瞬态吸收光谱在太阳能转化利用中的研究进展

张凤英 梅杨林 蒋毓蔓 郑申申 郑凯波 周莹

引用本文: 张凤英, 梅杨林, 蒋毓蔓, 郑申申, 郑凯波, 周莹. 瞬态吸收光谱在太阳能转化利用中的研究进展[J]. 物理化学学报, 2025, 41(9): 100118. doi: 10.1016/j.actphy.2025.100118 shu
Citation:  Fengying Zhang, Yanglin Mei, Yuman Jiang, Shenshen Zheng, Kaibo Zheng, Ying Zhou. Research progress of transient absorption spectroscopy in solar energy conversion and utilization[J]. Acta Physico-Chimica Sinica, 2025, 41(9): 100118. doi: 10.1016/j.actphy.2025.100118 shu

瞬态吸收光谱在太阳能转化利用中的研究进展

    通讯作者: 周莹, yzhou@swpu.edu.cn
  • 基金项目:

    国家重点研发项目 2020YFA0710000

    国家自然科学基金项目 52325401

    国家自然科学基金项目 22309152

    国家自然科学基金项目 22311530118

    四川省重点研发项目 2024YFHZ0040

    四川省高端外国专家引进计划项目 2025HJRC0018

    成都市国际科技合作项目 2021-GH02-00052-HZ

摘要: 随着超快激光技术的不断发展,时间分辨光谱技术已成为研究太阳能转化与利用领域中超快时间尺度下微观光物理机制的重要工具。瞬态吸收光谱(Transient Absorption Spectroscopy, TAS)作为研究光诱导超快电子转移与载流子动力学过程的重要技术,具有揭示光生载流子产生、分离、传输及复合等关键动力学过程的独特优势。本文围绕光-化学能转换和光-电能转换,概述了TAS技术在光催化和太阳能电池两大主要太阳能转化与利用领域的应用。首先,根据光催化(侧重载流子迁移参与表面反应)与太阳能电池(强调载流子界面分离效率)对载流子的不同需求,分别从电子调控、空穴调控和表界面过程三个方面概括了促进载流子迁移利用的设计策略与研究进展。然后,特别关注了原位光谱在光-电-热等复杂应用条件下对能源转换微观过程及性能的影响机制。最后,总结了对太阳能转化与利用领域基础研究的前瞻性发展方向,为太阳能转化材料、反应、器件的理性设计与性能优化提供理论支持。

English

    1. [1]

      S. Yu, Y. Li, A. Jiang, Y. Chen, Y. Duan, J. Ye, Y. Zhou, Adv. Energy Mater. 14 (15) (2024) 2304362, https://doi.org/10.1002/aenm.202304362. doi: 10.1002/aenm.202304362

    2. [2]

      W. Song, X. Zhang, W. Li, B. Li, B. Li, Chem 11 (2) (2025) 1, https://doi.org/10.1016/j.chempr.2024.10.018. doi: 10.1016/j.chempr.2024.10.018

    3. [3]

      T. Zhang, F. Wang, H.-B. Kim, I.-W. Choi, C. Wang, E. Cho, R. Konefal, Y. Puttisong, K. Terado, L. Kobera, M.Y. Chen, M. Yang, S. Bai, B.W. Yang, J.J. Suo, S.C. Yang, X.J. Liu, F. Fu, H. Yoshida, W.M.M. Chen, J. Brus, V. Coropceanu, A. Hagfeldt, J.L. Brédas, M. Fahlman, D.S. Kim, Z.J. Hu, F. Gao, Science 377 (6605) (2022) 495, https://doi.org/10.1126/science.abo2757. doi: 10.1126/science.abo2757

    4. [4]

      J. Wang, Z. Huang, Y. Wang, J. Wu, Z. Rao, F. Wang, Y. Zhou, Chin. Chem. Lett. 33 (10) (2022) 4687, https://doi.org/10.1016/j.cclet.2021.12.060. doi: 10.1016/j.cclet.2021.12.060

    5. [5]

      S. Liu, J. Yuan, W. Deng, M. Luo, Y. Xie, Q. Liang, Y. Zou, Z. He, H. Wu, Y. Cao, Nat. Photonics 14 (5) (2020) 300, https://doi.org/10.1038/s41566-019-0573-5. doi: 10.1038/s41566-019-0573-5

    6. [6]

      Q. Liang, Y. Chang, C. Liang, H. Zhu, Z. Guo, J. Liu, Acta Phys. -Chim. Sin. 39 (7) (2023) 2212006, https://doi.org/10.3866/PKU.WHXB202212006. doi: 10.3866/PKU.WHXB202212006

    7. [7]

      Z. Wang, J. Wang, J. Zhang, K. Dai, Acta Phys. -Chim. Sin. 39 (6) (2023) 2209037, https://doi.org/10.3866/pku.Whxb202209037. doi: 10.3866/pku.Whxb202209037

    8. [8]

      Q. Wang, K. Guo, S. Gu, W. Huang, H. Peng, W. Wu, J. Ding, Prog. Photovolt: Res. Appl. 32 (12) (2024) 889, https://doi.org/10.1002/pip.3839. doi: 10.1002/pip.3839

