Citation: Wenhui Li, Yakun Tang, Yusheng Zhou, Yue Zhang, Wenhai Zhang, Qingtao Ma, Lang Liu, Sen Dong, Yuliang Cao. Enhanced sodium storage performance of asphalt-derived hard carbon through intramolecular oxidation for high-performance sodium-ion batteries[J]. Acta Physico-Chimica Sinica, ;2025, 41(10): 100119. doi: 10.1016/j.actphy.2025.100119 shu

Enhanced sodium storage performance of asphalt-derived hard carbon through intramolecular oxidation for high-performance sodium-ion batteries

  • Corresponding author: Yakun Tang, yktang@xju.edu.cn Yue Zhang, yuezhang@xju.edu.cn Lang Liu, liulang@xju.edu.cn Yuliang Cao, 
  • Received Date: 20 April 2025
    Revised Date: 27 May 2025
    Accepted Date: 11 June 2025

    Fund Project: the Key R & D Program of Xinjiang Uygur Autonomous Region 2024B01009-1the Key R & D Program of Xinjiang Uygur Autonomous Region 2024B04008-3the Shanghai Cooperation Organization Science and Technology Partnership Program and International Science and Technology Cooperation Program 2023E01004the National Natural Science Foundation of China 22368047the National Natural Science Foundation of China 22468048

  • The development of high-performance and low-cost hard carbon plays a crucial role in the commercialization of sodium-ion batteries (SIBs). Asphalt is considered a suitable hard carbon precursor due to its wide distribution, abundance, and cost-effectiveness. However, its low capacity and poor electrochemical reaction kinetics limit its further application. Herein, we have successfully synthesized asphalt-based hard carbon nanosheets through a process of intramolecular oxidation, facilitated by the synergistic action of mixed acids. The introduction of sulfuric acid plays a crucial role in expanding the tightly packed asphalt molecules, which in turn allows for the intramolecular oxidation of asphalt molecules by nitric acid. This oxidation process effectively introduces oxygen-containing functional groups (OFGs), leading to an increase in interlayer spacing and the formation of a more nanoporous structure, resulting in both enhanced capacity and improved rate performance. The optimized asphalt-based hard carbon boosts reversible capacity from 115.0 to 304.4 mAh∙g−1 at 0.03 A∙g−1, and the plateau capacity is increased by 5.5 times. This work provides a profound understanding of the impact of liquid-phase acid oxidation on the structure and composition of sodium-storage hard carbon, and further unveils an effective method for obtaining low-cost and high-performance asphalt-based hard carbon.
  • 加载中
    1. [1]

      X. W. Dou, I. Hasa, D. Saurel, C. Vaalma, L. M. Wu, D. Buchholz, D. Bresser, S. Komaba, S. Passerini, Mater. Today 23 (2019) 87, https://doi.org/10.1016/j.mattod.2018.12.040.  doi: 10.1016/j.mattod.2018.12.040

    2. [2]

      M. Ishaq, M. Jabeen, Y. S. He, H. Y. Che, W. Xu, S. Z. Zhao, Y. X. Shen, L. S. Li, Z. F. Ma, Adv. Energy Mater. 15 (2024) 2403142, https://doi.org/10.1002/aenm.202403142.  doi: 10.1002/aenm.202403142

    3. [3]

      Z. Zheng, S. J. Hu, W. J. Yin, J. Peng, R. Wang, J. Jin, B. B. He, Y. S. Gong, H. W. Wang, H. J. Fan, Adv. Energy Mater 14 (2023) 2303064, https://doi.org/10.1002/aenm.202303064.  doi: 10.1002/aenm.202303064

    4. [4]

      X. Li, H. Wang, X. Liu, Q. Liang, J. Hu, L. Xu, C. Ding, Y. Li, Y. Liu, Y. Gao, J. Electroanal. Chem. 108 (2025) 114995, https://doi.org/10.1016/j.est.2024.114995.  doi: 10.1016/j.est.2024.114995

