Citation: Fengying Zhang, Yanglin Mei, Yuman Jiang, Shenshen Zheng, Kaibo Zheng, Ying Zhou. Research progress of transient absorption spectroscopy in solar energy conversion and utilization[J]. Acta Physico-Chimica Sinica, ;2025, 41(9): 100118. doi: 10.1016/j.actphy.2025.100118 shu

Research progress of transient absorption spectroscopy in solar energy conversion and utilization

  • Corresponding author: Ying Zhou, yzhou@swpu.edu.cn
  • Received Date: 24 April 2025
    Revised Date: 9 June 2025
    Accepted Date: 10 June 2025

    Fund Project: the National Key R&D Project of China 2020YFA0710000the National Natural Science Foundation of China 52325401the National Natural Science Foundation of China 22309152the National Natural Science Foundation of China 22311530118the Provincial Key Research and Development Project of Sichuan 2024YFHZ0040the High-end Foreign Experts Recruitment Program Sichuan 2025HJRC0018the International Science and Technology Cooperation Project of Chengdu 2021-GH02-00052-HZ

  • With the development of ultrafast laser technology, time-resolved spectroscopy has become an essential tool to study the microscopic photophysical mechanisms on ultrafast time scales in the field of solar energy conversion and utilization. Transient absorption spectroscopy (TAS), as an essential technology for studying photoinduced ultrafast electron transfer and photo-induced carrier dynamics, has the unique advantage of revealing key dynamic processes, such as the generation, separation, transport, and recombination of photogenerated carriers. Focusing on light-to-chemical and light-to-electrical energy conversion, this review summarizes TAS applications in two primary solar energy conversion systems: photocatalysis and solar cells. Firstly, according to the different requirements of photocatalysis (emphasizing migration for surface reactions) and solar cells (highlighting interfacial carrier separation efficiency), we summarize design strategies and recent advances for enhancing carrier utilization from three perspectives: electron manipulation, hole manipulation and surface interfacial processes. Subsequently, special attention is given to how in situ spectroscopy elucidates the influence mechanisms of microscopic energy conversion processes and device performance under complex application scenarios involving photo-electro-thermal couplings. Finally, the forward-looking development direction of basic research in solar energy conversion and utilization is summarized, which provides theoretical support for rational design and performance optimization of solar energy conversion materials, reactions, and devices.
  • 加载中
    1. [1]

      S. Yu, Y. Li, A. Jiang, Y. Chen, Y. Duan, J. Ye, Y. Zhou, Adv. Energy Mater. 14 (15) (2024) 2304362, https://doi.org/10.1002/aenm.202304362.  doi: 10.1002/aenm.202304362

    2. [2]

      W. Song, X. Zhang, W. Li, B. Li, B. Li, Chem 11 (2) (2025) 1, https://doi.org/10.1016/j.chempr.2024.10.018.  doi: 10.1016/j.chempr.2024.10.018

    3. [3]

      T. Zhang, F. Wang, H.-B. Kim, I.-W. Choi, C. Wang, E. Cho, R. Konefal, Y. Puttisong, K. Terado, L. Kobera, M.Y. Chen, M. Yang, S. Bai, B.W. Yang, J.J. Suo, S.C. Yang, X.J. Liu, F. Fu, H. Yoshida, W.M.M. Chen, J. Brus, V. Coropceanu, A. Hagfeldt, J.L. Brédas, M. Fahlman, D.S. Kim, Z.J. Hu, F. Gao, Science 377 (6605) (2022) 495, https://doi.org/10.1126/science.abo2757.  doi: 10.1126/science.abo2757

    4. [4]

      J. Wang, Z. Huang, Y. Wang, J. Wu, Z. Rao, F. Wang, Y. Zhou, Chin. Chem. Lett. 33 (10) (2022) 4687, https://doi.org/10.1016/j.cclet.2021.12.060.  doi: 10.1016/j.cclet.2021.12.060

    5. [5]

      S. Liu, J. Yuan, W. Deng, M. Luo, Y. Xie, Q. Liang, Y. Zou, Z. He, H. Wu, Y. Cao, Nat. Photonics 14 (5) (2020) 300, https://doi.org/10.1038/s41566-019-0573-5.  doi: 10.1038/s41566-019-0573-5

    6. [6]

      Q. Liang, Y. Chang, C. Liang, H. Zhu, Z. Guo, J. Liu, Acta Phys. -Chim. Sin. 39 (7) (2023) 2212006, https://doi.org/10.3866/PKU.WHXB202212006.  doi: 10.3866/PKU.WHXB202212006

    7. [7]

      Z. Wang, J. Wang, J. Zhang, K. Dai, Acta Phys. -Chim. Sin. 39 (6) (2023) 2209037, https://doi.org/10.3866/pku.Whxb202209037.  doi: 10.3866/pku.Whxb202209037

    8. [8]

      Q. Wang, K. Guo, S. Gu, W. Huang, H. Peng, W. Wu, J. Ding, Prog. Photovolt: Res. Appl. 32 (12) (2024) 889, https://doi.org/10.1002/pip.3839.  doi: 10.1002/pip.3839

    9. [9]

      P. Zhou, I. A. Navid, Y. Ma, Y. Xiao, P. Wang, Z. Ye, B. Zhou, K. Sun, Z. Mi, Nature 613 (7942) (2023) 66, https://doi.org/10.1038/s41586-022-05399-1.  doi: 10.1038/s41586-022-05399-1

    10. [10]

      D. Gunawan, J. Zhang, Q. Li, C. Y. Toe, J. Scott, M. Antonietti, J. Guo, R. Amal, Adv. Mater. 36 (42) (2024) 2404618, https://doi.org/10.1002/adma.202404618.  doi: 10.1002/adma.202404618

    11. [11]