    9. [9]

      P. Zhou, I. A. Navid, Y. Ma, Y. Xiao, P. Wang, Z. Ye, B. Zhou, K. Sun, Z. Mi, Nature 613 (7942) (2023) 66, https://doi.org/10.1038/s41586-022-05399-1. doi: 10.1038/s41586-022-05399-1

    10. [10]

      D. Gunawan, J. Zhang, Q. Li, C. Y. Toe, J. Scott, M. Antonietti, J. Guo, R. Amal, Adv. Mater. 36 (42) (2024) 2404618, https://doi.org/10.1002/adma.202404618. doi: 10.1002/adma.202404618

    11. [11]

      Z. Cai, H. Liu, J. Dai, B. Li, L. Yang, J. Wang, H. Zhu, Nat. Commun. 16 (1) (2025) 2601, https://doi.org/10.1038/s41467-025-57742-5. doi: 10.1038/s41467-025-57742-5

    12. [12]

      Q. Li, C. Ni, J. Cui, C. Li, F. Fan, J. Am. Chem. Soc. 147 (11) (2025) 9103, https://doi.org/10.1021/jacs.4c10300. doi: 10.1021/jacs.4c10300

    13. [13]

      A. Shu, C. Qin, M. Li, L. Zhao, Z. Shangguan, Z. Shu, X. Yuan, M. Zhu, Y. Wu, H. Wang, Energy Environ. Sci. 17 (14) (2024) 4907, https://doi.org/10.1039/D4EE01379D. doi: 10.1039/D4EE01379D

    14. [14]

      F. Zhao, Y. Feng, Y. Wang, X. Zhang, X. Liang, Z. Li, F. Zhang, T. Wang, J. Gong, W. Feng, Nat. Commun. 11 (1) (2020) 1443, https://doi.org/10.1038/s41467-020-15262-4. doi: 10.1038/s41467-020-15262-4

    15. [15]

      Y. Liu, Y. Zhou, M. Abdellah, W. Lin, J. Meng, Q. Zhao, S. Yu, Z. Xie, Q. Pan, F. Zhang, T. Pullerits, K.B. Zheng, Sci. China Mater. 65 (9) (2022) 2529, https://doi.org/10.1007/s40843-021-1992-3. doi: 10.1007/s40843-021-1992-3

    16. [16]

      Y. Xu, Z. Wang, Y. Weng, J. Phys. Chem. C 128 (39) (2024) 16275, https://doi.org/10.1021/acs.jpcc.4c03688. doi: 10.1021/acs.jpcc.4c03688

    17. [17]

      F. Wang, S. Zhang, F. Yu, Y. Liu, L. Guo, Chin. J. Chem. Eng. 74 (1) (2023) 29, https://doi.org/10.11949/0438-1157.20221120. doi: 10.11949/0438-1157.20221120

    18. [18]

      J. Y. Xu, X. Tong, P. Yu, G. E. Wenya, T. McGrath, M. J. Fong, J. Wu, Z. M. Wang, Adv. Sci. 5 (12) (2018) 1800221, https://doi.org/10.1002/advs.201800221. doi: 10.1002/advs.201800221

    19. [19]

      F. Zhang, Y. Jiang, J. Liu, A. Jiang, Y. Cao, S. Yu, K. Zheng, Y. Zhou, Fundam. Res. (2024), https://doi.org/10.1016/j.fmre.2024.04.003. doi: 10.1016/j.fmre.2024.04.003

    20. [20]

      R. G. W. Norrish, G. Porter, Nature 164 (4172) (1949) 658, https://doi.org/10.1038/164658a0. doi: 10.1038/164658a0

    21. [21]

      J. Van Houten, J. Chem. Educ. 79 (5) (2002) 548, https://doi.org/10.1021/ed079p548. doi: 10.1021/ed079p548

    22. [22]

      A. H. Zewail, J. Phys. Chem. A 104 (24) (2000) 5660, https://doi.org/10.1021/jp001460h. doi: 10.1021/jp001460h

    23. [23]

      P. Waleska, S. Rupp, C. Hess, J. Phys. Chem. C 122 (6) (2018) 3386, https://doi.org/10.1021/acs.jpcc.7b10518. doi: 10.1021/acs.jpcc.7b10518

    24. [24]

      S. Tschierlei, M. Karnahl, N. Rockstroh, H. Junge, M. Beller, S. Lochbrunner, ChemPhysChem 15 (17) (2014) 3709, https://doi.org/10.1002/cphc.201402585. doi: 10.1002/cphc.201402585

    25. [25]

      Z. Chen, Y. Hu, J. Wang, Q. Shen, Y. Zhang, C. Ding, Y. Bai, G. Jiang, Z. Li, N. Gaponik, Chem. Mater. 32 (4) (2020) 1517, https://doi.org/10.1021/acs.chemmater.9b04582. doi: 10.1021/acs.chemmater.9b04582

    26. [26]

      X. Li, C. Wang, J. Tang, Nat. Rev. Mater. 7 (8) (2022) 617, https://doi.org/10.1038/s41578-022-00422-3. doi: 10.1038/s41578-022-00422-3

    27. [27]

