通过分子内氧化提升沥青衍生硬碳的储钠性能以用于高性能钠离子电池

李文慧 唐亚昆 周玉生 张月 张文海 马庆涛 刘浪 董森 曹余良

引用本文: 李文慧, 唐亚昆, 周玉生, 张月, 张文海, 马庆涛, 刘浪, 董森, 曹余良. 通过分子内氧化提升沥青衍生硬碳的储钠性能以用于高性能钠离子电池[J]. 物理化学学报, 2025, 41(10): 100119. doi: 10.1016/j.actphy.2025.100119 shu
Citation:  Wenhui Li, Yakun Tang, Yusheng Zhou, Yue Zhang, Wenhai Zhang, Qingtao Ma, Lang Liu, Sen Dong, Yuliang Cao. Enhanced sodium storage performance of asphalt-derived hard carbon through intramolecular oxidation for high-performance sodium-ion batteries[J]. Acta Physico-Chimica Sinica, 2025, 41(10): 100119. doi: 10.1016/j.actphy.2025.100119 shu

通过分子内氧化提升沥青衍生硬碳的储钠性能以用于高性能钠离子电池

    通讯作者: 唐亚昆, yktang@xju.edu.cn; 张月, yuezhang@xju.edu.cn; 刘浪, liulang@xju.edu.cn; 曹余良,
  • 基金项目:

    新疆维吾尔自治区重点研发项目 2024B01009-1

    新疆维吾尔自治区重点研发项目 2024B04008-3

    上海合作组织科技伙伴计划和国际科技合作计划 2023E01004

    国家自然科学基金 22368047

    国家自然科学基金 22468048

摘要: 高性能、低成本硬碳的发展对钠离子电池的商业化起到了至关重要的作用。由于沥青具有分布广泛,资源丰富,和成本低廉的特点,被认为是适宜的硬碳前驱体。但因其容量小、电化学反应动力学差,进一步限制了其应用。本文通过混酸的协同作用,成功通过分子内氧化合成了沥青基硬碳纳米片。硫酸的引入有效促进了沥青分子层间结构的膨胀与解离,进而显著增强了硝酸对沥青分子的分子内氧化效率。混酸氧化过程有效地引入了含氧官能团(OFGs),增大了层间距和形成更多纳米多孔结构,从而增加了可逆容量和提高了速率性能。优化后的沥青基硬碳在0.03 A∙g−1的电流密度下,可逆充电容量由115.0 mAh∙g−1提高至304.4 mAh∙g−1,平台容量提高5.5倍。本研究揭示了液相酸氧化对储钠型硬碳结构和组成的影响,揭示了制备低成本、高性能沥青基硬碳的有效方法。

English

    1. [1]

      X. W. Dou, I. Hasa, D. Saurel, C. Vaalma, L. M. Wu, D. Buchholz, D. Bresser, S. Komaba, S. Passerini, Mater. Today 23 (2019) 87, https://doi.org/10.1016/j.mattod.2018.12.040. doi: 10.1016/j.mattod.2018.12.040

    2. [2]

      M. Ishaq, M. Jabeen, Y. S. He, H. Y. Che, W. Xu, S. Z. Zhao, Y. X. Shen, L. S. Li, Z. F. Ma, Adv. Energy Mater. 15 (2024) 2403142, https://doi.org/10.1002/aenm.202403142. doi: 10.1002/aenm.202403142

    3. [3]

      Z. Zheng, S. J. Hu, W. J. Yin, J. Peng, R. Wang, J. Jin, B. B. He, Y. S. Gong, H. W. Wang, H. J. Fan, Adv. Energy Mater 14 (2023) 2303064, https://doi.org/10.1002/aenm.202303064. doi: 10.1002/aenm.202303064

    4. [4]

      X. Li, H. Wang, X. Liu, Q. Liang, J. Hu, L. Xu, C. Ding, Y. Li, Y. Liu, Y. Gao, J. Electroanal. Chem. 108 (2025) 114995, https://doi.org/10.1016/j.est.2024.114995. doi: 10.1016/j.est.2024.114995

    5. [5]

      T. Y. Xu, X. Qiu, X. Zhang, Y. Y. Xia, Chem. Eng. J. 452 (2023) 139514, https://doi.org/10.1016/j.cej.2022.139514. doi: 10.1016/j.cej.2022.139514