      Z. Cai, H. Liu, J. Dai, B. Li, L. Yang, J. Wang, H. Zhu, Nat. Commun. 16 (1) (2025) 2601, https://doi.org/10.1038/s41467-025-57742-5.  doi: 10.1038/s41467-025-57742-5

    12. [12]

      Q. Li, C. Ni, J. Cui, C. Li, F. Fan, J. Am. Chem. Soc. 147 (11) (2025) 9103, https://doi.org/10.1021/jacs.4c10300.  doi: 10.1021/jacs.4c10300

    13. [13]

      A. Shu, C. Qin, M. Li, L. Zhao, Z. Shangguan, Z. Shu, X. Yuan, M. Zhu, Y. Wu, H. Wang, Energy Environ. Sci. 17 (14) (2024) 4907, https://doi.org/10.1039/D4EE01379D.  doi: 10.1039/D4EE01379D

    14. [14]

      F. Zhao, Y. Feng, Y. Wang, X. Zhang, X. Liang, Z. Li, F. Zhang, T. Wang, J. Gong, W. Feng, Nat. Commun. 11 (1) (2020) 1443, https://doi.org/10.1038/s41467-020-15262-4.  doi: 10.1038/s41467-020-15262-4

    15. [15]

      Y. Liu, Y. Zhou, M. Abdellah, W. Lin, J. Meng, Q. Zhao, S. Yu, Z. Xie, Q. Pan, F. Zhang, T. Pullerits, K.B. Zheng, Sci. China Mater. 65 (9) (2022) 2529, https://doi.org/10.1007/s40843-021-1992-3.  doi: 10.1007/s40843-021-1992-3

    16. [16]

      Y. Xu, Z. Wang, Y. Weng, J. Phys. Chem. C 128 (39) (2024) 16275, https://doi.org/10.1021/acs.jpcc.4c03688.  doi: 10.1021/acs.jpcc.4c03688

    17. [17]

      F. Wang, S. Zhang, F. Yu, Y. Liu, L. Guo, Chin. J. Chem. Eng. 74 (1) (2023) 29, https://doi.org/10.11949/0438-1157.20221120.  doi: 10.11949/0438-1157.20221120

    18. [18]

      J. Y. Xu, X. Tong, P. Yu, G. E. Wenya, T. McGrath, M. J. Fong, J. Wu, Z. M. Wang, Adv. Sci. 5 (12) (2018) 1800221, https://doi.org/10.1002/advs.201800221.  doi: 10.1002/advs.201800221

    19. [19]

      F. Zhang, Y. Jiang, J. Liu, A. Jiang, Y. Cao, S. Yu, K. Zheng, Y. Zhou, Fundam. Res. (2024), https://doi.org/10.1016/j.fmre.2024.04.003.  doi: 10.1016/j.fmre.2024.04.003

    20. [20]

      R. G. W. Norrish, G. Porter, Nature 164 (4172) (1949) 658, https://doi.org/10.1038/164658a0.  doi: 10.1038/164658a0

    21. [21]

      J. Van Houten, J. Chem. Educ. 79 (5) (2002) 548, https://doi.org/10.1021/ed079p548.  doi: 10.1021/ed079p548

    22. [22]

      A. H. Zewail, J. Phys. Chem. A 104 (24) (2000) 5660, https://doi.org/10.1021/jp001460h.  doi: 10.1021/jp001460h

    23. [23]

      P. Waleska, S. Rupp, C. Hess, J. Phys. Chem. C 122 (6) (2018) 3386, https://doi.org/10.1021/acs.jpcc.7b10518.  doi: 10.1021/acs.jpcc.7b10518

    24. [24]

      S. Tschierlei, M. Karnahl, N. Rockstroh, H. Junge, M. Beller, S. Lochbrunner, ChemPhysChem 15 (17) (2014) 3709, https://doi.org/10.1002/cphc.201402585.  doi: 10.1002/cphc.201402585

    25. [25]

      Z. Chen, Y. Hu, J. Wang, Q. Shen, Y. Zhang, C. Ding, Y. Bai, G. Jiang, Z. Li, N. Gaponik, Chem. Mater. 32 (4) (2020) 1517, https://doi.org/10.1021/acs.chemmater.9b04582.  doi: 10.1021/acs.chemmater.9b04582

    26. [26]

      X. Li, C. Wang, J. Tang, Nat. Rev. Mater. 7 (8) (2022) 617, https://doi.org/10.1038/s41578-022-00422-3.  doi: 10.1038/s41578-022-00422-3

    27. [27]

      R. Godin, Y. Wang, M. A. Zwijnenburg, J. Tang, J. R. Durrant, J. Am. Chem. Soc. 139 (14) (2017) 5216, https://doi.org/10.1021/jacs.7b01547.  doi: 10.1021/jacs.7b01547

    28. [28]

      M. Abdellah, A. M. El-Zohry, L. J. Antila, C. D. Windle, E. Reisner, L. Hammarström, J. Am. Chem. Soc. 139 (3) (2017) 1226, https://doi.org/10.1021/jacs.6b11308.  doi: 10.1021/jacs.6b11308

    29. [29]

      N. J. J. Van Hoof, S. E. T. Ter Huurne, J. G. Rivas, A. Halpin, Opt. Express 26 (24) (2018) 32118, https://doi.org/10.1364/oe.26.032118.  doi: 10.1364/oe.26.032118

    30. [30]

      Y. Hu, C. Gao, Y. Xiong, Sol. RRL 5 (6) (2021) 2000468, https://doi.org/10.1002/solr.202000468.  doi: 10.1002/solr.202000468

    31. [31]

      J. Zhang, B. Zhu, L. Zhang, J. Yu, Chem. Commun. 59 (6) (2023) 688, https://doi.org/10.1039/d2cc06300j.  doi: 10.1039/d2cc06300j

