Citation: Qi Wang, Yuqing Liu, Jiefei Wang, Yuan-Yuan Ma, Jing Du, Zhan-Gang Han. Catalysts for electrocatalytic dechlorination of chlorinated aromatic hydrocarbons: synthetic strategies, applications, and challenges[J]. Acta Physico-Chimica Sinica, ;2025, 41(10): 100120. doi: 10.1016/j.actphy.2025.100120 shu

Catalysts for electrocatalytic dechlorination of chlorinated aromatic hydrocarbons: synthetic strategies, applications, and challenges

  • Corresponding author: Yuan-Yuan Ma, mayy334@hebtu.edu.cn Jing Du, duj622@hebtu.edu.cn Zhan-Gang Han, hanzg116@hebtu.edu.cn
  • Received Date: 16 April 2025
    Revised Date: 25 May 2025
    Accepted Date: 11 June 2025

    Fund Project: the National Natural Science Foundation of China 22471056the National Natural Science Foundation of China 22301058the National Natural Science Foundation of China 22371065the Natural Science Foundation of Hebei Province B2024205033the Natural Science Foundation of Hebei Province B2024205007the Natural Science Foundation of Hebei Province B2022205005the Science and Technology Project of Hebei Education Department QN2023049the China Postdoctoral Science Foundation funded project 2021TQ0095the Project of Science and Technology Department of Hebei Province 22567622Hthe Science Foundation of Hebei Normal University L2023B51

  • Electrocatalytic hydrodechlorination (EHDC) is a promising technology for degrading chlorinated aromatic hydrocarbons (CAHs), offering high efficiency, minimal secondary pollution, and mild operating conditions. Its effectiveness relies on three critical steps: atomic hydrogen (H*) generation, C―Cl bond cleavage, and adsorption/desorption of CAHs/products. Developing high-performance electrocatalysts is essential to optimize energy efficiency and cost-effectiveness. It is urgent to summarize research progress on design strategies for catalysts and establish fundamental principles. In this review, we first summarize commonly deployed measurement methods and metrics for assessing catalyst activity and stability in EHDC. Then, a series of strategies for enhancing the production of H*, facilitating the cleavage of C―Cl bonds, and optimizing the adsorption and desorption kinetics of CAHs and their intermediates/products on the catalyst surface are summarized. These strategies include the loading of catalysts on carbon-based/transition-based support to enhance the dispersion of Pd; constructing heterostructures or forming alloys to modulate the electronic structure of active metal nanocatalysts and optimize its binding affinities with reactants and intermediates; and modulating the microenvironment to modify the interface hydrophilicity/hydrophobicity of catalyst to increase reaction rates or improve stability of catalysts. Additionally, the applications of electrocatalysts for EHDC in recent years, such as Pd-based supported electrocatalysts, Pd-based heterostructure electrocatalysts, Pd-based alloy electrocatalysts, and noble-metal-free electrocatalysts are discussed, as well as the influence of catalyst composition on performance. It is noted that the EHDC efficiency of CAHs is influenced not only by the catalyst but also significantly correlated with the structure of CAHs. Thus, the effects of CAHs structures on EHDC performance are also discussed. Studies demonstrate that weak adsorption between the electrode and CAHs is more conducive to EHDC reactions. The number and position of chlorine functional groups, steric hindrance, and the properties of other functional groups in the substrate molecule can also influence EHDC performance. Finally, the challenges and future prospects of EHDC are highlighted, including improving the catalytic performance of non-noble catalysts, employing advanced in situ and operando characterization techniques, and optimizing DFT calculations to more closely align with real catalytic conditions, all aiming to inspire new investigations and advancements in the field of EHDC of CAHs.
  • 加载中
    1. [1]

      M. Chen, S. Shu, J. X. Li, X. S. Lv, F. Dong, G. M. Jiang, J. Hazard. Mater. 389 (2020) 121876, https://doi.org/10.1016/j.jhazmat.2019.121876.  doi: 10.1016/j.jhazmat.2019.121876

    2. [2]

      M. Y. Mao, J. Wu, Y. Wang, Y. Long, G. Y. Fan, Appl. Surf. Sci. 600 (2022) 153988, https://doi.org/10.1016/j.apsusc.2022.153988.  doi: 10.1016/j.apsusc.2022.153988

    3. [3]

      T. Wu, Y. Zuo, H. Chen, Z. Xu, S. Zheng, Appl. Catal. A-Gen. 666 (2023) 119407, https://doi.org/10.1016/j.apcata.2023.119407.  doi: 10.1016/j.apcata.2023.119407

    4. [4]

      G. M. Jiang, K. F. Wang, J. Y. Li, W. Y. Fu, Z. Y. Zhang, G. Johnson, X. S. Lv, Y. Zhang, S. Zhang, F. Dong, Chem. Eng. J. 348 (2018) 26, https://doi.org/10.1016/j.cej.2018.04.173.  doi: 10.1016/j.cej.2018.04.173

    5. [5]

      B. Yang, G. Yu, D. M. Shuai, Chemosphere 67 (2007) 1361, https://doi.org/10.1016/j.chemosphere.2006.10.046.  doi: 10.1016/j.chemosphere.2006.10.046

    6. [6]

      Y. Gao, D. He, L. Wu, Z. P. Wang, Y. Yao, Z. -H. Huang, H. Yang, M. -X. Wang, Chem. Eng. J. 420 (2021) 127411, https://doi.org/10.1016/j.cej.2020.127411.  doi: 10.1016/j.cej.2020.127411

    7. [7]

      Z. T. Liu, Z. Zhou, W. Xiong, Q. Zhang, Langmuir 34 (2018) 10389, https://doi.org/10.1021/acs.langmuir.8b02156.  doi: 10.1021/acs.langmuir.8b02156