    6. [6]

      W. Li, M. Zhou, H. M. Li, K. M. Wang, S. J. Cheng, K. Jiang, Energy Environ. Sci. 8 (2015) 2916, https://doi.org/10.1039/c5ee01985k. doi: 10.1039/c5ee01985k

    7. [7]

      Q. Jin, W. Li, K. Wang, P. Feng, H. Li, T. Gu, M. Zhou, W. Wang, S. Cheng, K. Jiang, J. Mater. Chem. A 7 (2019) 10239, https://doi.org/10.1039/C9TA02107H. doi: 10.1039/C9TA02107H

    8. [8]

      F. Sun, H. Wang, Z. B. Qu, K. F. Wang, L. J. Wang, J. H. Gao, J. M. Gao, S. Q. Liu, Y. F. Lu, Adv. Energy Mater 11 (2020) 2002981, https://doi.org/10.1002/aenm.202002981. doi: 10.1002/aenm.202002981

    9. [9]

      K. H. Pan, H. Y. Lu, F. P. Zhong, X. P. Ai, H. X. Yang, Y. L. Cao, ACS Appl. Mater. Interfaces 10 (2018) 39651, https://doi.org/10.1021/acsami.8b13236. doi: 10.1021/acsami.8b13236

    10. [10]

      X. B. Zhao, P. Shi, H. B. Wang, Q. S. Meng, X. G. Qi, G. J. Ai, F. Xie, X. H. Rong, Y. Xiong, Y. X. Lu, Y. S. Hu, Energy Storage Mater. 70 (2024) 103543, https://doi.org/10.1016/j.ensm.2024.103543. doi: 10.1016/j.ensm.2024.103543

    11. [11]

      J. Chen, Z. Yang, X. Xu, Y. Qiao, Z. Zhou, Z. Hao, X. Chen, Y. Liu, X. Wu, X. Zhou, Adv. Mater 36(2024,) 2400169, https://doi.org/10.1002/adma.202400169. doi: 10.1002/adma.202400169

    12. [12]

      L. Yang, B. He, M. Li, S. Li, D. Xiao, Y. Wang, Y. Meng, Q. Zhao, Q. Yue, W. Feng, INORG CHEM FRONT 11 (2024), 46725, https://doi.org/10.1039/D4QI01110D. doi: 10.1039/D4QI01110D

    13. [13]

      H. N. He, Q. M. Gan, H. Y. Wang, G. -L. Xu, X. Y. Zhang, D. Huang, F. Fu, Y. G. Tang, K. Amine, M. H. Shao, Nano Energy 44 (2018) 217https://doi.org/10.1016/j.nanoen.2017.11.077. doi: 10.1016/j.nanoen.2017.11.077

    14. [14]

      Z. H. Wu, X. D. Zhang, L. Deng, Y. S. Zhang, Z. Wang, Y. L. Shen, G. S. Shao, Energy Environ. Sci. 5 (2021) 285, https://doi.org/10.1002/eem2.12169. doi: 10.1002/eem2.12169

    15. [15]

      Y. Z. Liu, W. T. Zhong, C. H. Yang, Q. C. Pan, Y. P. Li, G. Wang, F. H. Zheng, X. H. Xiong, M. L. Liu, Q. Y. Zhang, J. Mater. Chem. A 6 (2018) 24702, https://doi.org/10.1039/c8ta08562e. doi: 10.1039/c8ta08562e

    16. [16]

      Y. Lu, E. Fong, Mater. Today Energy 4 (2017) 89, https://doi.org/10.1016/j.mtener.2017.04.001. doi: 10.1016/j.mtener.2017.04.001

    17. [17]

      Y. J. Xu, Y. Y. Wang, Z. Y. Gu, C. S. Zhao, X. L. Wu, S. R. P. Silva, B. H. Hou, Energy Storage Mater. 75 (2025) 104031, https://doi.org/10.1016/j.ensm.2025.104031. doi: 10.1016/j.ensm.2025.104031

    18. [18]

      Z. Y. Lu, H. J. Yang, Y. Guo, H. X. Lin, P. Z. Shan, S. C. Wu, P. He, Y. Yang, Q. H. Yang, H. S. Zhou, Nat. Commun. 15 (2024) 3497, https://doi.org/10.1038/s41467-024-47522-y. doi: 10.1038/s41467-024-47522-y