    5. [5]

      T. Y. Xu, X. Qiu, X. Zhang, Y. Y. Xia, Chem. Eng. J. 452 (2023) 139514, https://doi.org/10.1016/j.cej.2022.139514.  doi: 10.1016/j.cej.2022.139514

    6. [6]

      W. Li, M. Zhou, H. M. Li, K. M. Wang, S. J. Cheng, K. Jiang, Energy Environ. Sci. 8 (2015) 2916, https://doi.org/10.1039/c5ee01985k.  doi: 10.1039/c5ee01985k

    7. [7]

      Q. Jin, W. Li, K. Wang, P. Feng, H. Li, T. Gu, M. Zhou, W. Wang, S. Cheng, K. Jiang, J. Mater. Chem. A 7 (2019) 10239, https://doi.org/10.1039/C9TA02107H.  doi: 10.1039/C9TA02107H

    8. [8]

      F. Sun, H. Wang, Z. B. Qu, K. F. Wang, L. J. Wang, J. H. Gao, J. M. Gao, S. Q. Liu, Y. F. Lu, Adv. Energy Mater 11 (2020) 2002981, https://doi.org/10.1002/aenm.202002981.  doi: 10.1002/aenm.202002981

    9. [9]

      K. H. Pan, H. Y. Lu, F. P. Zhong, X. P. Ai, H. X. Yang, Y. L. Cao, ACS Appl. Mater. Interfaces 10 (2018) 39651, https://doi.org/10.1021/acsami.8b13236.  doi: 10.1021/acsami.8b13236

    10. [10]

      X. B. Zhao, P. Shi, H. B. Wang, Q. S. Meng, X. G. Qi, G. J. Ai, F. Xie, X. H. Rong, Y. Xiong, Y. X. Lu, Y. S. Hu, Energy Storage Mater. 70 (2024) 103543, https://doi.org/10.1016/j.ensm.2024.103543.  doi: 10.1016/j.ensm.2024.103543

    11. [11]

      J. Chen, Z. Yang, X. Xu, Y. Qiao, Z. Zhou, Z. Hao, X. Chen, Y. Liu, X. Wu, X. Zhou, Adv. Mater 36(2024,) 2400169, https://doi.org/10.1002/adma.202400169.  doi: 10.1002/adma.202400169

    12. [12]

      L. Yang, B. He, M. Li, S. Li, D. Xiao, Y. Wang, Y. Meng, Q. Zhao, Q. Yue, W. Feng, INORG CHEM FRONT 11 (2024), 46725, https://doi.org/10.1039/D4QI01110D.  doi: 10.1039/D4QI01110D

    13. [13]

      H. N. He, Q. M. Gan, H. Y. Wang, G. -L. Xu, X. Y. Zhang, D. Huang, F. Fu, Y. G. Tang, K. Amine, M. H. Shao, Nano Energy 44 (2018) 217https://doi.org/10.1016/j.nanoen.2017.11.077.  doi: 10.1016/j.nanoen.2017.11.077

    14. [14]

      Z. H. Wu, X. D. Zhang, L. Deng, Y. S. Zhang, Z. Wang, Y. L. Shen, G. S. Shao, Energy Environ. Sci. 5 (2021) 285, https://doi.org/10.1002/eem2.12169.  doi: 10.1002/eem2.12169

    15. [15]

      Y. Z. Liu, W. T. Zhong, C. H. Yang, Q. C. Pan, Y. P. Li, G. Wang, F. H. Zheng, X. H. Xiong, M. L. Liu, Q. Y. Zhang, J. Mater. Chem. A 6 (2018) 24702, https://doi.org/10.1039/c8ta08562e.  doi: 10.1039/c8ta08562e

    16. [16]

      Y. Lu, E. Fong, Mater. Today Energy 4 (2017) 89, https://doi.org/10.1016/j.mtener.2017.04.001.  doi: 10.1016/j.mtener.2017.04.001

    17. [17]