    8. [8]

      Z. W. Cheng, D. Shou, P. Zhao, J. M. Chen, J. K. Zhao, J. M. Yu, S. H. Zhang, Y. H. Guan, Int. Biodeterior. Biodegrad. 180 (2023) 105585, https://doi.org/10.1016/j.ibiod.2023.105585.  doi: 10.1016/j.ibiod.2023.105585

    9. [9]

      X. Zhou, H. P. Luo, Q. Y. Chen, X. Cao C. S., Shen, J. Zhou, Chem. Eng. J. 402 (2020) 126175, https://doi.org/10.1016/j.cej.2020.126175.  doi: 10.1016/j.cej.2020.126175

    10. [10]

      Y. Xue, Z. H. Wang, R. Bush, F. Yang, R. X. Yuan, J. S. Liu, N. Smith, M. H. Huang, R. Dharmarajan, P. Annamalai, Chem. Eng. J. 415 (2021) 129041, https://doi.org/10.1016/j.cej.2021.129041.  doi: 10.1016/j.cej.2021.129041

    11. [11]

      Q. Wang, Q. Liu, Y. -Y. Ma, H. -X. Bi, J. Du, Z. -G. Han, Inorg. Chem. Front. 11 (2024) 1238, https://doi.org/10.1039/D3QI02130K.  doi: 10.1039/D3QI02130K

    12. [12]

      J. Liu, D. D. Han, P. J. Chen, L. P. Zhai, Y. J. Wang, W. H. Chen, L. W. Mi, L. P. Yang, Chem. Eng. J. 418 (2021) 129492, https://doi.org/10.1016/j.cej.2021.129492.  doi: 10.1016/j.cej.2021.129492

    13. [13]

      X. Y. Yu, D. Cabooter, R. Dewil, J. Hazard. Mater. 357 (2018) 81, https://doi.org/10.1016/j.jhazmat.2018.05.049.  doi: 10.1016/j.jhazmat.2018.05.049

    14. [14]

      Z. Zhang, N. Cissoko, J. J. Wo, X. H. Xu, J. Hazard. Mater. 165 (2009) 78, https://doi.org/10.1016/j.jhazmat.2008.09.080.  doi: 10.1016/j.jhazmat.2008.09.080

    15. [15]

      J. X. Li, Y. Y. Peng, W. D. Zhang, X. L. Shi, M. Chen, P. Wang, X. M. Zhang, H. L. Fu, X. Lv, F. Dong, Appl. Surf. Sci. 509 (2020) 145369, https://doi.org/10.1016/j.apsusc.2020.145369.  doi: 10.1016/j.apsusc.2020.145369

    16. [16]

      W. Y. Fu, S. Shu, J. X. Li, X. L. X. S. Shi, Y. X. Lv, Huang, F. Dong, G. M. Jiang, Nanoscale 11 (2019) 15892, https://doi.org/10.1039/C9NR04634H.  doi: 10.1039/C9NR04634H

    17. [17]

      Y. -H. Xu, H. -X. Ma, Q. -Q. Cai, Y. -H. Zhu, C. -A. Ma, Acta Phys. -Chim. Sin. 29 (2013) 973, https://doi.org/10.3866/PKU.WHXB201302283.  doi: 10.3866/PKU.WHXB201302283

    18. [18]

      H. X. Ma, T. J. Ge, Q. Q. Cai, Y. H. Xu, C. A. Ma, Acta Phys. -Chim. Sin. 32 (2016) 1715, https://doi.org/10.3866/PKU.WHXB20160412.  doi: 10.3866/PKU.WHXB20160412

    19. [19]

      Z. C. Mao, L. H. Liu, H. B. Yang, Y. L. Zhang, Z. Q. Yao, H. Wu, Y. Q. Huang, Y. H. Xu, B. Liu, Electrochim. Acta 391 (2021) 138886, https://doi.org/10.1016/j.electacta.2021.138886.  doi: 10.1016/j.electacta.2021.138886

    20. [20]

      H. Wu, H. X. Chen, C. C. Yu, R. F. Qu, M. Q. Shi, Z. M. Lou, J. Q. Zhu, J. M. Yu, Y. H. Xu, Chem. Eng. J. 463 (2023) 142484, https://doi.org/10.1016/j.cej.2023.142484.  doi: 10.1016/j.cej.2023.142484

    21. [21]

      H. Wu, Z. C. Mao, B. Q. Liu, D. Y. Chen, M. Q. Shi, B. S. Lv, Y. H. Xu, L. B. Wang, Appl. Catal. B-Environ. 337 (2023) 122978, https://doi.org/10.1016/j.apcatb.2023.122978.  doi: 10.1016/j.apcatb.2023.122978

    22. [22]

      Y. H. Xu, Z. C. Mao, R. F. Qu, J. S. Wang, J. M. Yu, X. Y. Luo, M. Q. Shi, X. B. Mao, J. Ding, B. Liu, Nat. Water 1 (2023) 95, https://doi.org/10.1038/s44221-022-00002-3.  doi: 10.1038/s44221-022-00002-3

    23. [23]

      H. Wu, L. Q. Chen, C. Tang, X. Y. Fan, Q. Liu, Y. H. Xu, Sep. Purif. Technol. 331 (2024) 125647, https://doi.org/10.1016/j.seppur.2023.125647.  doi: 10.1016/j.seppur.2023.125647

    24. [24]

      Y. Y. Peng, M. Y. Cui, Z. Y. Zhang, S. Shu, X. L. Shi, J. T. Brosnahan, C. Liu, Y. L. Zhang, P. Godbold, X. M. Zhang, F. Dong, G. M. Jiang, S. Zhang, ACS Catal. 9 (2019) 10803, https://doi.org/10.1021/acscatal.9b02282.  doi: 10.1021/acscatal.9b02282