      R. Godin, Y. Wang, M. A. Zwijnenburg, J. Tang, J. R. Durrant, J. Am. Chem. Soc. 139 (14) (2017) 5216, https://doi.org/10.1021/jacs.7b01547. doi: 10.1021/jacs.7b01547

    28. [28]

      M. Abdellah, A. M. El-Zohry, L. J. Antila, C. D. Windle, E. Reisner, L. Hammarström, J. Am. Chem. Soc. 139 (3) (2017) 1226, https://doi.org/10.1021/jacs.6b11308. doi: 10.1021/jacs.6b11308

    29. [29]

      N. J. J. Van Hoof, S. E. T. Ter Huurne, J. G. Rivas, A. Halpin, Opt. Express 26 (24) (2018) 32118, https://doi.org/10.1364/oe.26.032118. doi: 10.1364/oe.26.032118

    30. [30]

      Y. Hu, C. Gao, Y. Xiong, Sol. RRL 5 (6) (2021) 2000468, https://doi.org/10.1002/solr.202000468. doi: 10.1002/solr.202000468

    31. [31]

      J. Zhang, B. Zhu, L. Zhang, J. Yu, Chem. Commun. 59 (6) (2023) 688, https://doi.org/10.1039/d2cc06300j. doi: 10.1039/d2cc06300j

    32. [32]

      L. Zhang, J. Zhang, J. Yu, H. García, Nat. Rev. Chem. 9 (5) (2025) 328, https://doi.org/10.1038/s41570-025-00698-3. doi: 10.1038/s41570-025-00698-3

    33. [33]

      K. Kobbekaduwa, E. Liu, Q. Zhao, J. S. Bains, J. Zhang, Y. Shi, H. Zheng, D. Li, T. Cai, O. Chen, A.M. Rao, M.C. Beard, J.M. Luther, J.B. Gao, ACS Nano 17 (14) (2023) 13997, https://doi.org/10.1021/acsnano.3c03989. doi: 10.1021/acsnano.3c03989

    34. [34]

      G. Bao, R. Deng, D. Jin, X. Liu, Nat. Rev. Mater. 10 (1) (2025) 28, https://doi.org/10.1038/s41578-024-00704-y. doi: 10.1038/s41578-024-00704-y

    35. [35]

      L. Sun, Z. Zhang, J. Bian, F. Bai, H. Su, Z. Li, J. Xie, R. Xu, J. Sun, L. Bai, C.L. Chen, Y. Han, J.W. Tang, L.Q. Jing, Adv. Mater. 35 (21) (2023) 2300064, https://doi.org/10.1002/adma.202300064. doi: 10.1002/adma.202300064

    36. [36]

      M. Ghasemi, J. Lu, B. Jia, X. Wen, Chem. Soc. Rev. 54 (4) (2025) 1644, https://doi.org/10.1039/D4CS00985A. doi: 10.1039/D4CS00985A

    37. [37]

      J. Ma, T. J. Miao, J. Tang, Chem. Soc. Rev. 51 (14) (2022) 5777, https://doi.org/10.1039/d1cs01164b. doi: 10.1039/d1cs01164b

    38. [38]

      P. Changenet, T. Gustavsson, I. Lampre, J. Chem. Educ. 97 (12) (2020) 4482, https://doi.org/10.1021/acs.jchemed.0c01056. doi: 10.1021/acs.jchemed.0c01056

    39. [39]

      X. Liu, P. Zeng, S. Chen, T. A. Smith, M. Liu, Laser Photonics Rev. 16 (12) (2022) 2200280, https://doi.org/10.1002/lpor.202200280. doi: 10.1002/lpor.202200280

    40. [40]

      J. Liu, X. Chen, K. Chen, W. Tian, Y. Sheng, B. She, Y. Jiang, D. Zhang, Y. Liu, J. Qi, K. Chen, Y. Ma, Z. Qiu, C. Wang, Y. Yin, S. Zhao, J. Leng, S. Jin, W. Zhao, Y. Qin, Y. Su, X. Li, X. Li, Y. Zhou, Y. Zhou, F. Ling, A. Mei, H. Han, Science 383 (6688) (2024) 1198, https://doi.org/10.1126/science.adk9089. doi: 10.1126/science.adk9089

    41. [41]

      S. L. Meng, C. Ye, X. B. Li, C.-H. Tung, L. Z. Wu, J. Am. Chem. Soc. 144 (36) (2022) 16219, https://doi.org/10.1021/jacs.2c02341. doi: 10.1021/jacs.2c02341

    42. [42]

      Y. Li, S. Li, D. Chen, C. A. Kocoj, A. Yang, B. T. Diroll, P. Guo, Sci. Adv. 10 (50) (2024) eadk2778, https://doi.org/10.1126/sciadv.adk2778. doi: 10.1126/sciadv.adk2778

    43. [43]

      W. K. Zhang, Chin. J. Chem. Phys. 29 (1) (2016) 1, https://doi.org/10.1063/1674-0068/29/cjcp1512246. doi: 10.1063/1674-0068/29/cjcp1512246

    44. [44]