    32. [32]

      L. Zhang, J. Zhang, J. Yu, H. García, Nat. Rev. Chem. 9 (5) (2025) 328, https://doi.org/10.1038/s41570-025-00698-3.  doi: 10.1038/s41570-025-00698-3

    33. [33]

      K. Kobbekaduwa, E. Liu, Q. Zhao, J. S. Bains, J. Zhang, Y. Shi, H. Zheng, D. Li, T. Cai, O. Chen, A.M. Rao, M.C. Beard, J.M. Luther, J.B. Gao, ACS Nano 17 (14) (2023) 13997, https://doi.org/10.1021/acsnano.3c03989.  doi: 10.1021/acsnano.3c03989

    34. [34]

      G. Bao, R. Deng, D. Jin, X. Liu, Nat. Rev. Mater. 10 (1) (2025) 28, https://doi.org/10.1038/s41578-024-00704-y.  doi: 10.1038/s41578-024-00704-y

    35. [35]

      L. Sun, Z. Zhang, J. Bian, F. Bai, H. Su, Z. Li, J. Xie, R. Xu, J. Sun, L. Bai, C.L. Chen, Y. Han, J.W. Tang, L.Q. Jing, Adv. Mater. 35 (21) (2023) 2300064, https://doi.org/10.1002/adma.202300064.  doi: 10.1002/adma.202300064

    36. [36]

      M. Ghasemi, J. Lu, B. Jia, X. Wen, Chem. Soc. Rev. 54 (4) (2025) 1644, https://doi.org/10.1039/D4CS00985A.  doi: 10.1039/D4CS00985A

    37. [37]

      J. Ma, T. J. Miao, J. Tang, Chem. Soc. Rev. 51 (14) (2022) 5777, https://doi.org/10.1039/d1cs01164b.  doi: 10.1039/d1cs01164b

    38. [38]

      P. Changenet, T. Gustavsson, I. Lampre, J. Chem. Educ. 97 (12) (2020) 4482, https://doi.org/10.1021/acs.jchemed.0c01056.  doi: 10.1021/acs.jchemed.0c01056

    39. [39]

      X. Liu, P. Zeng, S. Chen, T. A. Smith, M. Liu, Laser Photonics Rev. 16 (12) (2022) 2200280, https://doi.org/10.1002/lpor.202200280.  doi: 10.1002/lpor.202200280

    40. [40]

      J. Liu, X. Chen, K. Chen, W. Tian, Y. Sheng, B. She, Y. Jiang, D. Zhang, Y. Liu, J. Qi, K. Chen, Y. Ma, Z. Qiu, C. Wang, Y. Yin, S. Zhao, J. Leng, S. Jin, W. Zhao, Y. Qin, Y. Su, X. Li, X. Li, Y. Zhou, Y. Zhou, F. Ling, A. Mei, H. Han, Science 383 (6688) (2024) 1198, https://doi.org/10.1126/science.adk9089.  doi: 10.1126/science.adk9089

    41. [41]

      S. L. Meng, C. Ye, X. B. Li, C.-H. Tung, L. Z. Wu, J. Am. Chem. Soc. 144 (36) (2022) 16219, https://doi.org/10.1021/jacs.2c02341.  doi: 10.1021/jacs.2c02341

    42. [42]

      Y. Li, S. Li, D. Chen, C. A. Kocoj, A. Yang, B. T. Diroll, P. Guo, Sci. Adv. 10 (50) (2024) eadk2778, https://doi.org/10.1126/sciadv.adk2778.  doi: 10.1126/sciadv.adk2778

    43. [43]

      W. K. Zhang, Chin. J. Chem. Phys. 29 (1) (2016) 1, https://doi.org/10.1063/1674-0068/29/cjcp1512246.  doi: 10.1063/1674-0068/29/cjcp1512246

    44. [44]

      L. J. Sun, H. W. Su, Q. Q. Liu, J. Hu, L. L. Wang, H. Tang, Rare Met. 41 (7) (2022) 2387, https://doi.org/10.1007/s12598-022-01966-7.  doi: 10.1007/s12598-022-01966-7

    45. [45]

      J. Teng, W. Li, Z. Wei, D. Hao, L. Jing, Y. Liu, H. Dai, Y. Zhu, T. Ma, J. Deng, Angew. Chem. Int. Ed. 63 (50) (2024) e202416039, https://doi.org/10.1002/anie.202416039.  doi: 10.1002/anie.202416039

    46. [46]

      Y. Wu, J. Li, W.-K. Chong, Z. Pan, Q. Wang, Chin. J. Catal. 68 (2025) 1, https://doi.org/10.1016/S1872-2067(24)60152-X.  doi: 10.1016/S1872-2067(24)60152-X

    47. [47]

      E. Gong, S. Ali, C. B. Hiragond, H. S. Kim, N. S. Powar, D. Kim, H. Kim, S.-I. In, Energy Environ. Sci. 15 (3) (2022) 880, https://doi.org/10.1039/D1EE02714J.  doi: 10.1039/D1EE02714J

    48. [48]

      H. He, W. Zhai, P. Liu, J. Wang, Mater. Today 83 (2025) 382, https://doi.org/10.1016/j.mattod.2024.12.019.  doi: 10.1016/j.mattod.2024.12.019

    49. [49]

      H. Shen, M. Yang, L. Hao, J. Wang, J. Strunk, Z. Sun, Nano Res. 15 (4) (2022) 2773, https://doi.org/10.1007/s12274-021-3725-0.  doi: 10.1007/s12274-021-3725-0

    50. [50]

      B. Sun, S. Lu, Y. Qian, X. Zhang, J. Tian, Carbon Energy 5 (3) (2023) e305, https://doi.org/10.1002/cey2.305.  doi: 10.1002/cey2.305