      Y. J. Xu, Y. Y. Wang, Z. Y. Gu, C. S. Zhao, X. L. Wu, S. R. P. Silva, B. H. Hou, Energy Storage Mater. 75 (2025) 104031, https://doi.org/10.1016/j.ensm.2025.104031.  doi: 10.1016/j.ensm.2025.104031

    18. [18]

      Z. Y. Lu, H. J. Yang, Y. Guo, H. X. Lin, P. Z. Shan, S. C. Wu, P. He, Y. Yang, Q. H. Yang, H. S. Zhou, Nat. Commun. 15 (2024) 3497, https://doi.org/10.1038/s41467-024-47522-y.  doi: 10.1038/s41467-024-47522-y

    19. [19]

      X. Y. Gao, Y. K. Sun, B. W. He, Y. Nuli, J. L. Wang, J. Yang, Acs Energy Lett. 9 (2024,) 1141 https://doi.org/10.1021/acsenergylett.4c00314.  doi: 10.1021/acsenergylett.4c00314

    20. [20]

      P. Yu, W. Tang, F. F. Wu, C. Zhang, H. Y. Luo, H. Liu, Z. G. Wang, Rare Met. 39 (2020) 1019, https://doi.org/10.1007/s12598-020-01443-z.  doi: 10.1007/s12598-020-01443-z

    21. [21]

      M. H. Song, Z. W. Hu, C. H. Yuan, P. M. Dai, T. Zhang, L. Dong, T. Jin, C. Shen, K. Y. Xie, Adv. Energy Mater 14 (2024) 2304537, https://doi.org/10.1002/aenm.202304537.  doi: 10.1002/aenm.202304537

    22. [22]

      M. Q. Liu, Z. Jiang, X. Y. Wu, F. X. Liu, W. Li, D. T. Meng, A. F. Wei, P. Nie, W. Zhang, W. T. Zheng, Angew Chem Int Ed 64 (2025) 202425507, https://doi.org/10.1002/anie.202425507.  doi: 10.1002/anie.202425507

    23. [23]

      S. Fu, T. Yang, Y. Song, X. Tian, C. Wang, Z. Ma, J. Wu, Z. Liu, Appl. Surf. Sci. 657 (2024) 159731, https://doi.org/10.1016/j.apsusc.2024.159731.  doi: 10.1016/j.apsusc.2024.159731

    24. [24]

      J. Song, S. Jiang, Y. Wang, Y. Meng, D. Xiao, Q. Zhao, X. Zhang, B. He, J. Colloid Interface Sci. 686 (2025) 1200https://doi.org/10.1016/j.jcis.2025.02.028.  doi: 10.1016/j.jcis.2025.02.028

    25. [25]

      D. Sun, L. Zhao, P. L. Sun, K. Zhao, Y. K. Sun, Q. Zhang, Z. C. Li, Z. Ma, F. Z. Zheng, Y. Yang, C. B. Lu, C. Peng, C. M. Xu, Z. H. Xiao, X. L. Ma, Adv. Funct. Mater. 34 (2024) 2403642, https://doi.org/10.1002/adfm.202403642.  doi: 10.1002/adfm.202403642

    26. [26]

      X. F. Zhang, Z. L. Yi, Y. R. Tian, L. J. Xie, F. Y. Su, X. X. Wei, J. P. Chen, C. M. Chen, Carbon 226 (2024) 119165, https://doi.org/10.1016/j.carbon.2024.119165.  doi: 10.1016/j.carbon.2024.119165

    27. [27]

      Y. Chu, J. Zhang, Y. B. Zhang, Q. Li, Y. R. Jia, X. M. Dong, J. Xiao, Y. Tao, Q. -H. Yang, Adv. Mater 35 (2023) 2212186, https://doi.org/10.1002/adma.202212186.  doi: 10.1002/adma.202212186

    28. [28]