    25. [25]

      Z. M. Lou, J. S. Zhou, M. Sun, J. Xu, K. L. Yang, D. Lv, Y. P. Zhao, X. H. Xu, Chem. Eng. J. 352 (2018) 549, https://doi.org/10.1016/j.cej.2018.07.057.  doi: 10.1016/j.cej.2018.07.057

    26. [26]

      A. Winkel, G. Proske, Ber. Dtsch. Chem. Ges. 69 (1936) 1917, https://doi.org/10.1002/cber.19360690823.  doi: 10.1002/cber.19360690823

    27. [27]

      M. Stackelberg, W. Z. Stracke, Elektrochem. Angew. Phys. Chem. 53 (2010) 118, https://doi.org/10.1002/bbpc.19490530308.  doi: 10.1002/bbpc.19490530308

    28. [28]

      G. M. Jiang, M. N. Lan, Z. Y. Zhang, X. S. Lv, Z. M. Lou, X. H. Xu, F. Dong, S. Zhang, Environ. Sci. Technol. 51 (2017) 7599, https://doi.org/10.1021/acs.est.7b01128.  doi: 10.1021/acs.est.7b01128

    29. [29]

      Z. M. Lou, Z. N. Wang, J. S. Zhou, C. C. Zhou, J. Xu, X. H. Xu, Environ. Sci-Nano. 7 (2020) 1566, https://doi.org/10.1039/D0EN00182A.  doi: 10.1039/D0EN00182A

    30. [30]

      Q. Wang, L. X. Zhou, Q. Chen, M. Y. Mao, W. D. Jiang, Y. Long, G. Y. Fan, J. Hazard. Mater. 408 (2021) 124456, https://doi.org/10.1016/j.jhazmat.2020.124456.  doi: 10.1016/j.jhazmat.2020.124456

    31. [31]

      Z. M. Zhang, R. Cheng, J. Nan, X. Q. Chen, C. Huang, D. Cao, C. H. Bai, J. L. Han, B. Liang, Z. L. Li, A. J. Wang, Chin. Chem. Lett. 33 (2022) 3823, https://doi.org/10.1016/j.cclet.2021.11.068.  doi: 10.1016/j.cclet.2021.11.068

    32. [32]

      K. F. Wang, S. Shu, M. Chen, J. Li, K. Zhou, J. Pan, X. L. Wang, X. J. Li, J. P. Sheng, F. Dong, Chem. Eng. J. 381 (2020) 122673, https://doi.org/10.1016/j.cej.2019.122673.  doi: 10.1016/j.cej.2019.122673

    33. [33]

      Q. Wang, J. Du, Y. Y. Ma, X. Y. Yin, Z. Y. Tian, Z. G. Han, Chem. Eng. J. 451 (2023) 139107, https://doi.org/10.1016/j.cej.2022.139107.  doi: 10.1016/j.cej.2022.139107

    34. [34]

      P. Wang, X. L. Shi, C. H. Fu, X. J. Li, J. X. Li, X. S. Lv, Y. H. Chu, F. Dong, G. M. Jiang, Nanoscale 12 (2020) 843, https://doi.org/10.1039/C9NR07528C.  doi: 10.1039/C9NR07528C

    35. [35]

      A. A. Isse, B. B. Huang, C. Durante, A. Gennaro, Appl. Catal. B-Environ. 126 (2012) 347, https://doi.org/10.1016/j.apcatb.2012.07.004.  doi: 10.1016/j.apcatb.2012.07.004

    36. [36]

      F. Wang, Z. Q. Fan, X. H. Wu, M. C. Li, C. A. Ma, Int. J. Electrochem. Sci. 10 (2015) 5101, https://doi.org/10.1016/S1452-3981(23)06690-7.  doi: 10.1016/S1452-3981(23)06690-7

    37. [37]

      J. Halász, B. Imre, I. Hannus, Appl. Catal. A-Gen. 271 (2004) 47, https://doi.org/10.1016/j.apcata.2004.02.045.  doi: 10.1016/j.apcata.2004.02.045

    38. [38]

      L. V. Romashov, L. L. Khemchyan, E. G. Gordeev, I. O. Koshevoy, S. P. Tunik, V. P. Ananikov, Organometallics 33 (2014) 6003, https://doi.org/10.1021/om500620u.  doi: 10.1021/om500620u

    39. [39]

      S. X. Wang, M. D. Yang, C. Y. Cui, Q. Z. Zheng, C. Z. Zhou, Y. J. Xin, Electrochim. Acta. 462 (2023) 142707, https://doi.org/10.1016/j.electacta.2023.142707.  doi: 10.1016/j.electacta.2023.142707

    40. [40]

      H. H. Qian, Y. T. Su, S. Yan, W. J. Fang, K. Yang, X. L. Weng, Appl. Surf. Sci. 665 (2024) 160245, https://doi.org/10.1016/j.apsusc.2024.160245.  doi: 10.1016/j.apsusc.2024.160245

    41. [41]

      J. M. Wang, X. F. Wei, P. P. Wang, J. Miao, R. C. Zhang, N. Zhang, X. Q. Zhou, H. Xu, J. Zhang, H. S. Li, S. G. Peng, Fuel 341 (2023) 127689, https://doi.org/10.1016/j.fuel.2023.127689.  doi: 10.1016/j.fuel.2023.127689

    42. [42]

      J. J. Li, S. M. Ma, Z. Y. Qi, J. Ding, M. H. Yin, B. Zhao, Z. R. Zhang, Y. Wang, H. W. Zhang, L. Wang, D. D. Dionysious, Appl. Catal. B-Environ. 322 (2023) 122076, https://doi.org/10.1016/j.apcatb.2022.122076.  doi: 10.1016/j.apcatb.2022.122076