    51. [51]

      L. Zhang, Y. Wu, N. Tsubaki, Z. Jin, Acta Phys. -Chim. Sin. 39 (12) (2023) 2302051, https://doi.org/10.3866/PKU.WHXB202302051.  doi: 10.3866/PKU.WHXB202302051

    52. [52]

      Y. Cao, R. Guo, M. Ma, Z. Huang, Y. Zhou, Acta Phys. -Chim. Sin. 40 (1) (2024) 2303029, https://doi.org/10.3866/PKU.WHXB202303029.  doi: 10.3866/PKU.WHXB202303029

    53. [53]

      S. Lin, H. Huang, T. Ma, Y. Zhang, Adv. Sci. 8 (1) (2021) 2002458, https://doi.org/10.1002/advs.202002458.  doi: 10.1002/advs.202002458

    54. [54]

      B. Weng, M. Zhang, Y. Lin, J. Yang, J. Lv, N. Han, J. Xie, H. Jia, B. L. Su, M. Roeffaers, J. Hofkens, Y. Zhu, S. Wang, W. Choi, Y. Zheng, Nat. Rev. Clean Technol. 1 (3) (2025) 201, https://doi.org/10.1038/s44359-025-00037-1.  doi: 10.1038/s44359-025-00037-1

    55. [55]

      Y. Xu, S. Li, X. Ma, X. Liu, J. Ding, Y. Wang, Prog. Chem. 35 (4) (2023) 509, https://doi.org/10.7536/PC220939.  doi: 10.7536/PC220939

    56. [56]

      X. Gao, J. Chen, H. Che, H. B. Yang, B. Liu, Y. Ao, J. Am. Chem. Soc. 146 (44) (2024) 30455, https://doi.org/10.1021/jacs.4c11123.  doi: 10.1021/jacs.4c11123

    57. [57]

      Z. He, Y. Liu, Z. Li, S. Xu, Z. Li, J. Bian, L. Jing, Appl. Catal. B 355 (2024) 124207, https://doi.org/10.1016/j.apcatb.2024.124207.  doi: 10.1016/j.apcatb.2024.124207

    58. [58]

      D. Zeng, Y. Li, Appl. Catal. B 342 (2024) 123393, https://doi.org/10.1016/j.apcatb.2023.123393.  doi: 10.1016/j.apcatb.2023.123393

    59. [59]

      D. Zu, Y. Ying, Q. Wei, P. Xiong, M. S. Ahmed, Z. Lin, M. M.-J. Li, M. Li, Z. Xu, G. Chen, L. Bai, S. She, Y. Tsang, H. Huang, Angew. Chem. Int. Ed. 63 (31) (2024) e202405756, https://doi.org/10.1002/anie.202405756.  doi: 10.1002/anie.202405756

    60. [60]

      A. Jiang, H. Guo, S. Yu, F. Zhang, T. Shuai, Y. Ke, P. Yang, Y. Zhou, Appl. Catal. B 332 (2023) 122747, https://doi.org/10.1016/j.apcatb.2023.122747.  doi: 10.1016/j.apcatb.2023.122747

    61. [61]

      C. Du, J. Sheng, F. Zhong, Y. He, H. Liu, Y. Sun, F. Dong, Proc. Natl. Acad. Sci. 121 (9) (2024) e2315956121, https://doi.org/10.1073/pnas.2315956121.  doi: 10.1073/pnas.2315956121

    62. [62]

      Q. Zhao, M. Abdellah, Y. Cao, J. Meng, X. Zou, K. Ene-mark-Rasmussen, W. Lin, Y. Li, Y. Chen, H. Duan, Q. Pan, Y. Zhou, T. Pullerits, H. Xu, S. Canton, Y. Niu, K. Zheng, Adv. Funct. Mater. 34 (30) (2024) 2315734, https://doi.org/10.1002/adfm.202315734.  doi: 10.1002/adfm.202315734

    63. [63]

      X. Cheng, R. Guan, Z. Wu, Y. Sun, W. Che, Q. Shang, Infomat 6 (4) (2024) e12535, https://doi.org/10.1002/inf2.12535.  doi: 10.1002/inf2.12535

    64. [64]

      Y. Jiang, F. Zhang, Y. Mei, T. Li, Y. Li, K. Zheng, H. Guo, G. Yang, Y. Zhou, Small 20 (48) (2024) 2405512, https://doi.org/10.1002/smll.202405512.  doi: 10.1002/smll.202405512

    65. [65]

      Y. Li, S. Yu, Y. Cao, Y. Huang, Q. Wang, Y. Duan, L. Li, K. Zheng, Y. Zhou, J. Mater. Sci. Technol. 193 (2024) 73, https://doi.org/10.1016/j.jmst.2024.01.021.  doi: 10.1016/j.jmst.2024.01.021

    66. [66]

      P. Xia, X. Pan, S. Jiang, J. Yu, B. He, P. M. Ismail, W. Bai, J. Yang, L. Yang, H. Zhang, M. Cheng, H. Li, Q. Zhang, C. Xiao, Y. Xie, Adv. Mater. 34 (28) (2022) 2200563, https://doi.org/10.1002/adma.202200563.  doi: 10.1002/adma.202200563

    67. [67]

      J. Tian, Y. Zhang, Z. Shi, Z. Liu, Z. Zhao, J. Li, N. Li, H. Huang, Angew. Chem. Int. Ed. 64 (6) (2025) e202418496, https://doi.org/10.1002/anie.202418496.  doi: 10.1002/anie.202418496

    68. [68]

      Q. Pan, M. Abdellah, Y. Cao, W. Lin, Y. Liu, J. Meng, Q. Zhou, Q. Zhao, X. Yan, Z. Li, H. Cui, H. Cao, W. Fang, D. Tanner, M. Abdel-Hafiez, Y. Zhou, T. Pullerits, S. Canton, H. Xu, K. Zheng, Nat. Commun. 13 (1) (2022) 845, https://doi.org/10.1038/s41467-022-28409-2.  doi: 10.1038/s41467-022-28409-2