      Y. R. Qi, Y. X. Lu, L. L. Liu, X. G. Qi, F. X. Ding, H. Li, X. J. Huang, L. Q. Chen, Y. S. Hu, Energy Storage Mater. 26 (2020,) 577, https://doi.org/10.1016/j.ensm.2019.11.031.  doi: 10.1016/j.ensm.2019.11.031

    29. [29]

      Z. Lu, J. Wang, W. Feng, X. Yin, X. Feng, S. Zhao, C. Li, R. Wang, Q. A. Huang, Y. Zhao, Adv. Mater 35 (2023) 2211461, https://doi.org/10.1002/adma.202211461.  doi: 10.1002/adma.202211461

    30. [30]

      Q. Zhao, Y. Meng, L. Su, W. Cen, Q. Wang, D. Xiao, J. Colloid Interface Sci. 608 (2022) 265, https://doi.org/10.1016/j.jcis.2021.09.139.  doi: 10.1016/j.jcis.2021.09.139

    31. [31]

      B. He, L. Feng, G. Hong, L. Yang, Q. Zhao, X. Yang, S. Yin, Y. Meng, D. Xiao, Y. Wang, Chem. Eng. J. 490 (2024) 151636, https://doi.org/10.1016/j.cej.2024.151636.  doi: 10.1016/j.cej.2024.151636

    32. [32]

      J. Wang, L. Yan, B. H. Liu, Q. J. Ren, L. L. Fan, Z. Q. Shi, Q. Y. Zhang, Chin. Chem. Lett. 34 (2023) 107526, https://doi.org/10.1016/j.cclet.2022.05.040.  doi: 10.1016/j.cclet.2022.05.040

    33. [33]

      Z. Y. Xiong, L. Yue, Y. Zhang, H. F. Ding, L. X. Bai, Q. Zhao, T. H. Mei, J. Cao, Y. R. Qi, M. W. Xu, J. Colloid Interface Sci. 658 (2024) 610-616, https://doi.org/10.1016/j.jcis.2023.12.096.  doi: 10.1016/j.jcis.2023.12.096

    34. [34]

      H. Z. Ma, Y. K. Tang, B. Tang, Y. Zhang, L. M. Deng, L. Liu, S. Dong, Y. L. Cao, Carbon Energy 6 (2024) 3497, https://doi.org/10.1002/cey2.584.  doi: 10.1002/cey2.584

    35. [35]

      R. Xu, Z. L. Yi, M. X. Song, J. P. Chen, X. X. Wei, F. Y. Su, L. Q. Dai, G. H. Sun, F. Yang, L. J. Xie, C. M. Chen, Carbon 206 (2023) 94-104, https://doi.org/10.1016/j.carbon.2023.02.004.  doi: 10.1016/j.carbon.2023.02.004

    36. [36]

      M. Liu, Z. Zhang, X. Han, J. Wu, J. Yang, 17 (2025) 8118, https://doi.org/10.1039/D4NR05322B.  doi: 10.1039/D4NR05322B

    37. [37]

      J. L. Xia, D. Yan, L. P. Guo, X. L. Dong, W. C. Li, A. H. Lu, Adv. Mater 2020, 32 (2020) 2000447, https://doi.org/10.1002/adma.202000447.  doi: 10.1002/adma.202000447

    38. [38]

      H. Chen, N. Sun, Q. Z. Zhu, R. A. Soomro, B. Xu, Adv. Sci. 9 (2022) 2200023, https://doi.org/10.1002/advs.202200023.  doi: 10.1002/advs.202200023

    39. [39]

      B. Cao, X. Li, Acta Phys. -Chim. Sin 36 (2020) 1905003, https://doi.org/10.3866/PKU.WHXB201905003.  doi: 10.3866/PKU.WHXB201905003

    40. [40]

      G. X. Zhao, T. Q. Xu, Y. M. Zhao, Z. L. Yi, L. J. Xie, F. Y. Su, Z. X. Yao, X. J. Zhao, J. H. Zhang, W. Xie, X. M. Li, L. Dong, C. M. Chen, Energy Storage Mater. 2024, 67, 103282, https://doi.org/10.1016/j.ensm.2024.103282.  doi: 10.1016/j.ensm.2024.103282