      L. J. Sun, H. W. Su, Q. Q. Liu, J. Hu, L. L. Wang, H. Tang, Rare Met. 41 (7) (2022) 2387, https://doi.org/10.1007/s12598-022-01966-7. doi: 10.1007/s12598-022-01966-7

    45. [45]

      J. Teng, W. Li, Z. Wei, D. Hao, L. Jing, Y. Liu, H. Dai, Y. Zhu, T. Ma, J. Deng, Angew. Chem. Int. Ed. 63 (50) (2024) e202416039, https://doi.org/10.1002/anie.202416039. doi: 10.1002/anie.202416039

    46. [46]

      Y. Wu, J. Li, W.-K. Chong, Z. Pan, Q. Wang, Chin. J. Catal. 68 (2025) 1, https://doi.org/10.1016/S1872-2067(24)60152-X. doi: 10.1016/S1872-2067(24)60152-X

    47. [47]

      E. Gong, S. Ali, C. B. Hiragond, H. S. Kim, N. S. Powar, D. Kim, H. Kim, S.-I. In, Energy Environ. Sci. 15 (3) (2022) 880, https://doi.org/10.1039/D1EE02714J. doi: 10.1039/D1EE02714J

    48. [48]

      H. He, W. Zhai, P. Liu, J. Wang, Mater. Today 83 (2025) 382, https://doi.org/10.1016/j.mattod.2024.12.019. doi: 10.1016/j.mattod.2024.12.019

    49. [49]

      H. Shen, M. Yang, L. Hao, J. Wang, J. Strunk, Z. Sun, Nano Res. 15 (4) (2022) 2773, https://doi.org/10.1007/s12274-021-3725-0. doi: 10.1007/s12274-021-3725-0

    50. [50]

      B. Sun, S. Lu, Y. Qian, X. Zhang, J. Tian, Carbon Energy 5 (3) (2023) e305, https://doi.org/10.1002/cey2.305. doi: 10.1002/cey2.305

    51. [51]

      L. Zhang, Y. Wu, N. Tsubaki, Z. Jin, Acta Phys. -Chim. Sin. 39 (12) (2023) 2302051, https://doi.org/10.3866/PKU.WHXB202302051. doi: 10.3866/PKU.WHXB202302051

    52. [52]

      Y. Cao, R. Guo, M. Ma, Z. Huang, Y. Zhou, Acta Phys. -Chim. Sin. 40 (1) (2024) 2303029, https://doi.org/10.3866/PKU.WHXB202303029. doi: 10.3866/PKU.WHXB202303029

    53. [53]

      S. Lin, H. Huang, T. Ma, Y. Zhang, Adv. Sci. 8 (1) (2021) 2002458, https://doi.org/10.1002/advs.202002458. doi: 10.1002/advs.202002458

    54. [54]

      B. Weng, M. Zhang, Y. Lin, J. Yang, J. Lv, N. Han, J. Xie, H. Jia, B. L. Su, M. Roeffaers, J. Hofkens, Y. Zhu, S. Wang, W. Choi, Y. Zheng, Nat. Rev. Clean Technol. 1 (3) (2025) 201, https://doi.org/10.1038/s44359-025-00037-1. doi: 10.1038/s44359-025-00037-1

    55. [55]

      Y. Xu, S. Li, X. Ma, X. Liu, J. Ding, Y. Wang, Prog. Chem. 35 (4) (2023) 509, https://doi.org/10.7536/PC220939. doi: 10.7536/PC220939

    56. [56]

      X. Gao, J. Chen, H. Che, H. B. Yang, B. Liu, Y. Ao, J. Am. Chem. Soc. 146 (44) (2024) 30455, https://doi.org/10.1021/jacs.4c11123. doi: 10.1021/jacs.4c11123

    57. [57]

      Z. He, Y. Liu, Z. Li, S. Xu, Z. Li, J. Bian, L. Jing, Appl. Catal. B 355 (2024) 124207, https://doi.org/10.1016/j.apcatb.2024.124207. doi: 10.1016/j.apcatb.2024.124207

    58. [58]

      D. Zeng, Y. Li, Appl. Catal. B 342 (2024) 123393, https://doi.org/10.1016/j.apcatb.2023.123393. doi: 10.1016/j.apcatb.2023.123393

    59. [59]

      D. Zu, Y. Ying, Q. Wei, P. Xiong, M. S. Ahmed, Z. Lin, M. M.-J. Li, M. Li, Z. Xu, G. Chen, L. Bai, S. She, Y. Tsang, H. Huang, Angew. Chem. Int. Ed. 63 (31) (2024) e202405756, https://doi.org/10.1002/anie.202405756. doi: 10.1002/anie.202405756

    60. [60]

      A. Jiang, H. Guo, S. Yu, F. Zhang, T. Shuai, Y. Ke, P. Yang, Y. Zhou, Appl. Catal. B 332 (2023) 122747, https://doi.org/10.1016/j.apcatb.2023.122747. doi: 10.1016/j.apcatb.2023.122747

    61. [61]

      C. Du, J. Sheng, F. Zhong, Y. He, H. Liu, Y. Sun, F. Dong, Proc. Natl. Acad. Sci. 121 (9) (2024) e2315956121, https://doi.org/10.1073/pnas.2315956121. doi: 10.1073/pnas.2315956121