    69. [69]

      C. Choi, F. Zhao, J. L. Hart, Y. Gao, F. Menges, C. L. Rooney, N. J. Harmon, B. Shang, Z. Xu, S. Suo, Q. Sam, J. Cha, T. Lian, H. Wang, Angew. Chem. Int. Ed. 62 (23) (2023) e202302152, https://doi.org/10.1002/anie.202302152.  doi: 10.1002/anie.202302152

    70. [70]

      Y. Huang, M. Shen, H. Yan, Y. He, J. Xu, F. Zhu, X. Yang, Y. X. Ye, G. Ouyang, Nat. Commun. 15 (1) (2024) 5406, https://doi.org/10.1038/s41467-024-49373-z.  doi: 10.1038/s41467-024-49373-z

    71. [71]

      Y. Feng, S. Gong, Y. Wang, C. Ban, X. Qu, J. Ma, Y. Duan, C. Lin, D. Yu, L. Xia, X. Chen, X. Tao, L. Gan, X. Zhou, Adv. Mater. 37 (6) (2025) 2412965, https://doi.org/10.1002/adma.202412965.  doi: 10.1002/adma.202412965

    72. [72]

      C. Zhang, Z. C. Shao, X. L. Zhang, G. Q. Liu, Y. Z. Zhang, L. Wu, C. Y. Liu, Y. Pan, F. H. Su, M. R. Gao, Y. Li, S. Yu, Angew. Chem. Int. Ed. 62 (33) (2023) e202305571, https://doi.org/10.1002/anie.202305571.  doi: 10.1002/anie.202305571

    73. [73]

      R. Sun, X. Cao, J. Ma, H.-C. Chen, C. Chen, Q. Peng, Y. Li, Nat. Synth. (2025) https://doi.org/10.1038/s44160-025-00782-y.  doi: 10.1038/s44160-025-00782-y

    74. [74]

      Y. Li, S. Yu, J. Xiang, F. Zhang, A. Jiang, Y. Duan, C. Tang, Y. Cao, H. Guo, Y. Zhou, ACS Catal. 13 (12) (2023) 8281, https://doi.org/10.1021/acscatal.3c01210.  doi: 10.1021/acscatal.3c01210

    75. [75]

      Q. Zhang, S. Yuan, H. Yin, J. Yang, Z. Guan, J. Mater. Chem. A 12 (29) (2024) 18204, https://doi.org/10.1039/D4TA02620A.  doi: 10.1039/D4TA02620A

    76. [76]

      S. Yu, X. B. Fan, X. Wang, J. Li, Q. Zhang, A. Xia, S. Wei, L. Z. Wu, Y. Zhou, G. R. Patzke, Nat. Commun. 9 (1) (2018) 4009, https://doi.org/10.1038/s41467-018-06294-y.  doi: 10.1038/s41467-018-06294-y

    77. [77]

      X. B. Fan, S. Yu, X. Wang, Z. J. Li, F. Zhan, J. X. Li, Y. J. Gao, A. D. Xia, Y. Tao, X. B. Li, L. Zhang, C. Tung, L. Wu, Adv. Mater. 31 (7) (2019) 1804872, https://doi.org/10.1002/adma.201804872.  doi: 10.1002/adma.201804872

    78. [78]

      Z. Teng, Q. Zhang, H. Yang, K. Kato, W. Yang, Y. Lu, S. Liu, C. Wang, A. Yamakata, C. Su, B. Liu, T. Ohno, Nat. Catal. 4 (5) (2021) 374, https://doi.org/10.1038/s41929-021-00605-1.  doi: 10.1038/s41929-021-00605-1

    79. [79]

      W. Kang, R. Wei, H. Yin, D. Li, Z. Chen, Q. Huang, P. Zhang, H. Jing, X. Wang, C. Li, J. Am. Chem. Soc. 145 (6) (2023) 3470, https://doi.org/10.1021/jacs.2c11508.  doi: 10.1021/jacs.2c11508

    80. [80]

      K. Wu, H. Zhu, Z. Liu, W. Rodríguez-Córdoba, T. Lian, J. Am. Chem. Soc. 134 (25) (2012) 10337, https://doi.org/10.1021/ja303306u.  doi: 10.1021/ja303306u

    81. [81]

      F. Xu, Y. He, J. Zhang, G. Liang, C. Liu, J. Yu, Angew. Chem. Int. Ed. 64 (2) (2025) e202414672, https://doi.org/10.1002/anie.202414672.  doi: 10.1002/anie.202414672

    82. [82]

      X. Wang, H. Zhang, Y. Huang, L. Gao, Y. Zhang, J. Meng, Y. Liao, B. Zong, W. Dai, H. Li, Adv. Funct. Mater. (2025) 2421847, https://doi.org/10.1002/adfm.202421847.  doi: 10.1002/adfm.202421847

    83. [83]

      Y. Ou, B. Wang, N. Xu, Q. Song, T. Liu, H. Xu, F. Wang, S. Li, Y. Wang, Adv. Mater. 36 (30) (2024) 2403215, https://doi.org/10.1002/adma.202403215.  doi: 10.1002/adma.202403215

    84. [84]

      Y. Cao, W. Yu, Y. Li, J. Meng, K. Zheng, C. Huang, X. Yang, Y. Yang, F. Dong, Y. Zhou, Adv. Energy Mater. 15 (6) (2025) 2404871, https://doi.org/10.1002/aenm.202404871.  doi: 10.1002/aenm.202404871

    85. [85]