    41. [41]

      Y. Y. Xu, D. L. Guo, Y. Luo, J. Q. Xu, K. L. Guo, W. Wang, G. L. Liu, N. T. Wu, X. M. Liu, A. M. Qin, Nanomaterials 13 (2023) 3002, https://doi.org/10.3390/nano13233002.  doi: 10.3390/nano13233002

    42. [42]

      S. W. Zhao, F. Q. Huang, ACS Nano 18 (2024) 1733, https://doi.org/10.1021/acsnano.3c11171.  doi: 10.1021/acsnano.3c11171

    43. [43]

      K. F. Wang, F. Sun, H. Wang, D. Y. Wu, Y. X. Chao, J. H. Gao, G. B. Zhao, Adv. Funct. Mater. 32 (2022) 2203725, https://doi.org/10.1002/adfm.202203725.  doi: 10.1002/adfm.202203725

    44. [44]

      B. Dippel, H. Jander, J. Heintzenberg, Phys. Chem. Chem. Phys. 1 (1999) 4707, https://doi.org/10.1039/a904529e.  doi: 10.1039/a904529e

    45. [45]

      X. X. He, J. H. Zhao, W. H. Lai, R. R. Li, Z. Yang, C. M. Xu, Y. Y. Dai, Y. Gao, X. H. Liu, L. Li, G. Xu, Y. Qiao, S. L. Chou, M. H. Wu, ACS Appl. Mater. Interfaces 13 (2021) 44358, https://doi.org/10.1021/acsami.1c12171.  doi: 10.1021/acsami.1c12171

    46. [46]

      Y. Q. Li, Y. X. Lu, Q. S. Meng, A. C. S. Jensen, Q. Q. Zhang, Q. H. Zhang, Y. X. Tong, Y. R. Qi, L. Gu, M. M. Titirici, Y. S. Hu, Adv. Funct. Mater. 9 (2019) 1902852, https://doi.org/10.1002/aenm.201902852.

    47. [47]

      Y. J. Huang, X. Zhong, X. Y. Hu, Y. J. Li, K. Wang, H. Y. Tu, W. T. Deng, G. Q. Zou, H. S. Hou, X. B. Ji, Adv. Funct. Mater. 34 (2024) 2308392, https://doi.org/10.1002/adfm.202308392.

    48. [48]

      X. Y. Chen, J. Y. Tian, P. Li, Y. L. Fang, Y. J. Fang, X. M. Liang, J. W. Feng, J. Dong, X. P. Ai, H. X. Yang, Y. L. Cao, Adv. Energy Mater 12 (2022) 2200886, https://doi.org/10.1002/aenm.202200886.  doi: 10.1002/aenm.202200886

    49. [49]

      C. C. Cai, Y. A. Chen, P. Hu, T. Zhu, X. Y. Li, Q. Yu, L. Zhou, X. Y. Yang, L. Q. Mai, Small 18 (2022) 2105303, https://doi.org/10.1002/smll.202105303.  doi: 10.1002/smll.202105303

    50. [50]

      W. J. Song, Y. K. Tang, J. M. Liu, S. K. Xiao, Y. Zhang, Y. Gao, C. S. Yang, L. Liu, J. Alloys Compd. 946 (2023) 169384, https://doi.org/10.1016/j.jallcom.2023.169384.  doi: 10.1016/j.jallcom.2023.169384

    51. [51]

      P. Lu, Y. Sun, H. F. Xiang, X. Liang, Y. Yu, Adv. Energy Mater 8 (2018) 1702434, https://doi.org/10.1002/aenm.201702434.  doi: 10.1002/aenm.201702434

    52. [52]

      H. Chen, N. Sun, Y. X. Wang, R. A. Soomro, B. Xu, Energy Storage Mater. 56 (2023) 532, https://doi.org/10.1016/j.ensm.2023.01.042.  doi: 10.1016/j.ensm.2023.01.042

