MOF衍生的ZnO/PANI S型异质结用于高效光催化苯酚矿化耦合H2O2生产

刘博文 张建军 李瀚 程蓓 别传彪

引用本文: 刘博文, 张建军, 李瀚, 程蓓, 别传彪. MOF衍生的ZnO/PANI S型异质结用于高效光催化苯酚矿化耦合H2O2生产[J]. 物理化学学报, 2025, 41(10): 100121. doi: 10.1016/j.actphy.2025.100121 shu
Citation:  Bowen Liu, Jianjun Zhang, Han Li, Bei Cheng, Chuanbiao Bie. MOF-derived ZnO/PANI S-scheme heterojunction for efficient photocatalytic phenol mineralization coupled with H2O2 generation[J]. Acta Physico-Chimica Sinica, 2025, 41(10): 100121. doi: 10.1016/j.actphy.2025.100121 shu

MOF衍生的ZnO/PANI S型异质结用于高效光催化苯酚矿化耦合H2O2生产

    通讯作者: 别传彪, biechuanbiao@cug.edu.cn
  • 基金项目:

    国家重点研发计划项目 2022YFB3803600

    国家自然科学基金 22202187

    国家自然科学基金 U24A2071

    国家自然科学基金 22278324

    国家自然科学基金 22361142704

    国家自然科学基金 U23A20102

    湖北省自然科学基金 2025AFB492

    湖北省自然科学基金 2022CFA001

    湖北省重点研发计划项目 2023BAB113

摘要: 持久性有机污染物在废水中的完全矿化仍是一项艰巨挑战。本研究报道了一种通过原位氧化聚合法合成的ZIF-8衍生ZnO/聚苯胺(PANI)S型异质结的理性设计。先进表征技术证实了ZnO/PANI异质结内S型电荷转移机制。优化后的复合材料在模拟太阳光照射下,60 min内实现苯酚完全矿化,同时以0.75 mmol∙L−1·h–1的速率生成H2O2。机理研究表明,S型异质结保留了强氧化还原电势,驱动活性氧物种的形成,从而实现H2O2合成与苯酚降解。该工作为MOF衍生的无机/有机S型异质结建立了普适性设计范式,有效耦合了太阳能驱动的能源转化与环境修复。

English

    1. [1]

      Z. H. Jabbar, B. H. Graimed, J. Water Process. Eng. 47 (2022) 102671, https://doi.org/10.1016/j.jwpe.2022.102671 doi: 10.1016/j.jwpe.2022.102671

    2. [2]

      A. Bibi, S. Bibi, M. Abu-Dieyeh, M. A. Al-Ghouti, J. Cleaner Prod. 417 (2023) 137810, https://doi.org/10.1016/j.jclepro.2023.137810 doi: 10.1016/j.jclepro.2023.137810

    3. [3]

      L. K. Rathore, A. Bera, ACS Appl. Mater. Interfaces 16 (2024) 43670, https://doi.org/10.1021/acsami.4c10367 doi: 10.1021/acsami.4c10367

    4. [4]

      S. Yadav, S. Kumar, A. K. Haritash, J. Environ. Manage. 342 (2023) 118254, https://doi.org/10.1016/j.jenvman.2023.118254 doi: 10.1016/j.jenvman.2023.118254

    5. [5]

      Y. Lin, L. Gan, X. Zhao, G. Che, S. Wang, Q. Pan, Chem. Synth. 5 (2024) 4, https://doi.org/10.20517/cs.2024.17 doi: 10.20517/cs.2024.17

    6. [6]

      Y. Dai, L. Yin, S. Wang, Y. Song, J. Hazard. Mater. 392 (2020) 122314, https://doi.org/10.1016/j.jhazmat.2020.122314 doi: 10.1016/j.jhazmat.2020.122314

    7. [7]

      N. Goyal, P. Gao, Z. Wang, S. Cheng, Y. Ok, G. Li, L. Liu, J. Hazard. Mater. 392 (2020) 122494, https://doi.org/10.1016/j.jhazmat.2020.122494 doi: 10.1016/j.jhazmat.2020.122494

    8. [8]

      H. Wu, Z. Hu, R. Liang, O. V. Nkwachukwu, O. A. Arotiba, M. Zhou, Appl. Catal. B 321 (2023) 122053, https://doi.org/10.1016/j.apcatb.2022.122053 doi: 10.1016/j.apcatb.2022.122053

    9. [9]