      M. Dan, S. Yu, W. Lin, M. Abdellah, Z. Guo, Z. Q. Liu, T. Pullerits, K. Zheng, Y. Zhou, Adv. Mater. 37 (4) (2025) 2415138, https://doi.org/10.1002/adma.202415138.  doi: 10.1002/adma.202415138

    86. [86]

      H. Huang, Y. Yang, B. Liu, Z. Lan, M. Wang, H. Yan, S. Qu, F. Yang, Q. Zhang, P. Cui, M. Li, Small 21 (12) (2025) 2412129, https://doi.org/10.1002/smll.202412129.  doi: 10.1002/smll.202412129

    87. [87]

      M. Calik, F. Auras, L. M. Salonen, K. Bader, I. Grill, M. Handloser, D. D. Medina, M. Dogru, F. Löbermann, D. Trauner, A. Hartschuh, T. Bein, J. Am. Chem. Soc. 136 (51) (2014) 17802, https://doi.org/10.1021/ja509551m.  doi: 10.1021/ja509551m

    88. [88]

      O. Voznyy, B. R. Sutherland, A. H. Ip, D. Zhitomirsky, E. H. Sargent, Nat. Rev. Mater. 2 (6) (2017) 17026, https://doi.org/10.1038/natrevmats.2017.26.  doi: 10.1038/natrevmats.2017.26

    89. [89]

      H. Ohkita, S. Cook, Y. Astuti, W. Duffy, S. Tierney, W. Zhang, M. Heeney, I. McCulloch, J. Nelson, D. D. C. Bradley, J. Durrant, J. Am. Chem. Soc. 130 (10) (2008) 3030, https://doi.org/10.1021/ja076568q.  doi: 10.1021/ja076568q

    90. [90]

      J. Behrends, A. Sperlich, A. Schnegg, T. Biskup, C. Teutloff, K. Lips, V. Dyakonov, R. Bittl, Phys. Rev. B 85 (12) (2012) 125206, https://doi.org/10.1103/PhysRevB.85.125206.  doi: 10.1103/PhysRevB.85.125206

    91. [91]

      Y. Kobori, R. Noji, S. Tsuganezawa, J. Phys. Chem. C 117 (4) (2013) 1589, https://doi.org/10.1021/jp309421s.  doi: 10.1021/jp309421s

    92. [92]

      J. Tao, C. Zhao, Z. Wang, Y. Chen, L. Zang, G. Yang, Y. Bai, J. Chu, Energy Environ. Sci. 18 (2) (2025) 509, https://doi.org/10.1039/D4EE02917H.  doi: 10.1039/D4EE02917H

    93. [93]

      R. Zeng, M. Zhang, X. Wang, L. Zhu, B. Hao, W. Zhong, G. Zhou, J. Deng, S. Tan, J. Zhuang, F. Han, A. Zhang, Z. Zhou, X. Xue, S. Xu, J. Xu, Y. Liu, H. Lu, X. Wu, C. Wang, Z. Fink, T. Russell, H. Jing, Y. Zhang, Z. Bo, F. Liu, Nat. Energy 9 (9) (2024) 1117, https://doi.org/10.1038/s41560-024-01564-0.  doi: 10.1038/s41560-024-01564-0

    94. [94]

      M. Li, B. Jiao, Y. Peng, J. Zhou, L. Tan, N. Ren, Y. Ye, Y. Liu, Y. Yang, Y. Chen, L. Ding, C. Yi, Adv. Mater. 36 (38) (2024) 2406532, https://doi.org/10.1002/adma.202406532.  doi: 10.1002/adma.202406532

    95. [95]

      C. Qiu, X. Lin, Y. Wang, G. Feng, C. Ling, J. Liu, J. Du, X. Xiao, X. Wang, P. Zeng, M. Liu, W. Liang, Y. Hu, H. Han, Adv. Energy Mater. 12 (47) (2022) 2202813, https://doi.org/10.1002/aenm.202202813.  doi: 10.1002/aenm.202202813

    96. [96]

      W. Lin, S. E. Canton, K. Zheng, T. Pullerits, ACS Energy Lett. 9 (1) (2024) 298, https://doi.org/10.1021/acsenergylett.3c02359.  doi: 10.1021/acsenergylett.3c02359

    97. [97]

      C. Luo, F. Gao, X. Wang, C. Zhan, X. Zhang, G. Zheng, X. Zhang, X. Gao, Z. He, Q. Zhao, Sci. Adv. 10 (39) (2024) eadp0790, https://doi.org/10.1126/sciadv.adp0790.  doi: 10.1126/sciadv.adp0790

    98. [98]

      Z. Huang, J. Meng, F. Huang, B. Yu, J. Wang, Y. Yang, J. Ning, K. Zheng, J. Tian, Sci. China Mater. 67 (1) (2024) 134, https://doi.org/10.1007/s40843-023-2690-3.  doi: 10.1007/s40843-023-2690-3

    99. [99]

      Q. A. Alsulami, B. Murali, Y. Alsinan, M. R. Parida, S. M. Aly, O. F. Mohammed, Adv. Energy Mater. 6 (11) (2016) 1502356, https://doi.org/10.1002/aenm.201502356.  doi: 10.1002/aenm.201502356

    100. [100]

      T. D. Raju, V. Murugadoss, K. A. Nirmal, T. D. Dongale, A. V. Kesavan, T. G. Kim, Adv. Powder Mater. 4 (2) (2025) 100275, https://doi.org/10.1016/j.apmate.2025.100275.  doi: 10.1016/j.apmate.2025.100275

    101. [101]

      X. Sun, C. Zhang, D. Gao, S. Zhang, B. Li, J. Gong, S. Li, S. Xiao, Z. Zhu, Z. A. Li, Adv. Funct. Mater. 34 (25) (2024) 2315157, https://doi.org/10.1002/adfm.202315157.  doi: 10.1002/adfm.202315157