    43. [43]

      Y. J. Chen, C. Feng, W. H. Wang, Z. Liu, J. X. Li, C. G. Liu, Y. Pan, Y. Q. Liu, Sep. Purif. Technol. 289 (2022) 120731, https://doi.org/10.1016/j.seppur.2022.120731.  doi: 10.1016/j.seppur.2022.120731

    44. [44]

      Z. Y. Kong, D. H. Li, R. S. Cai, T. Li, L. P. Diao, X. K. Chen, X. X. Wang, H. J. Zheng, Y. Jia, D. J. Yang, J. Hazard. Mater. 463 (2024) 132964, https://doi.org/10.1016/j.jhazmat.2023.132964.  doi: 10.1016/j.jhazmat.2023.132964

    45. [45]

      Z. F. Zhao, X. Y. Yao, R. P. Yu, X. Y. Luo, M. H. Chen, X. X. Zhang, Y. H. Xu, Y. Q. Chu, X. B. Mao, H. J. Zheng, Chem. Eng. J. 492 (2024) 152340, https://doi.org/10.1016/j.cej.2024.152340.  doi: 10.1016/j.cej.2024.152340

    46. [46]

      J. W. Lu, S. N. Zhang, H. Z. Zhou, C. J. Huang, L. Xia, X. F. Liu, H. Luo, H. Wang, Acta Phys. -Chim. Sin. 39 (2023) 2302021, https://doi.org/10.3866/PKU.WHXB202302021.  doi: 10.3866/PKU.WHXB202302021

    47. [47]

      C. M. Li, K. Chen, X. Y. Wang, N. Xue, H. Q. Yang, Acta Phys. -Chim. Sin. 37 (2021) 2009101, https://doi.org/10.3866/PKU.WHXB202009101.  doi: 10.3866/PKU.WHXB202009101

    48. [48]

      J. X. Li, Y. J. Chen, R. Y. Bai, C. Chen, W. H. Wang, Y. Pan, Y. Q. Liu, Chem. Eng. J. 435 (2022) 134932, https://doi.org/10.1016/j.cej.2022.134932.  doi: 10.1016/j.cej.2022.134932

    49. [49]

      P. Peng, A. Anastasopoulou, K. Brooks, H. Furukawa, M. E. Bowden, J. R. Long, T. Autrey, H. Breunig, Nat. Energy. 7 (2022) 448, https://doi.org/10.1038/s41560-022-01013-w.  doi: 10.1038/s41560-022-01013-w

    50. [50]

      X. S. Lv, K. X. Jiang, H. Wu, L. Ao, L. Hu, X. Y. Li, F. Shen, L. Shi, F. Dong, G. M. Jiang, ACS ES & T. Water. 2 (2022) 1451, https://doi.org/10.1021/acsestwater.2c00205.  doi: 10.1021/acsestwater.2c00205

    51. [51]

      X. Y. Shu, Q. Yang, F. B. Yao, Y. Zhong, W. C. Ren, F. Chen, J. Sun, Y. H. Ma, Z. Y. Fu, D. B. Wang, X. M. Li, Chem. Eng. J. 358 (2019) 903, https://doi.org/10.1016/j.cej.2018.10.095.  doi: 10.1016/j.cej.2018.10.095

    52. [52]

      L. -Y. Liu, M. -H. Cui, S. -M. Niu, X. -D. Zhang, X. -H. Li, W. -L. Wang, H. Liu, G. -S. Liu, A. -J. Wang, ACS EST. Engg. 4 (2024) 1275, https://doi.org/10.1021/acsestengg.3c00493.  doi: 10.1021/acsestengg.3c00493

    53. [53]

      J. J. Li, Y. Wang, B. Zhao, J. Ding, J. Zhang, M. H. Yin, Z. H. Zhang, S. M. Ma, Y. Q. Liu, Z. L. Tan, H. W. Zhang, L. Wang, D. D. Dionysiou, Appl. Catal. B-Environ. 332 (2023) 122754, https://doi.org/10.1016/j.apcatb.2023.122754.  doi: 10.1016/j.apcatb.2023.122754

    54. [54]

      J. T. Tang, K. N. Liu, X. Y. Li, M. Y. Fu, W. T. Yu, L. X. Jiang, J. X. Ye, S. J. Song, Environ. Chem. Eng. 11 (2023) 109843, https://doi.org/10.1016/j.jece.2023.109843.  doi: 10.1016/j.jece.2023.109843

    55. [55]

      Z. K. Wang, Y. Y. Wang, N. Zhang, L. X. Ma, J. Sun, C. Yu, S. J. Liu, R. B. Jiang, J. Mater. Chem. A 10 (2022) 10342, https://doi.org/10.1039/D2TA01931K.  doi: 10.1039/D2TA01931K

    56. [56]

      F. F. Qin, X. D. Tian, Z. Y. Guo, W. Z. Shen, ACS Sustainable Chem. Eng. 6 (2018) 15708, https://doi.org/10.1021/acssuschemeng.8b04227.  doi: 10.1021/acssuschemeng.8b04227

    57. [57]

      C. X. Fan, Y. D. Tian, S. Y. Bai, C. Y. Zhang, X. L. Wu, J. Energy Storage 44 (2021) 103492, https://doi.org/10.1016/j.est.2021.103492.  doi: 10.1016/j.est.2021.103492

    58. [58]

      Y. Q. Wang, M. C. Zhang, W. Xu, X. Y. Shen, F. Gao, J. L. Zhu, X. Wan, X. J. Lian, J. G. Xu, Y. Tong, Acta Phys. -Chim. Sin. 38 (2022) 1907076, https://doi.org/10.3866/PKU.WHXB202211025.  doi: 10.3866/PKU.WHXB202211025