      Z. Li, S. Li, Y. Tang, X. Li, J. Wang, L. Li, Chem. Eng. J. 391 (2020) 123533, https://doi.org/10.1016/j.cej.2019.123533 doi: 10.1016/j.cej.2019.123533

    10. [10]

      L. Guo, L. Lu, M. Yin, R. Yang, Z. Zhang, W. Zhao, Chem. Eng. J. 397 (2020) 125420, https://doi.org/10.1016/j.cej.2020.125420 doi: 10.1016/j.cej.2020.125420

    11. [11]

      A. E. Gahrouei, S. Vakili, A. Zandifar, S. Pourebrahimi, Environ. Res. 252 (2024) 119029, https://doi.org/10.1016/j.envres.2024.119029 doi: 10.1016/j.envres.2024.119029

    12. [12]

      M. Gar Alalm, D. C. Boffito, Chem. Eng. J. 450 (2022) 138352, https://doi.org/10.1016/j.cej.2022.138352 doi: 10.1016/j.cej.2022.138352

    13. [13]

      Y. Zhao, Y. Zhang, H. Tan, C. Ai, J. Zhang, J. Materiomics 11 (2025) 100970, https://doi.org/10.1016/j.jmat.2024.100970 doi: 10.1016/j.jmat.2024.100970

    14. [14]

      S. Li, Y. Wu, H. Zheng, H. Li, Y. Zheng, J. Nan, J. Ma, D. Nagarajan, J. Chang, Chemosphere 311 (2023) 136977, https://doi.org/10.1016/j.chemosphere.2022.136977 doi: 10.1016/j.chemosphere.2022.136977

    15. [15]

      B. Zhang, C. Fang, J. Ning, R. Dai, Y. Liu, Q. Wu, F. Zhang, W. Zhang, S. Dou, X. Liu, Carbon Neutralization 2 (2023) 646, https://doi.org/10.1002/cnl2.96 doi: 10.1002/cnl2.96

    16. [16]

      J. Yang, H. Yin, A. Du, M. Tebyetekerwa, C. Bie, Z. Wang, Z. Sun, Z. Zhang, X. Zeng, X. Zhang, Appl. Catal. B 361 (2025) 124586, https://doi.org/10.1016/j.apcatb.2024.124586 doi: 10.1016/j.apcatb.2024.124586

    17. [17]

      Y. Zhang, J. Qiu, B. Zhu, G. Sun, B. Cheng, L. Wang, Chin. J. Catal. 57 (2024) 143, https://doi.org/10.1016/S1872-2067(23)64580-2 doi: 10.1016/S1872-2067(23)64580-2

    18. [18]

      Y. Zhang, Y. Wang, Y. Liu, S. Zhang, Y. Zhao, J. Zhang, J. Materiomics 11 (2025) 100985, https://doi.org/10.1016/j.jmat.2024.100985 doi: 10.1016/j.jmat.2024.100985

    19. [19]

      C. Jiang, C. Yuan, K. Xu, X. Zhou, C. Bie, J. Mater. Sci. Technol. 231 (2025) 36, https://doi.org/10.1016/j.jmst.2024.12.071 doi: 10.1016/j.jmst.2024.12.071

    20. [20]

      M. Gu, Y. Yang, B. Cheng, L. Zhang, P. Xiao, T. Chen, Chin. J. Catal. 59 (2024) 185, https://doi.org/10.1016/s1872-2067(23)64610-8 doi: 10.1016/s1872-2067(23)64610-8

    21. [21]

      Y. Ma, S. Wang, Y. Zhang, B. Cheng, L. Zhang, J. Materiomics 11 (2025) 100978, https://doi.org/10.1016/j.jmat.2024.100978 doi: 10.1016/j.jmat.2024.100978

    22. [22]

      W. Zhong, D. Zheng, Y. Ou, A. Meng, Y. Su, Acta Phys. -Chim. Sin. 40 (2024) 2406005, https://doi.org/10.3866/PKU.WHXB202406005 doi: 10.3866/PKU.WHXB202406005

    23. [23]

      A. Meng, X. Ma, D. Wen, W. Zhong, S. Zhou, Y. Su, Chin. J. Catal. 60 (2024) 231, https://doi.org/10.1016/S1872-2067(24)60008-2 doi: 10.1016/S1872-2067(24)60008-2

    24. [24]