    102. [102]

      P. Zhang, C. Zhu, W. Su, S. Wang, Z. Xu, S. Wang, M. Qi, X. Bao, F. Kang, T. Hao, Q. Chen, Y. Bai, X. Liu, G. Tang, W. Zhang, Adv. Funct. Mater. (2025) 2422783, https://doi.org/10.1002/adfm.202422783.  doi: 10.1002/adfm.202422783

    103. [103]

      M. Deng, X. Xu, W. Qiu, Y. Duan, R. Li, L. Yu, Q. Peng, Angew. Chem. Int. Ed. 63 (35) (2024) e202405243, https://doi.org/10.1002/anie.202405243.  doi: 10.1002/anie.202405243

    104. [104]

      J. Xie, W. Lin, K. Zheng, Z. Liang, Adv. Sci. 11 (31) (2024) 2404135, https://doi.org/10.1002/advs.202404135.  doi: 10.1002/advs.202404135

    105. [105]

      Q. Li, Y. Jiao, Y. Tang, J. Zhou, B. Wu, B. Jiang, H. Fu, J. Am. Chem. Soc. 145 (38) (2023) 20837, https://doi.org/10.1021/jacs.3c05234.  doi: 10.1021/jacs.3c05234

    106. [106]

      S. Liang, Z. Tang, S. Li, X. Guo, S. Jia, X. W. Sun, Adv. Opt. Mater. (2025) 2500034, https://doi.org/10.1002/adom.202500034.  doi: 10.1002/adom.202500034

    107. [107]

      Q. Jiang, X. Yuan, Y. Li, Y. Luo, J. Zhu, F. Zhao, Y. Zhang, W. Wei, H. Feng, H. Li, J. Wu, Z. Ma, Z. Tang, F. Huang, Y. Cao, C. Duan, Angew. Chem. Int. Ed. (2025) e202416883, https://doi.org/10.1002/anie.202416883.  doi: 10.1002/anie.202416883

    108. [108]

      X. Liu, Y. Yan, A. Honarfar, Y. Yao, K. Zheng, Z. Liang, Adv. Sci. 6 (8) (2019) 1802103, https://doi.org/10.1002/advs.201802103.  doi: 10.1002/advs.201802103

    109. [109]

      Z. Wang, J. Ji, W. Lin, Y. Yao, K. Zheng, Z. Liang, Adv. Funct. Mater. 30 (31) (2020) 2001564, https://doi.org/10.1002/adfm.202001564.  doi: 10.1002/adfm.202001564

    110. [110]

      T. Li, K. Wang, G. Cai, Y. Li, H. Liu, Y. Jia, Z. Zhang, X. Lu, Y. Yang, Y. Lin, JACS Au 1 (10) (2021) 1733, https://doi.org/10.1021/jacsau.1c00306.  doi: 10.1021/jacsau.1c00306

    111. [111]

      Y. Hu, F. Zhan, Q. Wang, Y. Sun, C. Yu, X. Zhao, H. Wang, R. Long, G. Zhang, C. Gao, W. Zhang, J. Jiang, Y. Tao, Y. Xiong, J. Am. Chem. Soc. 142 (12) (2020) 5618, https://doi.org/10.1021/jacs.9b12443.  doi: 10.1021/jacs.9b12443

    112. [112]

      T.-H. Lai, K.-i. Katsumata, Y.-J. Hsu, Nanophotonics 10 (2) (2021) 777, https://doi.org/10.1515/nanoph-2020-0472.  doi: 10.1515/nanoph-2020-0472

    113. [113]

      A. J. Cowan, J. Tang, W. Leng, J. R. Durrant, D. R. Klug, J. Phys. Chem. C 114 (9) (2010) 4208, https://doi.org/10.1021/jp909993w.  doi: 10.1021/jp909993w

    114. [114]

      A. Honarfar, H. Mourad, W. Lin, A. Polukeev, A. Rahaman, M. Abdellah, P. Chábera, G. Pankratova, L. Gorton, K. Zheng, et al., ACS Appl. Energy Mater. 3 (12) (2020) 12525, https://doi.org/10.1021/acsaem.0c02478.  doi: 10.1021/acsaem.0c02478

    115. [115]

      A. Honarfar, P. Chabera, W. Lin, J. Meng, H. Mourad, G. Pankratova, L. Gorton, K. Zheng, T. Pullerits, J. Phys. Chem. C 125 (26) (2021) 14332, https://doi.org/10.1021/acs.jpcc.1c02729.  doi: 10.1021/acs.jpcc.1c02729

    116. [116]

      S. Selim, E. Pastor, M. García-Tecedor, M. R. Morris, L. Francàs, M. Sachs, B. Moss, S. Corby, C. A. Mesa, S. Gimenez, A. Kafizas, A. Bakulin, J. Durrantt, J. Am. Chem. Soc. 141 (47) (2019) 18791, https://doi.org/10.1021/jacs.9b09056.  doi: 10.1021/jacs.9b09056

    117. [117]

      S. Selim, L. Francàs, M. García-Tecedor, S. Corby, C. Blackman, S. Gimenez, J. R. Durrant, A. Kafizas, Chem. Sci. 10 (9) (2019) 2643, https://doi.org/10.1039/C8SC04679D.  doi: 10.1039/C8SC04679D

    118. [118]

      J. Ji, J. Xie, J. Tang, K. Zheng, Z. Liang, Sol. RRL 5 (5) (2021) 2100142, https://doi.org/10.1002/solr.202100142.  doi: 10.1002/solr.202100142

    119. [119]