    53. [53]

      F. Xie, Z. Xu, A. C. S. Jensen, H. Au, Y. X. Lu, V. Araullo-Peters, A. J. Drew, Y. S. Hu, M. M. Titirici, Adv. Funct. Mater. 29 (2019) 1901072, https://doi.org/10.1002/adfm.201901072.  doi: 10.1002/adfm.201901072

    54. [54]

      M. X. Song, Z. L. Yi, R. Xu, J. P. Chen, J. Y. Cheng, Z. F. Wang, Q. L. Liu, Q. G. Guo, L. J. Xie, C. M. Chen, Energy Storage Mater. 51 (2022) 620, https://doi.org/10.1016/j.ensm.2022.07.005.  doi: 10.1016/j.ensm.2022.07.005

    55. [55]

      S. F. Huang, Z. P. Li, B. Wang, J. J. Zhang, Z. Q. Peng, R. J. Qi, J. Wang, Y. F. Zhao, Adv. Funct. Mater. 28 (2018) 1706294, https://doi.org/10.1002/adfm.201706294.  doi: 10.1002/adfm.201706294

  • 加载中
    1. [1]

      Yuyao WangZhitao CaoZeyu DuXinxin CaoShuquan Liang . Research Progress of Iron-based Polyanionic Cathode Materials for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 2406014-0. doi: 10.3866/PKU.WHXB202406014

    2. [2]

      Yu GuoZhiwei HuangYuqing HuJunzhe LiJie Xu . Recent Advances in Iron-based Heterostructure Anode Materials for Sodium Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(3): 2311015-0. doi: 10.3866/PKU.WHXB202311015

    3. [3]

      Zilin HuYaoshen NiuXiaohui RongYongsheng Hu . Suppression of Voltage Decay through Ni3+ Barrier in Anionic-Redox Active Cathode for Na-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(6): 2306005-0. doi: 10.3866/PKU.WHXB202306005

    4. [4]

      Zhuo WANGXiaotong LIZhipeng HUJunqiao PAN . Three-dimensional porous carbon decorated with nano bismuth particles: Preparation and sodium storage properties. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 267-274. doi: 10.11862/CJIC.20240223

    5. [5]

      Xue XiaoJiachun LiXiangtong MengJieshan Qiu . Sulfur-Doped Carbon-Coated Fe0.95S1.05 Nanospheres as Anodes for High-Performance Sodium Storage. Acta Physico-Chimica Sinica, 2024, 40(6): 2307006-0. doi: 10.3866/PKU.WHXB202307006

    6. [6]

      Zhicheng JUWenxuan FUBaoyan WANGAo LUOJiangmin JIANGYueli SHIYongli CUI . MOF-derived nickel-cobalt bimetallic sulfide microspheres coated by carbon: Preparation and long cycling performance for sodium storage. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 661-674. doi: 10.11862/CJIC.20240363

    7. [7]

      Jianbao MeiBei LiShu ZhangDongdong XiaoPu HuGeng Zhang . Enhanced Performance of Ternary NASICON-Type Na3.5−xMn0.5V1.5−xZrx (PO4)3/C Cathodes for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(12): 2407023-0. doi: 10.3866/PKU.WHXB202407023

    8. [8]

      Shan Zhao Xu Liu Haotian Guo Zonglin Liu Pengfei Wang Jie Shu Tingfeng Yi . Synergistic design of high-entropy P2/O3 biphasic cathodes for high-performance sodium-ion batteries. Acta Physico-Chimica Sinica, 2026, 42(1): 100129-. doi: 10.1016/j.actphy.2025.100129

    9. [9]

      Xiaotian ZHUFangding HUANGWenchang ZHUJianqing ZHAO . Layered oxide cathode for sodium-ion batteries: Surface and interface modification and suppressed gas generation effect. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 254-266. doi: 10.11862/CJIC.20240260