    59. [59]

      Y. Liu, L. Liu, J. Shan, J. D. Zhang, J. Hazard. Mater. 290 (2015) 1, https://doi.org/10.1016/j.jhazmat.2015.02.016.  doi: 10.1016/j.jhazmat.2015.02.016

    60. [60]

      J. J. Li, H. Wang, L. Wang, C. Ma, C. Luan, B. Zhao, Z. R. Zhang, H. W. Zhang, X. W. Cheng, J. L. Liu, Catalysts 8 (2018) 378, https://doi.org/10.3390/catal8090378.  doi: 10.3390/catal8090378

    61. [61]

      K. Yang, Q. Sun, F. Xue, D. H. Lin, J. Hazard. Mater. 195 (2011) 124, https://doi.org/10.1016/j.jhazmat.2011.08.020.  doi: 10.1016/j.jhazmat.2011.08.020

    62. [62]

      K. X. Jiang, X. L. Shi, M. Chen, X. S. Lv, H. F. Gong, Y. Shen, P. Wang, F. Dong, M. Liu, X. M. Zhang, G. M. Jiang, J. Hazard. Mater. 411 (2021) 125119, https://doi.org//10.1016/j.jhazmat.2021.125119.  doi: 10.1016/j.jhazmat.2021.125119

    63. [63]

      G. L. Li, Y. Liu, Y. Shen, Q. L. Fang, F. Liu, Front. Chem. Eng. 3 (2021) 636439, https://doi.org/10.3389/fceng.2021.636439.  doi: 10.3389/fceng.2021.636439

    64. [64]

      Y. Shen, Y. W. Tong, J. L. Xu, S. B. Wang, J. Wang, T. Zeng, Z. Q. He, W. Q. Yang, S. Song, Appl. Catal. B-Environ. 264 (2020) 118505, https://doi.org/10.1016/j.apcatb.2019.118505.  doi: 10.1016/j.apcatb.2019.118505

    65. [65]

      C. C. Chen, L. J. Jin, H. L. Dong, J. Jiang, H. Feng, D. Y. Chen, N. J. Li, Q. F. Xu, J. M. Lu, Sep. Purif. Technol. 324 (2023) 124527, https://doi.org/10.1016/j.seppur.2023.124527.  doi: 10.1016/j.seppur.2023.124527

    66. [66]

      G. P. Lei, D. K. Chen, Q. B. Li, H. T. Liu, Q. Shi, C. Li, Electrochim. Acta 413 (2022) 140143, https://doi.org/10.1016/j.electacta.2022.140143.  doi: 10.1016/j.electacta.2022.140143

    67. [67]

      K. Y. Li, D. Guo, J. Y. Kang, B. Wei, X. T. Zhang, Y. J. Chen, ACS Sustainable Chem. Eng. 6 (2018) 14641, https://doi.org/10.1021/acssuschemeng.8b03232.  doi: 10.1021/acssuschemeng.8b03232

    68. [68]

      C. Hu, C. Lv, S. Liu, Y. Shi, J. F. Song, Z. Zhang, J. G. Cai, A. Watanabe, Catalysis 10 (2020) 188, https://doi.org/10.3390/catal10020188.  doi: 10.3390/catal10020188

    69. [69]

      H. B. Yu, M. Y. Wang, X. H. Wang, Mater. Res. Bull. 172 (2024) 112655, https://doi.org/10.1016/j.materresbull.2023.112655.  doi: 10.1016/j.materresbull.2023.112655

    70. [70]

      Z. Qiu, Y. Ma, T. Edvinsson, Nano Energy 66 (2019) 104118, https://doi.org/10.1016/j.nanoen.2019.104118.  doi: 10.1016/j.nanoen.2019.104118

    71. [71]

      Q. X. Liu, Y. T. Shen, S. Song, Z. Q. He, RSC Adv. 66 (2019) 104118, https://doi.org/10.1039/C9RA01843C.  doi: 10.1039/C9RA01843C

    72. [72]

      J. Zhao, R. Urrego-Ortiz, N. Liao, F. Calle-Vallejo, J. Luo, Nat. Commun. 15 (2024) 6391, https://doi.org/10.1038/s41467-024-50691-5.  doi: 10.1038/s41467-024-50691-5

    73. [73]

      F. F. Liu, X. Yang, D. Dang, X. L. Tian, ChemElectroChem 6 (2019) 2208, https://doi.org/10.1002/celc.201900252.  doi: 10.1002/celc.201900252

    74. [74]

      C. X. Guo, Y. Jiao, Y. Zheng, J. Luo, K. Davey, S. -Z. Qiao, Chem 5 (2019) 2429, https://doi.org/10.1016/j.chempr.2019.06.016.  doi: 10.1016/j.chempr.2019.06.016

    75. [75]

      M. J. Wang, Y. Xu, C. K. Peng, S. Y. Chen, Y. G. Lin, Z. W. Hu, L. Sun, S. Y. Ding, C. W. Pao, Q. Shao, X. Q. Huang, J. Am. Chem. Soc. 143 (2021) 16512, https://doi.org/10.1021/jacs.1c06006.  doi: 10.1021/jacs.1c06006

    76. [76]

      Z. M. Lou, C. C. Yu, X. F. Wen, Y. H. Xu, J. M. Yu, X. H. Xu, Appl. Catal. B-Environ. 317 (2022) 121730, https://doi.org/10.1016/j.apcatb.2022.121730.  doi: 10.1016/j.apcatb.2022.121730

    77. [77]

      F. Gao, Y. P. Zhang, P. P. Song, J. Wang, C. Q. Wang, J. Guo, Y. K. Du, J. Power Sources 418 (2019) 186, https://doi.org/10.1016/j.jpowsour.2019.02.031.  doi: 10.1016/j.jpowsour.2019.02.031