    62. [62]

      Q. Zhao, M. Abdellah, Y. Cao, J. Meng, X. Zou, K. Ene-mark-Rasmussen, W. Lin, Y. Li, Y. Chen, H. Duan, Q. Pan, Y. Zhou, T. Pullerits, H. Xu, S. Canton, Y. Niu, K. Zheng, Adv. Funct. Mater. 34 (30) (2024) 2315734, https://doi.org/10.1002/adfm.202315734. doi: 10.1002/adfm.202315734

    63. [63]

      X. Cheng, R. Guan, Z. Wu, Y. Sun, W. Che, Q. Shang, Infomat 6 (4) (2024) e12535, https://doi.org/10.1002/inf2.12535. doi: 10.1002/inf2.12535

    64. [64]

      Y. Jiang, F. Zhang, Y. Mei, T. Li, Y. Li, K. Zheng, H. Guo, G. Yang, Y. Zhou, Small 20 (48) (2024) 2405512, https://doi.org/10.1002/smll.202405512. doi: 10.1002/smll.202405512

    65. [65]

      Y. Li, S. Yu, Y. Cao, Y. Huang, Q. Wang, Y. Duan, L. Li, K. Zheng, Y. Zhou, J. Mater. Sci. Technol. 193 (2024) 73, https://doi.org/10.1016/j.jmst.2024.01.021. doi: 10.1016/j.jmst.2024.01.021

    66. [66]

      P. Xia, X. Pan, S. Jiang, J. Yu, B. He, P. M. Ismail, W. Bai, J. Yang, L. Yang, H. Zhang, M. Cheng, H. Li, Q. Zhang, C. Xiao, Y. Xie, Adv. Mater. 34 (28) (2022) 2200563, https://doi.org/10.1002/adma.202200563. doi: 10.1002/adma.202200563

    67. [67]

      J. Tian, Y. Zhang, Z. Shi, Z. Liu, Z. Zhao, J. Li, N. Li, H. Huang, Angew. Chem. Int. Ed. 64 (6) (2025) e202418496, https://doi.org/10.1002/anie.202418496. doi: 10.1002/anie.202418496

    68. [68]

      Q. Pan, M. Abdellah, Y. Cao, W. Lin, Y. Liu, J. Meng, Q. Zhou, Q. Zhao, X. Yan, Z. Li, H. Cui, H. Cao, W. Fang, D. Tanner, M. Abdel-Hafiez, Y. Zhou, T. Pullerits, S. Canton, H. Xu, K. Zheng, Nat. Commun. 13 (1) (2022) 845, https://doi.org/10.1038/s41467-022-28409-2. doi: 10.1038/s41467-022-28409-2

    69. [69]

      C. Choi, F. Zhao, J. L. Hart, Y. Gao, F. Menges, C. L. Rooney, N. J. Harmon, B. Shang, Z. Xu, S. Suo, Q. Sam, J. Cha, T. Lian, H. Wang, Angew. Chem. Int. Ed. 62 (23) (2023) e202302152, https://doi.org/10.1002/anie.202302152. doi: 10.1002/anie.202302152

    70. [70]

      Y. Huang, M. Shen, H. Yan, Y. He, J. Xu, F. Zhu, X. Yang, Y. X. Ye, G. Ouyang, Nat. Commun. 15 (1) (2024) 5406, https://doi.org/10.1038/s41467-024-49373-z. doi: 10.1038/s41467-024-49373-z

    71. [71]

      Y. Feng, S. Gong, Y. Wang, C. Ban, X. Qu, J. Ma, Y. Duan, C. Lin, D. Yu, L. Xia, X. Chen, X. Tao, L. Gan, X. Zhou, Adv. Mater. 37 (6) (2025) 2412965, https://doi.org/10.1002/adma.202412965. doi: 10.1002/adma.202412965

    72. [72]

      C. Zhang, Z. C. Shao, X. L. Zhang, G. Q. Liu, Y. Z. Zhang, L. Wu, C. Y. Liu, Y. Pan, F. H. Su, M. R. Gao, Y. Li, S. Yu, Angew. Chem. Int. Ed. 62 (33) (2023) e202305571, https://doi.org/10.1002/anie.202305571. doi: 10.1002/anie.202305571

    73. [73]

      R. Sun, X. Cao, J. Ma, H.-C. Chen, C. Chen, Q. Peng, Y. Li, Nat. Synth. (2025) https://doi.org/10.1038/s44160-025-00782-y. doi: 10.1038/s44160-025-00782-y

    74. [74]

      Y. Li, S. Yu, J. Xiang, F. Zhang, A. Jiang, Y. Duan, C. Tang, Y. Cao, H. Guo, Y. Zhou, ACS Catal. 13 (12) (2023) 8281, https://doi.org/10.1021/acscatal.3c01210. doi: 10.1021/acscatal.3c01210

    75. [75]

      Q. Zhang, S. Yuan, H. Yin, J. Yang, Z. Guan, J. Mater. Chem. A 12 (29) (2024) 18204, https://doi.org/10.1039/D4TA02620A. doi: 10.1039/D4TA02620A

