem. Int. Ed. 64 (2025) e202505456, https://doi.org/10.1002/anie.202505456  doi: 10.1002/anie.202505456

    56. [56]

      B. He, P. Xiao, S. Wan, J. Zhang, T. Chen, L. Zhang, J. Yu, Angew. Chem. Int. Ed. 62 (2023) e202313172, https://doi.org/10.1002/anie.202313172  doi: 10.1002/anie.202313172

    57. [57]

      W. Yu, C. Bie, Acta Phys. -Chim. Sin. 40 (2024) 2307022, https://doi.org/10.3866/pku.whxb202307022  doi: 10.3866/pku.whxb202307022

    58. [58]

      J. Yang, C. Bie, Chem. Synth. 5 (2024) 12, https://doi.org/10.20517/cs.2024.105  doi: 10.20517/cs.2024.105

    59. [59]

      B. Liu, J. Cai, J. Zhang, H. Tan, B. Cheng, J. Xu, Chin. J. Catal. 51 (2023) 204, https://doi.org/10.1016/S1872-2067(23)64466-3  doi: 10.1016/S1872-2067(23)64466-3

    60. [60]

      F. Xu, Y. He, J. Zhang, G. Liang, C. Liu, J. Yu, Angew. Chem. Int. Ed. 64 (2025) e202414672, https://doi.org/10.1002/anie.202414672  doi: 10.1002/anie.202414672

    61. [61]

      W. Zhong, A. Meng, Y. Su, H. Yu, P. Han, J. Yu, Angew. Chem. Int. Ed. 64 (2025) e202425038, https://doi.org/10.1002/anie.202425038  doi: 10.1002/anie.202425038

    62. [62]

      K. Meng, J. Zhang, B. Cheng, X. Ren, Z. Xia, F. Xu, L. Zhang, J. Yu, Adv. Mater. 36 (2024) 2406460, https://doi.org/10.1002/adma.202406460  doi: 10.1002/adma.202406460

    63. [63]

      V. Ischenko, S. Polarz, D. Grote, V. Stavarache, K. Fink, M. Driess, Adv. Funct. Mater. 15 (2005) 1945-1954, https://doi.org/10.1002/adfm.200500087  doi: 10.1002/adfm.200500087

    64. [64]

      K. Meng, J. Zhang, B. Zhu, C. Jiang, H. García, J. Yu, Adv. Mater. 37 (2025) 2505088, https://doi.org/10.1002/adma.202505088  doi: 10.1002/adma.202505088

    65. [65]

      M. Gu, Y. Yang, L. Zhang, B. Zhu, G. Liang, J. Yu, Appl. Catal. B 324 (2023) 122227, https://doi.org/10.1016/j.apcatb.2022.122227  doi: 10.1016/j.apcatb.2022.122227

    66. [66]

      M. Liu, M. Gao, L. Pei, Y. Ji, X. Gu, H. Wang, H. Tan, J. Zhao, J. Jia, Z. Zheng, Appl. Catal. B 284 (2021) 119710, https://doi.org/10.1016/j.apcatb.2020.119710  doi: 10.1016/j.apcatb.2020.119710

    67. [67]

      Z. Lian, F. Gao, H. Xiao, D. Luo, M. Li, D. Fang, Y. Yang, J. Zi, H. Li, Angew. Chem. Int. Ed. 63 (2024) e202318927, https://doi.org/10.1002/anie.202318927  doi: 10.1002/anie.202318927

    68. [68]

      L. Yang, Z. Chen, Q. Cao, H. Liao, J. Gao, L. Zhang, W. Wei, H. Li, J. Lu, Adv. Mater. 36 (2024) 2306758, https://doi.org/10.1002/adma.202306758  doi: 10.1002/adma.202306758

  • 加载中
    1. [1]

      Qishen WangChangzhao ChenMengqing LiLingmin WuKai Dai . Lignin derived carbon quantum dots and oxygen vacancies coregulated S-scheme LCQDs/Bi2WO6 heterojunction for photocatalytic H2O2 production. Acta Physico-Chimica Sinica, 2025, 41(11): 100147-0. doi: 10.1016/j.actphy.2025.100147

    2. [2]

      Jingping LiSuding YanJiaxi WuQiang ChengKai Wang . Improving hydrogen peroxide photosynthesis over inorganic/organic S-scheme photocatalyst with LiFePO4. Acta Physico-Chimica Sinica, 2025, 41(9): 100104-0. doi: 10.1016/j.actphy.2025.100104

    3. [3]

      Zijian Jiang Yuang Liu Yijian Zong Yong Fan Wanchun Zhu Yupeng Guo . Preparation of Nano Zinc Oxide by Microemulsion Method and Study on Its Photocatalytic Activity. University Chemistry, 2024, 39(5): 266-273. doi: 10.3866/PKU.DXHX202311101

    4. [4]

      Chenye AnSikandaier AbiduweiliXue GuoYukun ZhuHua TangDongjiang Yang . Hierarchical S-scheme Heterojunction of Red Phosphorus Nanoparticles Embedded Flower-like CeO2 Triggering Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(11): 2405019-0. doi: 10.3866/PKU.WHXB202405019

    5. [5]

      Jiayao WangGuixu PanNing WangShihan WangYaolin ZhuYunfeng Li . Preparation of donor-π-acceptor type graphitic carbon nitride photocatalytic systems via molecular level regulation for high-efficient H2O2 production. Acta Physico-Chimica Sinica, 2025, 41(12): 100168-0. doi: 10.1016/j.actphy.2025.100168