      X. Zhang, H. Su, P. Cui, Y. Cao, Z. Teng, Q. Zhang, Y. Wang, Y. Feng, R. Feng, J. Hou, X. Zhou, P. Ma, H. Hu, K. Wang, C. Wang, L. Gan, Y. Zhao, Q. Liu, T. Zhang, K. Zheng, Nat. Commun. 14 (2023) 7115, https://doi.org/10.1038/s41467-023-42887-y doi: 10.1038/s41467-023-42887-y

    25. [25]

      C. Bie, J. Yang, X. Zeng, Z. Wang, X. Sun, Z. Yang, J. Yu, X. Zhang, Small 21 (2025) 2411184, https://doi.org/10.1002/smll.202411184 doi: 10.1002/smll.202411184

    26. [26]

      Y. Wu, Y. Yang, M. Gu, C. Bie, H. Tan, B. Cheng, J. Xu, Chin. J. Catal. 53 (2023) 123, https://doi.org/10.1016/s1872-2067(23)64514-0 doi: 10.1016/s1872-2067(23)64514-0

    27. [27]

      Z. Jiang, B. Cheng, L. Zhang, Z. Zhang, C. Bie, Chin. J. Catal. 52 (2023) 32, https://doi.org/10.1016/s1872-2067(23)64502-4 doi: 10.1016/s1872-2067(23)64502-4

    28. [28]

      Y. Wang, H. Sun, Z. Yang, Y. Zhu, Y. Xia, Carbon Neutralization 3 (2024) 737, https://doi.org/10.1002/cnl2.153 doi: 10.1002/cnl2.153

    29. [29]

      Y. Ouyang, S. Zheng, G. Guan, Q. Yang, ACS Appl. Energy Mater. 5 (2022) 14455, https://doi.org/10.1021/acsaem.2c02993 doi: 10.1021/acsaem.2c02993

    30. [30]

      J. Zhu, Q. Bi, Y. Tao, W. Guo, J. Fan, Y. Min, G. Li, Adv. Funct. Mater. 33 (2023) 2213131, https://doi.org/10.1002/adfm.202213131 doi: 10.1002/adfm.202213131

    31. [31]

      S. Wan, W. Wang, B. Cheng, G. Luo, Q. Shen, J. Yu, J. Zhang, S. Cao, L. Zhang, Nat. Commun. 15 (2024) 9612, https://doi.org/10.1038/s41467-024-53951-6 doi: 10.1038/s41467-024-53951-6

    32. [32]

      L. Zhang, J. Zhang, J. Yu, H. García, Nat. Rev. Chem. 9 (2025) 328, https://doi.org/10.1038/s41570-025-00698-3 doi: 10.1038/s41570-025-00698-3

    33. [33]

      J. Yan, L. Wei, Acta Phys. -Chim. Sin. 40 (2024) 2312024, https://doi.org/10.3866/PKU.WHXB202312024 doi: 10.3866/PKU.WHXB202312024

    34. [34]

      Y. Shiraishi, S. Kanazawa, Y. Sugano, D. Tsukamoto, H. Sakamoto, S. Ichikawa, T. Hirai, ACS Catal. 4 (2014) 774, https://doi.org/10.1021/cs401208c doi: 10.1021/cs401208c

    35. [35]

      B. Zhu, C. Jiang, J. Xu, Z. Zhang, J. Fu, J. Yu, Mater. Today 82 (2025) 251, https://doi.org/10.1016/j.mattod.2024.11.012 doi: 10.1016/j.mattod.2024.11.012

    36. [36]

      Q. Xia, C. Wang, N. Xu, J. Yang, G. Gao, J. Ding, Adv. Funct. Mater. 33 (2023) 2214769, https://doi.org/10.1002/adfm.202214769 doi: 10.1002/adfm.202214769

    37. [37]

      Z. Cui, R. Yuan, H. Chen, B. Zhou, B. Zhu, C. Zhang, J. Water Process. Eng. 59 (2024) 104900, https://doi.org/10.1016/j.jwpe.2024.104900 doi: 10.1016/j.jwpe.2024.104900

    38. [38]

      Y. Zhang, Y. Gao, R. Deng, Z. Qin, F. Shi, J. Zeng, C. Zhao, Y. Pu, T. Duan, Sep. Purif. Technol. 354 (2025) 129331, https://doi.org/10.1016/j.seppur.2024.129331 doi: 10.1016/j.seppur.2024.129331

    39. [39]