    76. [76]

      S. Yu, X. B. Fan, X. Wang, J. Li, Q. Zhang, A. Xia, S. Wei, L. Z. Wu, Y. Zhou, G. R. Patzke, Nat. Commun. 9 (1) (2018) 4009, https://doi.org/10.1038/s41467-018-06294-y. doi: 10.1038/s41467-018-06294-y

    77. [77]

      X. B. Fan, S. Yu, X. Wang, Z. J. Li, F. Zhan, J. X. Li, Y. J. Gao, A. D. Xia, Y. Tao, X. B. Li, L. Zhang, C. Tung, L. Wu, Adv. Mater. 31 (7) (2019) 1804872, https://doi.org/10.1002/adma.201804872. doi: 10.1002/adma.201804872

    78. [78]

      Z. Teng, Q. Zhang, H. Yang, K. Kato, W. Yang, Y. Lu, S. Liu, C. Wang, A. Yamakata, C. Su, B. Liu, T. Ohno, Nat. Catal. 4 (5) (2021) 374, https://doi.org/10.1038/s41929-021-00605-1. doi: 10.1038/s41929-021-00605-1

    79. [79]

      W. Kang, R. Wei, H. Yin, D. Li, Z. Chen, Q. Huang, P. Zhang, H. Jing, X. Wang, C. Li, J. Am. Chem. Soc. 145 (6) (2023) 3470, https://doi.org/10.1021/jacs.2c11508. doi: 10.1021/jacs.2c11508

    80. [80]

      K. Wu, H. Zhu, Z. Liu, W. Rodríguez-Córdoba, T. Lian, J. Am. Chem. Soc. 134 (25) (2012) 10337, https://doi.org/10.1021/ja303306u. doi: 10.1021/ja303306u

    81. [81]

      F. Xu, Y. He, J. Zhang, G. Liang, C. Liu, J. Yu, Angew. Chem. Int. Ed. 64 (2) (2025) e202414672, https://doi.org/10.1002/anie.202414672. doi: 10.1002/anie.202414672

    82. [82]

      X. Wang, H. Zhang, Y. Huang, L. Gao, Y. Zhang, J. Meng, Y. Liao, B. Zong, W. Dai, H. Li, Adv. Funct. Mater. (2025) 2421847, https://doi.org/10.1002/adfm.202421847. doi: 10.1002/adfm.202421847

    83. [83]

      Y. Ou, B. Wang, N. Xu, Q. Song, T. Liu, H. Xu, F. Wang, S. Li, Y. Wang, Adv. Mater. 36 (30) (2024) 2403215, https://doi.org/10.1002/adma.202403215. doi: 10.1002/adma.202403215

    84. [84]

      Y. Cao, W. Yu, Y. Li, J. Meng, K. Zheng, C. Huang, X. Yang, Y. Yang, F. Dong, Y. Zhou, Adv. Energy Mater. 15 (6) (2025) 2404871, https://doi.org/10.1002/aenm.202404871. doi: 10.1002/aenm.202404871

    85. [85]

      M. Dan, S. Yu, W. Lin, M. Abdellah, Z. Guo, Z. Q. Liu, T. Pullerits, K. Zheng, Y. Zhou, Adv. Mater. 37 (4) (2025) 2415138, https://doi.org/10.1002/adma.202415138. doi: 10.1002/adma.202415138

    86. [86]

      H. Huang, Y. Yang, B. Liu, Z. Lan, M. Wang, H. Yan, S. Qu, F. Yang, Q. Zhang, P. Cui, M. Li, Small 21 (12) (2025) 2412129, https://doi.org/10.1002/smll.202412129. doi: 10.1002/smll.202412129

    87. [87]

      M. Calik, F. Auras, L. M. Salonen, K. Bader, I. Grill, M. Handloser, D. D. Medina, M. Dogru, F. Löbermann, D. Trauner, A. Hartschuh, T. Bein, J. Am. Chem. Soc. 136 (51) (2014) 17802, https://doi.org/10.1021/ja509551m. doi: 10.1021/ja509551m

    88. [88]

      O. Voznyy, B. R. Sutherland, A. H. Ip, D. Zhitomirsky, E. H. Sargent, Nat. Rev. Mater. 2 (6) (2017) 17026, https://doi.org/10.1038/natrevmats.2017.26. doi: 10.1038/natrevmats.2017.26

    89. [89]

      H. Ohkita, S. Cook, Y. Astuti, W. Duffy, S. Tierney, W. Zhang, M. Heeney, I. McCulloch, J. Nelson, D. D. C. Bradley, J. Durrant, J. Am. Chem. Soc. 130 (10) (2008) 3030, https://doi.org/10.1021/ja076568q. doi: 10.1021/ja076568q

    90. [90]

      J. Behrends, A. Sperlich, A. Schnegg, T. Biskup, C. Teutloff, K. Lips, V. Dyakonov, R. Bittl, Phys. Rev. B 85 (12) (2012) 125206, https://doi.org/10.1103/PhysRevB.85.125206. doi: 10.1103/PhysRevB.85.125206

    91. [91]