    10. [10]

      Zhuo WangXue BaiKexin ZhangHongzhi WangJiabao DongYuan GaoBin Zhao . MOF-Templated Synthesis of Nitrogen-Doped Carbon for Enhanced Electrochemical Sodium Ion Storage and Removal. Acta Physico-Chimica Sinica, 2025, 41(3): 2405002-0. doi: 10.3866/PKU.WHXB202405002

    11. [11]

      Zehao ZhangZheng WangHaibo Li . Preparation of 2D V2O3@Pourous Carbon Nanosheets Derived from V2CFx MXene for Capacitive Desalination. Acta Physico-Chimica Sinica, 2024, 40(8): 2308020-0. doi: 10.3866/PKU.WHXB202308020

    12. [12]

      Chaolin MiYuying QinXinli HuangYijie LuoZhiwei ZhangChengxiang WangYuanchang ShiLongwei YinRutao Wang . Galvanic Replacement Synthesis of Graphene Coupled Amorphous Antimony Nanoparticles for High-Performance Sodium-Ion Capacitor. Acta Physico-Chimica Sinica, 2024, 40(5): 2306011-0. doi: 10.3866/PKU.WHXB202306011

    13. [13]

      Yixuan Gao Lingxing Zan Wenlin Zhang Qingbo Wei . Comprehensive Innovation Experiment: Preparation and Characterization of Carbon-based Perovskite Solar Cells. University Chemistry, 2024, 39(4): 178-183. doi: 10.3866/PKU.DXHX202311091

    14. [14]

      Jun HuangPengfei NieYongchao LuJiayang LiYiwen WangJianyun Liu . 丝光沸石负载自支撑氮掺杂多孔碳纳米纤维电容器及高效选择性去除硬度离子. Acta Physico-Chimica Sinica, 2025, 41(7): 100066-0. doi: 10.1016/j.actphy.2025.100066

    15. [15]

      Qianli MaTianbing SongTianle HeXirong ZhangHuanming Xiong . Sulfur-doped carbon dots: a novel bifunctional electrolyte additive for high-performance aqueous zinc-ion batteries. Acta Physico-Chimica Sinica, 2025, 41(9): 100106-0. doi: 10.1016/j.actphy.2025.100106

    16. [16]

      Pengyu DongYue JiangZhengchi YangLicheng LiuGu LiXinyang WenZhen WangXinbo ShiGuofu ZhouJun-Ming LiuJinwei Gao . NbSe2 Nanosheets Improved the Buried Interface for Perovskite Solar Cells. Acta Physico-Chimica Sinica, 2025, 41(3): 2407025-0. doi: 10.3866/PKU.WHXB202407025

    17. [17]

      Yueguang Chen Wenqiang Sun . “Carbon” Adventures. University Chemistry, 2024, 39(9): 248-253. doi: 10.3866/PKU.DXHX202308074

    18. [18]

      Jingshuo ZhangYue ZhaiZiyun ZhaoJiaxing HeWei WeiJing XiaoShichao WuQuan-Hong Yang . Research Progress of Functional Binders in Silicon-Based Anodes for Lithium-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(6): 2306006-0. doi: 10.3866/PKU.WHXB202306006

    19. [19]

      Doudou QinJunyang DingChu LiangQian LiuLigang FengYang LuoGuangzhi HuJun LuoXijun Liu . Addressing Challenges and Enhancing Performance of Manganese-based Cathode Materials in Aqueous Zinc-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(10): 2310034-0. doi: 10.3866/PKU.WHXB202310034

    20. [20]

      Huimin LiuKezhi LiXin ZhangXuemin YinQiangang FuHejun Li . SiC Nanomaterials and Their Derived Carbons for High-Performance Supercapacitors. Acta Physico-Chimica Sinica, 2024, 40(2): 2304026-0. doi: 10.3866/PKU.WHXB202304026

Metrics
  • PDF Downloads(0)
  • Abstract views(12)
  • HTML views(2)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return