    19. [19]

      X. Y. Gao, Y. K. Sun, B. W. He, Y. Nuli, J. L. Wang, J. Yang, Acs Energy Lett. 9 (2024,) 1141 https://doi.org/10.1021/acsenergylett.4c00314. doi: 10.1021/acsenergylett.4c00314

    20. [20]

      P. Yu, W. Tang, F. F. Wu, C. Zhang, H. Y. Luo, H. Liu, Z. G. Wang, Rare Met. 39 (2020) 1019, https://doi.org/10.1007/s12598-020-01443-z. doi: 10.1007/s12598-020-01443-z

    21. [21]

      M. H. Song, Z. W. Hu, C. H. Yuan, P. M. Dai, T. Zhang, L. Dong, T. Jin, C. Shen, K. Y. Xie, Adv. Energy Mater 14 (2024) 2304537, https://doi.org/10.1002/aenm.202304537. doi: 10.1002/aenm.202304537

    22. [22]

      M. Q. Liu, Z. Jiang, X. Y. Wu, F. X. Liu, W. Li, D. T. Meng, A. F. Wei, P. Nie, W. Zhang, W. T. Zheng, Angew Chem Int Ed 64 (2025) 202425507, https://doi.org/10.1002/anie.202425507. doi: 10.1002/anie.202425507

    23. [23]

      S. Fu, T. Yang, Y. Song, X. Tian, C. Wang, Z. Ma, J. Wu, Z. Liu, Appl. Surf. Sci. 657 (2024) 159731, https://doi.org/10.1016/j.apsusc.2024.159731. doi: 10.1016/j.apsusc.2024.159731

    24. [24]

      J. Song, S. Jiang, Y. Wang, Y. Meng, D. Xiao, Q. Zhao, X. Zhang, B. He, J. Colloid Interface Sci. 686 (2025) 1200https://doi.org/10.1016/j.jcis.2025.02.028. doi: 10.1016/j.jcis.2025.02.028

    25. [25]

      D. Sun, L. Zhao, P. L. Sun, K. Zhao, Y. K. Sun, Q. Zhang, Z. C. Li, Z. Ma, F. Z. Zheng, Y. Yang, C. B. Lu, C. Peng, C. M. Xu, Z. H. Xiao, X. L. Ma, Adv. Funct. Mater. 34 (2024) 2403642, https://doi.org/10.1002/adfm.202403642. doi: 10.1002/adfm.202403642

    26. [26]

      X. F. Zhang, Z. L. Yi, Y. R. Tian, L. J. Xie, F. Y. Su, X. X. Wei, J. P. Chen, C. M. Chen, Carbon 226 (2024) 119165, https://doi.org/10.1016/j.carbon.2024.119165. doi: 10.1016/j.carbon.2024.119165

    27. [27]

      Y. Chu, J. Zhang, Y. B. Zhang, Q. Li, Y. R. Jia, X. M. Dong, J. Xiao, Y. Tao, Q. -H. Yang, Adv. Mater 35 (2023) 2212186, https://doi.org/10.1002/adma.202212186. doi: 10.1002/adma.202212186

    28. [28]

      Y. R. Qi, Y. X. Lu, L. L. Liu, X. G. Qi, F. X. Ding, H. Li, X. J. Huang, L. Q. Chen, Y. S. Hu, Energy Storage Mater. 26 (2020,) 577, https://doi.org/10.1016/j.ensm.2019.11.031. doi: 10.1016/j.ensm.2019.11.031

    29. [29]

      Z. Lu, J. Wang, W. Feng, X. Yin, X. Feng, S. Zhao, C. Li, R. Wang, Q. A. Huang, Y. Zhao, Adv. Mater 35 (2023) 2211461, https://doi.org/10.1002/adma.202211461. doi: 10.1002/adma.202211461

    30. [30]

      Q. Zhao, Y. Meng, L. Su, W. Cen, Q. Wang, D. Xiao, J. Colloid Interface Sci. 608 (2022) 265, https://doi.org/10.1016/j.jcis.2021.09.139. doi: 10.1016/j.jcis.2021.09.139