      Y. Kobori, R. Noji, S. Tsuganezawa, J. Phys. Chem. C 117 (4) (2013) 1589, https://doi.org/10.1021/jp309421s. doi: 10.1021/jp309421s

    92. [92]

      J. Tao, C. Zhao, Z. Wang, Y. Chen, L. Zang, G. Yang, Y. Bai, J. Chu, Energy Environ. Sci. 18 (2) (2025) 509, https://doi.org/10.1039/D4EE02917H. doi: 10.1039/D4EE02917H

    93. [93]

      R. Zeng, M. Zhang, X. Wang, L. Zhu, B. Hao, W. Zhong, G. Zhou, J. Deng, S. Tan, J. Zhuang, F. Han, A. Zhang, Z. Zhou, X. Xue, S. Xu, J. Xu, Y. Liu, H. Lu, X. Wu, C. Wang, Z. Fink, T. Russell, H. Jing, Y. Zhang, Z. Bo, F. Liu, Nat. Energy 9 (9) (2024) 1117, https://doi.org/10.1038/s41560-024-01564-0. doi: 10.1038/s41560-024-01564-0

    94. [94]

      M. Li, B. Jiao, Y. Peng, J. Zhou, L. Tan, N. Ren, Y. Ye, Y. Liu, Y. Yang, Y. Chen, L. Ding, C. Yi, Adv. Mater. 36 (38) (2024) 2406532, https://doi.org/10.1002/adma.202406532. doi: 10.1002/adma.202406532

    95. [95]

      C. Qiu, X. Lin, Y. Wang, G. Feng, C. Ling, J. Liu, J. Du, X. Xiao, X. Wang, P. Zeng, M. Liu, W. Liang, Y. Hu, H. Han, Adv. Energy Mater. 12 (47) (2022) 2202813, https://doi.org/10.1002/aenm.202202813. doi: 10.1002/aenm.202202813

    96. [96]

      W. Lin, S. E. Canton, K. Zheng, T. Pullerits, ACS Energy Lett. 9 (1) (2024) 298, https://doi.org/10.1021/acsenergylett.3c02359. doi: 10.1021/acsenergylett.3c02359

    97. [97]

      C. Luo, F. Gao, X. Wang, C. Zhan, X. Zhang, G. Zheng, X. Zhang, X. Gao, Z. He, Q. Zhao, Sci. Adv. 10 (39) (2024) eadp0790, https://doi.org/10.1126/sciadv.adp0790. doi: 10.1126/sciadv.adp0790

    98. [98]

      Z. Huang, J. Meng, F. Huang, B. Yu, J. Wang, Y. Yang, J. Ning, K. Zheng, J. Tian, Sci. China Mater. 67 (1) (2024) 134, https://doi.org/10.1007/s40843-023-2690-3. doi: 10.1007/s40843-023-2690-3

    99. [99]

      Q. A. Alsulami, B. Murali, Y. Alsinan, M. R. Parida, S. M. Aly, O. F. Mohammed, Adv. Energy Mater. 6 (11) (2016) 1502356, https://doi.org/10.1002/aenm.201502356. doi: 10.1002/aenm.201502356

    100. [100]

      T. D. Raju, V. Murugadoss, K. A. Nirmal, T. D. Dongale, A. V. Kesavan, T. G. Kim, Adv. Powder Mater. 4 (2) (2025) 100275, https://doi.org/10.1016/j.apmate.2025.100275. doi: 10.1016/j.apmate.2025.100275

    101. [101]

      X. Sun, C. Zhang, D. Gao, S. Zhang, B. Li, J. Gong, S. Li, S. Xiao, Z. Zhu, Z. A. Li, Adv. Funct. Mater. 34 (25) (2024) 2315157, https://doi.org/10.1002/adfm.202315157. doi: 10.1002/adfm.202315157

    102. [102]

      P. Zhang, C. Zhu, W. Su, S. Wang, Z. Xu, S. Wang, M. Qi, X. Bao, F. Kang, T. Hao, Q. Chen, Y. Bai, X. Liu, G. Tang, W. Zhang, Adv. Funct. Mater. (2025) 2422783, https://doi.org/10.1002/adfm.202422783. doi: 10.1002/adfm.202422783

    103. [103]

      M. Deng, X. Xu, W. Qiu, Y. Duan, R. Li, L. Yu, Q. Peng, Angew. Chem. Int. Ed. 63 (35) (2024) e202405243, https://doi.org/10.1002/anie.202405243. doi: 10.1002/anie.202405243

    104. [104]

      J. Xie, W. Lin, K. Zheng, Z. Liang, Adv. Sci. 11 (31) (2024) 2404135, https://doi.org/10.1002/advs.202404135. doi: 10.1002/advs.202404135

    105. [105]

      Q. Li, Y. Jiao, Y. Tang, J. Zhou, B. Wu, B. Jiang, H. Fu, J. Am. Chem. Soc. 145 (38) (2023) 20837, https://doi.org/10.1021/jacs.3c05234. doi: 10.1021/jacs.3c05234

    106. [106]

      S. Liang, Z. Tang, S. Li, X. Guo, S. Jia, X. W. Sun, Adv. Opt. Mater. (2025) 2500034, https://doi.org/10.1002/adom.202500034. doi: 10.1002/adom.202500034