      B. Liu, C. Bie, Y. Zhang, L. Wang, Y. Li, J. Yu, Langmuir 37 (2021) 14114, https://doi.org/10.1021/acs.langmuir.1c02360 doi: 10.1021/acs.langmuir.1c02360

    40. [40]

      B. Zhou, S. Ding, K. Yang, J. Zhang, G. Huang, A. Pan, W. Hu, K. Li, W. Huang, Adv. Funct. Mater. 31 (2020) 2009230, https://doi.org/10.1002/adfm.202009230 doi: 10.1002/adfm.202009230

    41. [41]

      S. Liu, H. Fu, F. Wang, Y. Wei, B. Meng, P. Wang, C. Zhao, W. Liu, C. Wang, Appl. Catal. B 346 (2024) 123753, https://doi.org/10.1016/j.apcatb.2024.123753 doi: 10.1016/j.apcatb.2024.123753

    42. [42]

      T. Zou, C. Wang, R. Tan, W. Song, Y. Cheng, J. Hazard. Mater. 338 (2017) 276, https://doi.org/10.1016/j.jhazmat.2017.05.042 doi: 10.1016/j.jhazmat.2017.05.042

    43. [43]

      B. A. Tahoun, E. M. Farag, M. A. Tony, S. A. Mansour, Appl. Water Sci. 13 (2023) 225, https://doi.org/10.1007/s13201-023-02020-2 doi: 10.1007/s13201-023-02020-2

    44. [44]

      X. Wu, S. Liu, Y. Li, M. Yan, H. Lin, J. Chen, S. Liu, S. Wang, X. Duan, Angew. Chem. Int. Ed. 62 (2023) e202305639, https://doi.org/10.1002/anie.202305639 doi: 10.1002/anie.202305639

    45. [45]

      A. Wang, J. Ni, W. Wang, X. Wang, D. Liu, Q. Zhu, J. Hazard. Mater. 426 (2022) 128106, https://doi.org/10.1016/j.jhazmat.2021.128106 doi: 10.1016/j.jhazmat.2021.128106

    46. [46]

      B. Liu, K. Meng, B. Cheng, L. Wang, G. Liang, C. Bie, J. Mater. Sci. Technol. 231 (2025) 286, https://doi.org/10.1016/j.jmst.2025.02.013 doi: 10.1016/j.jmst.2025.02.013

    47. [47]

      J. S. Algethami, M. S. Hassan, T. Amna, L. S. Alqarni, M. A. M. Alhamami, A. F. Seliem, Materials 16 (2023) 3314, https://doi.org/10.3390/ma16093314 doi: 10.3390/ma16093314

    48. [48]

      C. Bie, C. Jiang, J. Yang, X. Sun, X. Zeng, J. Zhang, B. Zhu, J. Mater. Sci. Technol. 229 (2025) 48, https://doi.org/10.1016/j.jmst.2024.12.047 doi: 10.1016/j.jmst.2024.12.047

    49. [49]

      Z. Zhou, C. Bie, P. Li, B. Tan, Y. Shen, Chin. J. Catal. 43 (2022) 2699, https://doi.org/10.1016/S1872-2067(22)64118-4 doi: 10.1016/S1872-2067(22)64118-4

    50. [50]

      S. Cao, B. Zhong, C. Bie, B. Cheng, F. Xu, Acta Phys. -Chim. Sin. 40 (2024) 2307016, https://doi.org/10.3866/PKU.WHXB202307016 doi: 10.3866/PKU.WHXB202307016

    51. [51]

      F. Zhang, X. Li, Q. Zhao, G. Chen, Q. Zhang, Appl. Catal. B 263 (2020) 118278, https://doi.org/10.1016/j.apcatb.2019.118278 doi: 10.1016/j.apcatb.2019.118278

    52. [52]

      H. Zuo, C. Wu, H. Du, Z. Guo, Y. Cheng, Q. Yan, Appl. Surf. Sci. 633 (2023) 157600, https://doi.org/10.1016/j.apsusc.2023.157600 doi: 10.1016/j.apsusc.2023.157600

    53. [53]

      Y. Zhang, J. Qiu, B. Zhu, M. V. Fedin, B. Cheng, J. Yu, L. Zhang, Chem. Eng. J. 444 (2022) 136584, https://doi.org/10.1016/j.cej.2022.136584 doi: 10.1016/j.cej.2022.136584

    54. [54]