    31. [31]

      B. He, L. Feng, G. Hong, L. Yang, Q. Zhao, X. Yang, S. Yin, Y. Meng, D. Xiao, Y. Wang, Chem. Eng. J. 490 (2024) 151636, https://doi.org/10.1016/j.cej.2024.151636. doi: 10.1016/j.cej.2024.151636

    32. [32]

      J. Wang, L. Yan, B. H. Liu, Q. J. Ren, L. L. Fan, Z. Q. Shi, Q. Y. Zhang, Chin. Chem. Lett. 34 (2023) 107526, https://doi.org/10.1016/j.cclet.2022.05.040. doi: 10.1016/j.cclet.2022.05.040

    33. [33]

      Z. Y. Xiong, L. Yue, Y. Zhang, H. F. Ding, L. X. Bai, Q. Zhao, T. H. Mei, J. Cao, Y. R. Qi, M. W. Xu, J. Colloid Interface Sci. 658 (2024) 610-616, https://doi.org/10.1016/j.jcis.2023.12.096. doi: 10.1016/j.jcis.2023.12.096

    34. [34]

      H. Z. Ma, Y. K. Tang, B. Tang, Y. Zhang, L. M. Deng, L. Liu, S. Dong, Y. L. Cao, Carbon Energy 6 (2024) 3497, https://doi.org/10.1002/cey2.584. doi: 10.1002/cey2.584

    35. [35]

      R. Xu, Z. L. Yi, M. X. Song, J. P. Chen, X. X. Wei, F. Y. Su, L. Q. Dai, G. H. Sun, F. Yang, L. J. Xie, C. M. Chen, Carbon 206 (2023) 94-104, https://doi.org/10.1016/j.carbon.2023.02.004. doi: 10.1016/j.carbon.2023.02.004

    36. [36]

      M. Liu, Z. Zhang, X. Han, J. Wu, J. Yang, 17 (2025) 8118, https://doi.org/10.1039/D4NR05322B. doi: 10.1039/D4NR05322B

    37. [37]

      J. L. Xia, D. Yan, L. P. Guo, X. L. Dong, W. C. Li, A. H. Lu, Adv. Mater 2020, 32 (2020) 2000447, https://doi.org/10.1002/adma.202000447. doi: 10.1002/adma.202000447

    38. [38]

      H. Chen, N. Sun, Q. Z. Zhu, R. A. Soomro, B. Xu, Adv. Sci. 9 (2022) 2200023, https://doi.org/10.1002/advs.202200023. doi: 10.1002/advs.202200023

    39. [39]

      B. Cao, X. Li, Acta Phys. -Chim. Sin 36 (2020) 1905003, https://doi.org/10.3866/PKU.WHXB201905003. doi: 10.3866/PKU.WHXB201905003

    40. [40]

      G. X. Zhao, T. Q. Xu, Y. M. Zhao, Z. L. Yi, L. J. Xie, F. Y. Su, Z. X. Yao, X. J. Zhao, J. H. Zhang, W. Xie, X. M. Li, L. Dong, C. M. Chen, Energy Storage Mater. 2024, 67, 103282, https://doi.org/10.1016/j.ensm.2024.103282. doi: 10.1016/j.ensm.2024.103282

    41. [41]

      Y. Y. Xu, D. L. Guo, Y. Luo, J. Q. Xu, K. L. Guo, W. Wang, G. L. Liu, N. T. Wu, X. M. Liu, A. M. Qin, Nanomaterials 13 (2023) 3002, https://doi.org/10.3390/nano13233002. doi: 10.3390/nano13233002

    42. [42]

      S. W. Zhao, F. Q. Huang, ACS Nano 18 (2024) 1733, https://doi.org/10.1021/acsnano.3c11171. doi: 10.1021/acsnano.3c11171

    43. [43]

      K. F. Wang, F. Sun, H. Wang, D. Y. Wu, Y. X. Chao, J. H. Gao, G. B. Zhao, Adv. Funct. Mater. 32 (2022) 2203725, https://doi.org/10.1002/adfm.202203725. doi: 10.1002/adfm.202203725

    44. [44]

      B. Dippel, H. Jander, J. Heintzenberg, Phys. Chem. Chem. Phys. 1 (1999) 4707, https://doi.org/10.1039/a904529e. doi: 10.1039/a904529e