    107. [107]

      Q. Jiang, X. Yuan, Y. Li, Y. Luo, J. Zhu, F. Zhao, Y. Zhang, W. Wei, H. Feng, H. Li, J. Wu, Z. Ma, Z. Tang, F. Huang, Y. Cao, C. Duan, Angew. Chem. Int. Ed. (2025) e202416883, https://doi.org/10.1002/anie.202416883. doi: 10.1002/anie.202416883

    108. [108]

      X. Liu, Y. Yan, A. Honarfar, Y. Yao, K. Zheng, Z. Liang, Adv. Sci. 6 (8) (2019) 1802103, https://doi.org/10.1002/advs.201802103. doi: 10.1002/advs.201802103

    109. [109]

      Z. Wang, J. Ji, W. Lin, Y. Yao, K. Zheng, Z. Liang, Adv. Funct. Mater. 30 (31) (2020) 2001564, https://doi.org/10.1002/adfm.202001564. doi: 10.1002/adfm.202001564

    110. [110]

      T. Li, K. Wang, G. Cai, Y. Li, H. Liu, Y. Jia, Z. Zhang, X. Lu, Y. Yang, Y. Lin, JACS Au 1 (10) (2021) 1733, https://doi.org/10.1021/jacsau.1c00306. doi: 10.1021/jacsau.1c00306

    111. [111]

      Y. Hu, F. Zhan, Q. Wang, Y. Sun, C. Yu, X. Zhao, H. Wang, R. Long, G. Zhang, C. Gao, W. Zhang, J. Jiang, Y. Tao, Y. Xiong, J. Am. Chem. Soc. 142 (12) (2020) 5618, https://doi.org/10.1021/jacs.9b12443. doi: 10.1021/jacs.9b12443

    112. [112]

      T.-H. Lai, K.-i. Katsumata, Y.-J. Hsu, Nanophotonics 10 (2) (2021) 777, https://doi.org/10.1515/nanoph-2020-0472. doi: 10.1515/nanoph-2020-0472

    113. [113]

      A. J. Cowan, J. Tang, W. Leng, J. R. Durrant, D. R. Klug, J. Phys. Chem. C 114 (9) (2010) 4208, https://doi.org/10.1021/jp909993w. doi: 10.1021/jp909993w

    114. [114]

      A. Honarfar, H. Mourad, W. Lin, A. Polukeev, A. Rahaman, M. Abdellah, P. Chábera, G. Pankratova, L. Gorton, K. Zheng, et al., ACS Appl. Energy Mater. 3 (12) (2020) 12525, https://doi.org/10.1021/acsaem.0c02478. doi: 10.1021/acsaem.0c02478

    115. [115]

      A. Honarfar, P. Chabera, W. Lin, J. Meng, H. Mourad, G. Pankratova, L. Gorton, K. Zheng, T. Pullerits, J. Phys. Chem. C 125 (26) (2021) 14332, https://doi.org/10.1021/acs.jpcc.1c02729. doi: 10.1021/acs.jpcc.1c02729

    116. [116]

      S. Selim, E. Pastor, M. García-Tecedor, M. R. Morris, L. Francàs, M. Sachs, B. Moss, S. Corby, C. A. Mesa, S. Gimenez, A. Kafizas, A. Bakulin, J. Durrantt, J. Am. Chem. Soc. 141 (47) (2019) 18791, https://doi.org/10.1021/jacs.9b09056. doi: 10.1021/jacs.9b09056

    117. [117]

      S. Selim, L. Francàs, M. García-Tecedor, S. Corby, C. Blackman, S. Gimenez, J. R. Durrant, A. Kafizas, Chem. Sci. 10 (9) (2019) 2643, https://doi.org/10.1039/C8SC04679D. doi: 10.1039/C8SC04679D

    118. [118]

      J. Ji, J. Xie, J. Tang, K. Zheng, Z. Liang, Sol. RRL 5 (5) (2021) 2100142, https://doi.org/10.1002/solr.202100142. doi: 10.1002/solr.202100142

    119. [119]

      S. Garcia-Orrit, V. Vega-Mayoral, Q. Chen, G. Serra, M. Guizzardi, V. Romano, S. Dal Conte, G. Cerullo, L. Di Mario, M. Kot, M. Loi, A. Narita, K. Müllen, M. Tommasini, J. Cabanillas-González, J. Phys. Chem. Lett. 15 (41) (2024) 10366, https://doi.org/10.1021/acs.jpclett.4c02712. doi: 10.1021/acs.jpclett.4c02712

    120. [120]

      D. Li, Y. Li, H. Li, X. Wu, Q. Yu, Y. Weng, Rev. Sci. Instrum. 86 (5) (2015) 053105, https://doi.org/10.1063/1.4921473. doi: 10.1063/1.4921473

  • 加载中
计量
  • PDF下载量:  0
  • 文章访问数:  31
  • HTML全文浏览量:  9
文章相关
  • 发布日期:  2025-09-15
  • 收稿日期:  2025-04-24
  • 接受日期:  2025-06-10
  • 修回日期:  2025-06-09
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章