    78. [78]

      Y. P. Zhang, F. Gao, P. P. Song, J. Wang, J. Guo, Y. Shiraishi, Y. K. Du, ACS Sustainable Chem. Eng. 7 (2019) 3176, https://doi.org/10.1021/acssuschemeng.8b05020.  doi: 10.1021/acssuschemeng.8b05020

    79. [79]

      Z. Y. Xu, X. Tan, C. Chen, X. D. Wang, R. Sui, Z. B. Zhuang, C. Zhang, C. Chen, Natl. Sci. Rev. 11 (2024) nwae315, https://doi.org/10.1093/nsr/nwae315.  doi: 10.1093/nsr/nwae315

    80. [80]

      G. M. Jiang, X. L. Shi, M. Y. Cui, W. L. Wang, P. Wang, G. Johnson, Y. D. Nie, X. S. Lv, X. M. Zhang, F. Dong, S. Zhang, ACS Appl. Mater. Interfaces 13 (2021) 4072, https://doi.org/10.1021/acsami.0c20994.  doi: 10.1021/acsami.0c20994

    81. [81]

      Z. M. Fan, H. C. Zhao, K. F. Wang, W. Ran, J. F. Sun, J. F. Liu, R. Liu, Environ. Sci. Technol. 57 (2023) 1499, https://doi.org/10.1021/acs.est.2c07462.  doi: 10.1021/acs.est.2c07462

    82. [82]

      X. F. Cheng, Q. Cao, Q. Liu, H. Y. Zhang, Q. F. Xu, J. M. Lu, Chin. J. Chem. 42 (2024) 2445, https://doi.org/10.1002/cjoc.202400293.  doi: 10.1002/cjoc.202400293

    83. [83]

      J. J. Li, K. Z. Kong, Y. T. Chong, J. Ding, L. Wang, Z. C. Ba, J. Zhang, Sep. Purif. Technol. 323 (2023) 124452, https://doi.org/10.1016/j.seppur.2023.124452.  doi: 10.1016/j.seppur.2023.124452

    84. [84]

      Q. H. Zhao, C. C. Chen, J. H. Fu, Y. P. Zhang, J. Y. Huo, H. B. Zeng, Q. F. Xu, J. M. Lu, Sep. Purif. Technol. 351 (2024) 128040, https://doi.org/10.1016/j.seppur.2024.128040.  doi: 10.1016/j.seppur.2024.128040

    85. [85]

      W. T. Yu, H. Jiang, J. H. Fang, S. Song, Environ. Sci. Technol. 55 (2021) 10087, https://doi.org/10.1021/acs.est.1c01922.  doi: 10.1021/acs.est.1c01922

    86. [86]

      T. Li, Z. Y. Kong, M. M. Liu, Y. Y. Sun, L. P. Diao, P. Lu, D. H. Li, D. J. Yang, Appl. Catal. B-Environ. 351 (2024) 123968, https://doi.org/10.1016/j.apcatb.2024.123968.  doi: 10.1016/j.apcatb.2024.123968

    87. [87]

      Z. M. Lou, Y. Z. Li, J. S. Zhou, K. L. Yang, Y. L. Liu, S. A. Baig, X. H. Xu, J. Hazard. Mater. 362 (2019) 148, https://doi.org/10.1016/j.jhazmat.2018.08.066.  doi: 10.1016/j.jhazmat.2018.08.066

    88. [88]

      S. Shu, X. Y. Tang, C. C. Huang, Y. N. Liu, J. J. Li, Ind. Eng. Chem. Res. 63 (2024), 7114, https://doi.org/10.1021/acs.iecr.3c04493.  doi: 10.1021/acs.iecr.3c04493

    89. [89]

      J. Li, C. Feng, C. Chen, Y. Pan, Y. J. Liu, Environ. Sci. 149 (2025) 288, https://doi.org/10.1016/j.jes.2024.01.053.  doi: 10.1016/j.jes.2024.01.053

    90. [90]

      Y. F. Wu, L. Gan, S. P. Zhang, H. O. Song, C. Lu, W. T. Li, Z. Wang, B. C. Jiang, A. J. Li, J. Hazard. Mater. 356 (2018) 17, https://doi.org/10.1016/j.jhazmat.2018.05.034.  doi: 10.1016/j.jhazmat.2018.05.034

    91. [91]

      Y. L. Chen, L. Xiong, X. N. Song, W. K. Wang, Y. X. Huang, H. Q. Yu, Chemosphere 125 (2015) 57, https://doi.org/10.1016/j.chemosphere.2015.01.052.  doi: 10.1016/j.chemosphere.2015.01.052

    92. [92]

      L. Y. Liu, M. H. Cui, J. J. Ambuchi, S. M. Niu, X. H. Li, W. L. Wang, H. Liu, G. S. Liu, A. J. Wang, Environ. Res. 252 (2024) 118859, https://doi.org/10.1016/j.envres.2024.118859.  doi: 10.1016/j.envres.2024.118859

    93. [93]

      X. Z. Song, Q. Shi, H. Wang, S. L. Liu, C. Tai, Z. Y. Bian, Appl. Catal. B-Environ. 20 (2017) 442, https://doi.org/10.1016/j.apcatb.2016.10.036.  doi: 10.1016/j.apcatb.2016.10.036

    94. [94]

      N. Li, X. Song, L. Wang, X. Geng, H. Wang, H. Tang, Z. Y. Bian, ACS Appl. Mater. Interfaces 12 (2020) 24019, https://doi.org/10.1021/acsami.0c05159.  doi: 10.1021/acsami.0c05159

    95. [95]

      J. L. Xie, Y. X. Li, X. Yan, Z. H. Yu, H. Chen, F. Jiang, Appl. Mater. Interfaces 16 (2024) 44817, https://doi.org/10.1021/acsami.4c08043.  doi: 10.1021/acsami.4c08043