    45. [45]

      X. X. He, J. H. Zhao, W. H. Lai, R. R. Li, Z. Yang, C. M. Xu, Y. Y. Dai, Y. Gao, X. H. Liu, L. Li, G. Xu, Y. Qiao, S. L. Chou, M. H. Wu, ACS Appl. Mater. Interfaces 13 (2021) 44358, https://doi.org/10.1021/acsami.1c12171. doi: 10.1021/acsami.1c12171

    46. [46]

      Y. Q. Li, Y. X. Lu, Q. S. Meng, A. C. S. Jensen, Q. Q. Zhang, Q. H. Zhang, Y. X. Tong, Y. R. Qi, L. Gu, M. M. Titirici, Y. S. Hu, Adv. Funct. Mater. 9 (2019) 1902852, https://doi.org/10.1002/aenm.201902852.

    47. [47]

      Y. J. Huang, X. Zhong, X. Y. Hu, Y. J. Li, K. Wang, H. Y. Tu, W. T. Deng, G. Q. Zou, H. S. Hou, X. B. Ji, Adv. Funct. Mater. 34 (2024) 2308392, https://doi.org/10.1002/adfm.202308392.

    48. [48]

      X. Y. Chen, J. Y. Tian, P. Li, Y. L. Fang, Y. J. Fang, X. M. Liang, J. W. Feng, J. Dong, X. P. Ai, H. X. Yang, Y. L. Cao, Adv. Energy Mater 12 (2022) 2200886, https://doi.org/10.1002/aenm.202200886. doi: 10.1002/aenm.202200886

    49. [49]

      C. C. Cai, Y. A. Chen, P. Hu, T. Zhu, X. Y. Li, Q. Yu, L. Zhou, X. Y. Yang, L. Q. Mai, Small 18 (2022) 2105303, https://doi.org/10.1002/smll.202105303. doi: 10.1002/smll.202105303

    50. [50]

      W. J. Song, Y. K. Tang, J. M. Liu, S. K. Xiao, Y. Zhang, Y. Gao, C. S. Yang, L. Liu, J. Alloys Compd. 946 (2023) 169384, https://doi.org/10.1016/j.jallcom.2023.169384. doi: 10.1016/j.jallcom.2023.169384

    51. [51]

      P. Lu, Y. Sun, H. F. Xiang, X. Liang, Y. Yu, Adv. Energy Mater 8 (2018) 1702434, https://doi.org/10.1002/aenm.201702434. doi: 10.1002/aenm.201702434

    52. [52]

      H. Chen, N. Sun, Y. X. Wang, R. A. Soomro, B. Xu, Energy Storage Mater. 56 (2023) 532, https://doi.org/10.1016/j.ensm.2023.01.042. doi: 10.1016/j.ensm.2023.01.042

    53. [53]

      F. Xie, Z. Xu, A. C. S. Jensen, H. Au, Y. X. Lu, V. Araullo-Peters, A. J. Drew, Y. S. Hu, M. M. Titirici, Adv. Funct. Mater. 29 (2019) 1901072, https://doi.org/10.1002/adfm.201901072. doi: 10.1002/adfm.201901072

    54. [54]

      M. X. Song, Z. L. Yi, R. Xu, J. P. Chen, J. Y. Cheng, Z. F. Wang, Q. L. Liu, Q. G. Guo, L. J. Xie, C. M. Chen, Energy Storage Mater. 51 (2022) 620, https://doi.org/10.1016/j.ensm.2022.07.005. doi: 10.1016/j.ensm.2022.07.005

    55. [55]

      S. F. Huang, Z. P. Li, B. Wang, J. J. Zhang, Z. Q. Peng, R. J. Qi, J. Wang, Y. F. Zhao, Adv. Funct. Mater. 28 (2018) 1706294, https://doi.org/10.1002/adfm.201706294. doi: 10.1002/adfm.201706294

  • 加载中
计量
  • PDF下载量:  0
  • 文章访问数:  10
  • HTML全文浏览量:  2
文章相关
  • 发布日期:  2025-10-15
  • 收稿日期:  2025-04-20
  • 接受日期:  2025-06-11
  • 修回日期:  2025-05-27
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章