      S. Garcia-Orrit, V. Vega-Mayoral, Q. Chen, G. Serra, M. Guizzardi, V. Romano, S. Dal Conte, G. Cerullo, L. Di Mario, M. Kot, M. Loi, A. Narita, K. Müllen, M. Tommasini, J. Cabanillas-González, J. Phys. Chem. Lett. 15 (41) (2024) 10366, https://doi.org/10.1021/acs.jpclett.4c02712.  doi: 10.1021/acs.jpclett.4c02712

    120. [120]

      D. Li, Y. Li, H. Li, X. Wu, Q. Yu, Y. Weng, Rev. Sci. Instrum. 86 (5) (2015) 053105, https://doi.org/10.1063/1.4921473.  doi: 10.1063/1.4921473

  • 加载中
    1. [1]

      Yixuan Gao Lingxing Zan Wenlin Zhang Qingbo Wei . Comprehensive Innovation Experiment: Preparation and Characterization of Carbon-based Perovskite Solar Cells. University Chemistry, 2024, 39(4): 178-183. doi: 10.3866/PKU.DXHX202311091

    2. [2]

      Yuanyin Cui Jinfeng Zhang Hailiang Chu Lixian Sun Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-. doi: 10.3866/PKU.WHXB202405016

    3. [3]

      Jizhou Liu Chenbin Ai Chenrui Hu Bei Cheng Jianjun Zhang . 六氯锡酸铵促进钙钛矿太阳能电池界面电子转移及其飞秒瞬态吸收光谱研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2402006-. doi: 10.3866/PKU.WHXB202402006

    4. [4]

      Xuejiao Wang Suiying Dong Kezhen Qi Vadim Popkov Xianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-. doi: 10.3866/PKU.WHXB202408005

    5. [5]

      Zhiquan Zhang Baker Rhimi Zheyang Liu Min Zhou Guowei Deng Wei Wei Liang Mao Huaming Li Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029

    6. [6]

      Qin Li Huihui Zhang Huajun Gu Yuanyuan Cui Ruihua Gao Wei-Lin DaiIn situ Growth of Cd0.5Zn0.5S Nanorods on Ti3C2 MXene Nanosheet for Efficient Visible-Light-Driven Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2025, 41(4): 100031-. doi: 10.3866/PKU.WHXB202402016

    7. [7]

      Hui Wang Abdelkader Labidi Menghan Ren Feroz Shaik Chuanyi Wang . 微观结构调控的g-C3N4在光催化NO转化中的最新进展:吸附/活化位点的关键作用. Acta Physico-Chimica Sinica, 2025, 41(5): 100039-. doi: 10.1016/j.actphy.2024.100039

    8. [8]

      Yuchen ZhouHuanmin LiuHongxing LiXinyu SongYonghua TangPeng Zhou . Designing thermodynamically stable noble metal single-atom photocatalysts for highly efficient non-oxidative conversion of ethanol into high-purity hydrogen and value-added acetaldehyde. Acta Physico-Chimica Sinica, 2025, 41(6): 100067-0. doi: 10.1016/j.actphy.2025.100067

    9. [9]

      Rui Li Huan Liu Yinan Jiao Shengjian Qin Jie Meng Jiayu Song Rongrong Yan Hang Su Hengbin Chen Zixuan Shang Jinjin Zhao . 卤化物钙钛矿的单双向离子迁移. Acta Physico-Chimica Sinica, 2024, 40(11): 2311011-. doi: 10.3866/PKU.WHXB202311011

    10. [10]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    11. [11]

      Pengyu Dong Yue Jiang Zhengchi Yang Licheng Liu Gu Li Xinyang Wen Zhen Wang Xinbo Shi Guofu Zhou Jun-Ming Liu Jinwei Gao . NbSe2纳米片优化钙钛矿太阳能电池的埋底界面. Acta Physico-Chimica Sinica, 2025, 41(3): 2407025-. doi: 10.3866/PKU.WHXB202407025

    12. [12]

      Nengmin ZHUWenhao ZHUXiaoyao YINSongzhi ZHENGHao LIZeyuan WANGWenhao WEIXuanheng CHENWeihai SUN . Preparation of high-performance CsPbBr3 perovskite solar cells by the aqueous solution solvent method. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1131-1140. doi: 10.11862/CJIC.20240419

    13. [13]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    14. [14]

      Jianyin He Liuyun Chen Xinling Xie Zuzeng Qin Hongbing Ji Tongming Su . ZnCoP/CdLa2S4肖特基异质结的构建促进光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2404030-. doi: 10.3866/PKU.WHXB202404030

    15. [15]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    16. [16]

      Zijian Jiang Yuang Liu Yijian Zong Yong Fan Wanchun Zhu Yupeng Guo . Preparation of Nano Zinc Oxide by Microemulsion Method and Study on Its Photocatalytic Activity. University Chemistry, 2024, 39(5): 266-273. doi: 10.3866/PKU.DXHX202311101

    17. [17]

      Xia ZHANGYushi BAIXi CHANGHan ZHANGHaoyu ZHANGLiman PENGShushu HUANG . Preparation and photocatalytic degradation performance of rhodamine B of BiOCl/polyaniline. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 913-922. doi: 10.11862/CJIC.20240255

    18. [18]

      Yifan ZHAOQiyun MAOMeijing GUOGuoying ZHANGTongliang HU . Z-scheme bismuth-based multi-site heterojunction: Synthesis and hydrogen production from photocatalytic hydrogen production. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1318-1330. doi: 10.11862/CJIC.20250001

    19. [19]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    20. [20]

      Jingyu Cai Xiaoyu Miao Yulai Zhao Longqiang Xiao . Exploratory Teaching Experiment Design of FeOOH-RGO Aerogel for Photocatalytic Benzene to Phenol. University Chemistry, 2024, 39(4): 169-177. doi: 10.3866/PKU.DXHX202311028

Metrics
  • PDF Downloads(0)
  • Abstract views(12)
  • HTML views(6)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return