    96. [96]

      P. Rugira, S. Pan, Z. M. Liang, R. Boutaleb, W. Q. Huang, N. B. Ullah, X. Zhao, C. Wang, Sep. Purif. Technol. 361 (2025) 131573, https://doi.org/10.1016/j.seppur.2025.131573.  doi: 10.1016/j.seppur.2025.131573

    97. [97]

      Y. Pan, C. Zhang, Y. Lin, Z. Liu, M. M. Wang, C. Chen, Sci. China Mater. 63 (2020) 921, https://doi.org/10.1007/s40843-019-1242-1.  doi: 10.1007/s40843-019-1242-1

    98. [98]

      X. Zhao, D. Luo, Y. Wang, Z. -H. Liu, Nano Res. 12 (2019) 2872, https://doi.org/10.1007/s12274-019-2529-y.  doi: 10.1007/s12274-019-2529-y

    99. [99]

      J. J. Li, K. Z. Kong, S. M. Ma, J. Ding, L. Wang, J. Crittenden, Appl. Catal. B-Environ. 356 (2024) 124245, https://doi.org/10.1016/j.apcatb.2024.124245.  doi: 10.1016/j.apcatb.2024.124245

    100. [100]

      J. J. Li, H. Yu, Y. J. Ding, L. J. Wang, Environ. Chem. Eng. 13 (2025) 115548, https://doi.org/10.1016/j.jece.2025.115548.  doi: 10.1016/j.jece.2025.115548

    101. [101]

      J. Wang, C. Y. Cui, Y. J. Xin, Q. Z. Zheng, X. Zhang, Electrochim. Acta 296 (2019) 874, https://doi.org/10.1016/j.electacta.2018.11.115.  doi: 10.1016/j.electacta.2018.11.115

    102. [102]

      S. L. Xu, W. Wang, H. T. Li, Y. X. Gao, Y. Min, P. Liu, X. Zheng, D. -F. Liu, J. J. Chen, H. Q. Yu, X. Zhou, Y. Wu, Adv. Mater. 37 (2025) 2500371, https://doi.org/10.1002/adma.202500371.  doi: 10.1002/adma.202500371

    103. [103]

      B. Yang, G. Yu, J. Huang, Environ. Sci. Technol. 41 (2007) 7503, https://doi.org/10.1021/es071168o.  doi: 10.1021/es071168o

    104. [104]

      J. Han, R. L. Deming, F. -M. Tao, J. Phys. Chem. A 108 (2004) 7736, https://doi.org/10.1021/jp047923r.  doi: 10.1021/jp047923r

    105. [105]

      W. Y. He, S. Y. Yang, K. J. Ye, S. Y. Bai, S. Xu, A. Amrane, M. Zhang, H. Wang, H. Q. Wang, Q. Yuan, X. L. Shi, Chem. Eng. J. 487 (2024) 150460, https://doi.org/10.1016/j.cej.2024.150460.  doi: 10.1016/j.cej.2024.150460

    106. [106]

      Z. J. Liu, E. A. Betterton, R. G. Arnold, Environ. Sci. Technol. 34 (2000) 804, https://doi.org/10.1021/es991049b.  doi: 10.1021/es991049b

    107. [107]

      C. Durante, V. Perazzolo, A. A. Isse, M. Favaro, G. Granozzi, A. Gennaro, ChemElectroChem 1 (2014) 1370, https://doi.org/10.1002/celc.201402032.  doi: 10.1002/celc.201402032

    108. [108]

      X. F. Wei, J. M. Wang, J. Miao, R. C. Zhang, W. W. Lu, N. Zhang, X. Q. Zhou, H. Xu, J. Zhang, S. G. Peng, Colloids Surf. A Physicochem. Eng. Asp. 648 (2022) 129320, https://doi.org/10.1016/j.colsurfa.2022.129320.  doi: 10.1016/j.colsurfa.2022.129320

    109. [109]

      Z. R. Sun, X. F. Wei, Y. B. Han, S. Tong, X. Hu, J. Hazard. Mater. 244-245 (2013) 287, https://doi.org/10.1016/j.jhazmat.2012.11.017.  doi: 10.1016/j.jhazmat.2012.11.017

    110. [110]

      S. Shu, W. Y. Fu, P. Wang, W. L. Cen, Y. H. Chu, F. S. Wei, X. M. Zhang, F. Dong, G. M. Jiang, Appl. Catal. A Gen. 583 (2019) 117146, https://doi.org/10.1016/j.apcata.2019.117146.  doi: 10.1016/j.apcata.2019.117146

    111. [111]

      A. L. Tang, L. M. Wang, R. H. Zhou, Comput. Theor. Chem. 960 (2010) 31, https://doi.org/10.1016/j.theochem.2010.08.021.  doi: 10.1016/j.theochem.2010.08.021

  • 加载中
    1. [1]

      Huafeng SHI . Construction of MnCoNi layered double hydroxide@Co-Ni-S amorphous hollow polyhedron composite with excellent electrocatalytic oxygen evolution performance. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1380-1386. doi: 10.11862/CJIC.20240378

    2. [2]

      Bizhu ShaoHuijun DongYunnan GongJianhua MeiFengshi CaiJinbiao LiuDichang ZhongTongbu Lu . Metal-Organic Framework-Derived Nickel Nanoparticles for Efficient CO2 Electroreduction in Wide Potential Windows. Acta Physico-Chimica Sinica, 2024, 40(4): 2305026-0. doi: 10.3866/PKU.WHXB202305026

    3. [3]