      C. Bie, Z. Meng, B. He, B. Cheng, G. Liu, B. Zhu, J. Mater. Sci. Technol. 173 (2024) 11, https://doi.org/10.1016/j.jmst.2023.07.019 doi: 10.1016/j.jmst.2023.07.019

    55. [55]

      Z. Meng, J. Zhang, H. Long, H. García, L. Zhang, B. Zhu, J. Yu, Angew. Chem. Int. Ed. 64 (2025) e202505456, https://doi.org/10.1002/anie.202505456 doi: 10.1002/anie.202505456

    56. [56]

      B. He, P. Xiao, S. Wan, J. Zhang, T. Chen, L. Zhang, J. Yu, Angew. Chem. Int. Ed. 62 (2023) e202313172, https://doi.org/10.1002/anie.202313172 doi: 10.1002/anie.202313172

    57. [57]

      W. Yu, C. Bie, Acta Phys. -Chim. Sin. 40 (2024) 2307022, https://doi.org/10.3866/pku.whxb202307022 doi: 10.3866/pku.whxb202307022

    58. [58]

      J. Yang, C. Bie, Chem. Synth. 5 (2024) 12, https://doi.org/10.20517/cs.2024.105 doi: 10.20517/cs.2024.105

    59. [59]

      B. Liu, J. Cai, J. Zhang, H. Tan, B. Cheng, J. Xu, Chin. J. Catal. 51 (2023) 204, https://doi.org/10.1016/S1872-2067(23)64466-3 doi: 10.1016/S1872-2067(23)64466-3

    60. [60]

      F. Xu, Y. He, J. Zhang, G. Liang, C. Liu, J. Yu, Angew. Chem. Int. Ed. 64 (2025) e202414672, https://doi.org/10.1002/anie.202414672 doi: 10.1002/anie.202414672

    61. [61]

      W. Zhong, A. Meng, Y. Su, H. Yu, P. Han, J. Yu, Angew. Chem. Int. Ed. 64 (2025) e202425038, https://doi.org/10.1002/anie.202425038 doi: 10.1002/anie.202425038

    62. [62]

      K. Meng, J. Zhang, B. Cheng, X. Ren, Z. Xia, F. Xu, L. Zhang, J. Yu, Adv. Mater. 36 (2024) 2406460, https://doi.org/10.1002/adma.202406460 doi: 10.1002/adma.202406460

    63. [63]

      V. Ischenko, S. Polarz, D. Grote, V. Stavarache, K. Fink, M. Driess, Adv. Funct. Mater. 15 (2005) 1945-1954, https://doi.org/10.1002/adfm.200500087 doi: 10.1002/adfm.200500087

    64. [64]

      K. Meng, J. Zhang, B. Zhu, C. Jiang, H. García, J. Yu, Adv. Mater. 37 (2025) 2505088, https://doi.org/10.1002/adma.202505088 doi: 10.1002/adma.202505088

    65. [65]

      M. Gu, Y. Yang, L. Zhang, B. Zhu, G. Liang, J. Yu, Appl. Catal. B 324 (2023) 122227, https://doi.org/10.1016/j.apcatb.2022.122227 doi: 10.1016/j.apcatb.2022.122227

    66. [66]

      M. Liu, M. Gao, L. Pei, Y. Ji, X. Gu, H. Wang, H. Tan, J. Zhao, J. Jia, Z. Zheng, Appl. Catal. B 284 (2021) 119710, https://doi.org/10.1016/j.apcatb.2020.119710 doi: 10.1016/j.apcatb.2020.119710

    67. [67]

      Z. Lian, F. Gao, H. Xiao, D. Luo, M. Li, D. Fang, Y. Yang, J. Zi, H. Li, Angew. Chem. Int. Ed. 63 (2024) e202318927, https://doi.org/10.1002/anie.202318927 doi: 10.1002/anie.202318927

    68. [68]

      L. Yang, Z. Chen, Q. Cao, H. Liao, J. Gao, L. Zhang, W. Wei, H. Li, J. Lu, Adv. Mater. 36 (2024) 2306758, https://doi.org/10.1002/adma.202306758 doi: 10.1002/adma.202306758

  • 加载中
计量
  • PDF下载量:  1
  • 文章访问数:  48
  • HTML全文浏览量:  13
文章相关
  • 发布日期:  2025-10-15
  • 收稿日期:  2025-06-03
  • 接受日期:  2025-06-15
  • 修回日期:  2025-06-13
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章