    6. [6]

      Jiali LeiJuan WangWenhui ZhangGuohong WangZihui LiangJinmao Li . TiO2/CdIn2S4 S-scheme heterojunction photocatalyst promotes photocatalytic hydrogen evolution coupled vanillyl alcohol oxidation. Acta Physico-Chimica Sinica, 2025, 41(12): 100174-0. doi: 10.1016/j.actphy.2025.100174

    7. [7]

      Yang XiaKangyan ZhangHeng YangLijuan ShiQun Yi . Improving Photocatalytic H2O2 Production over iCOF/Bi2O3 S-Scheme Heterojunction in Pure Water via Dual Channel Pathways. Acta Physico-Chimica Sinica, 2024, 40(11): 2407012-0. doi: 10.3866/PKU.WHXB202407012

    8. [8]

      Xinyu YinHaiyang ShiYu WangXuefei WangPing WangHuogen Yu . Spontaneously Improved Adsorption of H2O and Its Intermediates on Electron-Deficient Mn(3+δ)+ for Efficient Photocatalytic H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312007-0. doi: 10.3866/PKU.WHXB202312007

    9. [9]

      Wenlong WangWentao HaoLang HeJia QiaoNing LiChaoqiu ChenYong Qin . Bandgap and adsorption engineering of carbon dots/TiO2 S-scheme heterojunctions for enhanced photocatalytic CO2 methanation. Acta Physico-Chimica Sinica, 2025, 41(9): 100116-0. doi: 10.1016/j.actphy.2025.100116

    10. [10]

      Yiting HuoXin ZhouFeifan ZhaoChenbin AiZhen WuZhidong ChangBicheng Zhu . Boosting photocatalytic CO2 methanation through TiO2/CdS S-scheme heterojunction and fs-TAS mechanism study. Acta Physico-Chimica Sinica, 2025, 41(11): 100148-0. doi: 10.1016/j.actphy.2025.100148

    11. [11]

      Menglan WeiXiaoxia OuYimeng WangMengyuan ZhangFei TengKaixuan Wang . S-scheme heterojunction g-C3N4/Bi2WO6 highly efficient degradation of levofloxacin: performance, mechanism and degradation pathway. Acta Physico-Chimica Sinica, 2025, 41(9): 100105-0. doi: 10.1016/j.actphy.2025.100105

    12. [12]

      Deyun MaFenglan LiangQingquan XueYanping LiuChunqiang ZhuangShijie Li . Interfacial engineering of Cd0.5Zn0.5S/BiOBr S-scheme heterojunction with oxygen vacancies for effective photocatalytic antibiotic removal. Acta Physico-Chimica Sinica, 2025, 41(12): 100190-0. doi: 10.1016/j.actphy.2025.100190

    13. [13]

      Xuejiao WangSuiying DongKezhen QiVadim PopkovXianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-0. doi: 10.3866/PKU.WHXB202408005

    14. [14]

      Yuejiao AnWenxuan LiuYanfeng ZhangJianjun ZhangZhansheng Lu . Revealing Photoinduced Charge Transfer Mechanism of SnO2/BiOBr S-Scheme Heterostructure for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2407021-0. doi: 10.3866/PKU.WHXB202407021

    15. [15]

      Yi YangXin ZhouMiaoli GuBei ChengZhen WuJianjun Zhang . Femtosecond transient absorption spectroscopy investigation on ultrafast electron transfer in S-scheme ZnO/CdIn2S4 photocatalyst for H2O2 production and benzylamine oxidation. Acta Physico-Chimica Sinica, 2025, 41(6): 100064-0. doi: 10.1016/j.actphy.2025.100064

    16. [16]

      Jiajie CaiChang ChengBowen LiuJianjun ZhangChuanjia JiangBei Cheng . CdS/DBTSO-BDTO S-scheme photocatalyst for H2 production and its charge transfer dynamics. Acta Physico-Chimica Sinica, 2025, 41(8): 100084-0. doi: 10.1016/j.actphy.2025.100084

    17. [17]

      Shijie LiKe RongXiaoqin WangChuqi ShenFang YangQinghong Zhang . Design of Carbon Quantum Dots/CdS/Ta3N5 S-scheme Heterojunction Nanofibers for Efficient Photocatalytic Antibiotic Removal. Acta Physico-Chimica Sinica, 2024, 40(12): 2403005-0. doi: 10.3866/PKU.WHXB202403005

    18. [18]

      You WuChang ChengKezhen QiBei ChengJianjun ZhangJiaguo YuLiuyang Zhang . Efficient Photocatalytic Production of H2O2 over ZnO/D-A Conjugated Polymer S-scheme Heterojunction and Charge Transfer Dynamics Investigation. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-0. doi: 10.3866/PKU.WHXB202406027

    19. [19]

      Shuang CaoBo ZhongChuanbiao BieBei ChengFeiyan Xu . Insights into Photocatalytic Mechanism of H2 Production Integrated with Organic Transformation over WO3/Zn0.5Cd0.5S S-Scheme Heterojunction. Acta Physico-Chimica Sinica, 2024, 40(5): 2307016-0. doi: 10.3866/PKU.WHXB202307016

    20. [20]

      Xiutao XuChunfeng ShaoJinfeng ZhangZhongliao WangKai Dai . Rational Design of S-Scheme CeO2/Bi2MoO6 Microsphere Heterojunction for Efficient Photocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309031-0. doi: 10.3866/PKU.WHXB202309031

Metrics
  • PDF Downloads(1)
  • Abstract views(66)
  • HTML views(16)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return