      Ruige ZHANGZhe ZHANGHe ZHENGZhan SHI . Recent advances of metal-organic frameworks for alkaline electrocatalytic oxygen evolution reaction. Chinese Journal of Inorganic Chemistry, 2025, 41(10): 2011-2028. doi: 10.11862/CJIC.20250185

    4. [4]

      Haodong JINQingqing LIUChaoyang SHIDanyang WEIJie YUXuhui XUMingli XU . NiCu/ZnO heterostructure photothermal electrocatalyst for efficient hydrogen evolution reaction. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1068-1082. doi: 10.11862/CJIC.20250048

    5. [5]

      Sumiya Akter DristyMd Ahasan HabibShusen LinMehedi Hasan JoniRutuja MandavkarYoung-Uk ChungMd NajibullahJihoon Lee . Exploring Zn doped NiBP microspheres as efficient and stable electrocatalyst for industrial-scale water splitting. Acta Physico-Chimica Sinica, 2025, 41(7): 100079-0. doi: 10.1016/j.actphy.2025.100079

    6. [6]

      Jia WangQing QinZhe WangXuhao ZhaoYunfei ChenLiqiang HouShangguo LiuXien Liu . P-Doped Carbon-Supported ZnxPyOz for Efficient Ammonia Electrosynthesis under Ambient Conditions. Acta Physico-Chimica Sinica, 2024, 40(3): 2304044-0. doi: 10.3866/PKU.WHXB202304044

    7. [7]

      CCS Chemistry 综述推荐│绿色氧化新思路:光/电催化助力有机物高效升级

      . CCS Chemistry, 2025, 7(10.31635/ccschem.024.202405369): -.

    8. [8]

      Zelong LIANGShijia QINPengfei GUOHang XUBin ZHAO . Synthesis and electrocatalytic CO2 reduction performance of metal-organic framework catalysts loaded with silver particles. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 165-173. doi: 10.11862/CJIC.20240409

    9. [9]

      Yixuan WangCanhui ZhangXingkun WangJiarui DuanKecheng TongShuixing DaiLei ChuMinghua Huang . Engineering Carbon-Chainmail-Shell Coated Co9Se8 Nanoparticles as Efficient and Durable Catalysts in Seawater-Based Zn-Air Batteries. Acta Physico-Chimica Sinica, 2024, 40(6): 2305004-0. doi: 10.3866/PKU.WHXB202305004

    10. [10]

      Shuang CaoBo ZhongChuanbiao BieBei ChengFeiyan Xu . Insights into Photocatalytic Mechanism of H2 Production Integrated with Organic Transformation over WO3/Zn0.5Cd0.5S S-Scheme Heterojunction. Acta Physico-Chimica Sinica, 2024, 40(5): 2307016-0. doi: 10.3866/PKU.WHXB202307016

    11. [11]

      Xuejie WangGuoqing CuiCongkai WangYang YangGuiyuan JiangChunming Xu . Research Progress on Carbon-based Catalysts for Catalytic Dehydrogenation of Liquid Organic Hydrogen Carriers. Acta Physico-Chimica Sinica, 2025, 41(5): 100044-0. doi: 10.1016/j.actphy.2024.100044

    12. [12]

      Xueting FengZiang ShangRong QinYunhu Han . Advances in Single-Atom Catalysts for Electrocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2305005-0. doi: 10.3866/PKU.WHXB202305005

    13. [13]

      Ye WangRuixiang GeXiang LiuJing LiHaohong Duan . An Anion Leaching Strategy towards Metal Oxyhydroxides Synthesis for Electrocatalytic Oxidation of Glycerol. Acta Physico-Chimica Sinica, 2024, 40(7): 2307019-0. doi: 10.3866/PKU.WHXB202307019

    14. [14]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    15. [15]

      Yang WANGXiaoqin ZHENGYang LIUKai ZHANGJiahui KOULinbing SUN . Mn single-atom catalysts based on confined space: Fabrication and the electrocatalytic oxygen evolution reaction performance. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2175-2185. doi: 10.11862/CJIC.20240165

    16. [16]

      Ying Chen Ronghua Yan Weiyan Yin . Research Progress on the Synthesis of Metal Single-Atom Catalysts and Their Applications in Electrocatalytic Hydrogen Evolution Reactions. University Chemistry, 2025, 40(9): 344-353. doi: 10.12461/PKU.DXHX202503066

    17. [17]

      Jiajie Li Xiaocong Ma Jufang Zheng Qiang Wan Xiaoshun Zhou Yahao Wang . Recent Advances in In-Situ Raman Spectroscopy for Investigating Electrocatalytic Organic Reaction Mechanisms. University Chemistry, 2025, 40(4): 261-276. doi: 10.12461/PKU.DXHX202406117

    18. [18]

      Mian WeiChang ChengBowen HeBei ChengKezhen QiChuanbiao Bie . Inorganic-organic CdS/YBTPy S-scheme photocatalyst for efficient hydrogen production and its mechanism. Acta Physico-Chimica Sinica, 2025, 41(12): 100158-0. doi: 10.1016/j.actphy.2025.100158

    19. [19]

      Yan KongWei WeiLekai XuChen Chen . Electrochemical Synthesis of Organonitrogen Compounds from N-integrated CO2 Reduction Reaction. Acta Physico-Chimica Sinica, 2024, 40(8): 2307049-0. doi: 10.3866/PKU.WHXB202307049

    20. [20]

      Lutian ZhaoYangge GuoLiuxuan LuoXiaohui YanShuiyun ShenJunliang Zhang . Electrochemical Synthesis for Metallic Nanocrystal Electrocatalysts: Principle, Application and Challenge. Acta Physico-Chimica Sinica, 2024, 40(7): 2306029-0. doi: 10.3866/PKU.WHXB202306029

Metrics
  • PDF Downloads(0)
  • Abstract views(58)
  • HTML views(7)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return