Citation: Mahmoud Sayed, Han Li, Chuanbiao Bie. Challenges and prospects of photocatalytic H2O2 production[J]. Acta Physico-Chimica Sinica, ;2025, 41(9): 100117. doi: 10.1016/j.actphy.2025.100117 shu

Challenges and prospects of photocatalytic H2O2 production

  • Corresponding author: Chuanbiao Bie, biechuanbiao@cug.edu.cn
  • Received Date: 2 May 2025
    Revised Date: 6 June 2025
    Accepted Date: 10 June 2025

    Fund Project: the National Key Research and Development Program of China 2022YFB3803600the National Natural Science Foundation of China W2433135the National Natural Science Foundation of China 22361142704the National Natural Science Foundation of China 22261142666the National Natural Science Foundation of China 22202187the National Natural Science Foundation of China U23A20102the Hubei Provincial Natural Science Foundation of China 2025AFB492the Fundamental Research Funds for the Central Universities, China University of Geosciences (Wuhan) CUG22061

  • Hydrogen peroxide (H2O2) is one of the 100 most important chemicals used extensively in bleaching, disinfection, and synthetic chemistry industries. It is currently used as a fuel in direct fuel cells. The current H2O2 production relies on the harsh anthraquinone oxidation approach. Photocatalytic H2O2 production is a more favorable alternative from environmental, sustainability, and economic viewpoints. The process requires water and molecular oxygen as inputs and sunlight as the sole power source. Despite these merits, the practical application of this technology remains challenging. The most common bottlenecks are the photocatalyst's inadequacy, uphill thermodynamics, sluggish process kinetics, and competitive and backward reactions. This paper discusses these limitations and highlights the proposed perspectives to improve the efficiency and selectivity, aiming to pave the way toward large-scale H2O2 photogeneration.
  • 加载中
    1. [1]

      M. Sayed, K. Qi, X. Wu, L. Zhang, H. García, J. Yu, Chem. Soc. Rev. 54 (2025) 4874, https://doi.org/10.1039/d4cs01091d.  doi: 10.1039/d4cs01091d

    2. [2]

      R.J. Lewis, G.J. Hutchings, ChemCatChem 11 (2019) 298, https://doi.org/10.1002/cctc.201801435.

    3. [3]

      R.J. Lewis, G.J. Hutchings, ChemCatChem 11 (2019) 298, https://doi.org/10.1002/cctc.201801435.  doi: 10.1002/cctc.201801435

    4. [4]

      L. Xie, X. Wang, Z. Zhang, Y. Ma, T. Du, R. Wang, J. Wang, Small 19 (2023) 2301007, https://doi.org/10.1002/smll.202301007.  doi: 10.1002/smll.202301007

    5. [5]

      C. Cheng, J. Yu, D. Xu, L. Wang, G. Liang, L. Zhang, M. Jaroniec, Nat. Commun. 15 (2024) 1313, https://doi.org/10.1038/s41467-024-45604-5.  doi: 10.1038/s41467-024-45604-5

    6. [6]

      www.grandviewresearch.com/industry-analysis/hydrogen-peroxide-market, accessed on May 31, 2025.

    7. [7]

      H. Shang, H. Zhou, Z. Zhu, W. Zhang, J. Ind. Eng. Chem. 18 (2012) 1851, https://doi.org/10.1016/j.jiec.2012.04.017.  doi: 10.1016/j.jiec.2012.04.017

    8. [8]

      L. Wang, J. Sun, B. Cheng, R. He, J. Yu, J. Phys. Chem. Lett. 14 (2023) 4803, https://doi.org/10.1021/acs.jpclett.3c00811.  doi: 10.1021/acs.jpclett.3c00811

    9. [9]

      S. Wu, X. Quan, ACS ES & T Eng. 2 (2022) 1068, https://doi.org/10.1021/acsestengg.1c00456.  doi: 10.1021/acsestengg.1c00456

    10. [10]

      K. Zhang, Y. Li, S. Yuan, L. Zhang, Q. Wang, Acta Phys.-Chim. Sin. 39 (2023) 2212010, https://doi.org/10.3866/PKU.WHXB202212010.  doi: 10.3866/PKU.WHXB202212010

    11. [11]

      B. He, Z. Wang, P. Xiao, T. Chen, J. Yu, L. Zhang, Adv. Mater. 34 (2022) 2203225, https://doi.org/10.1002/adma.202203225.  doi: 10.1002/adma.202203225

    12. [12]

      X. Zhang, D. Gao, B. Zhu, B. Cheng, J. Yu, H. Yu, Nat. Commun. 15 (2024) 3212, https://doi.org/10.1038/s41467-024-47624-7.  doi: 10.1038/s41467-024-47624-7

    13. [13]

      J. Qiu, K. Meng, Y. Zhang, B. Cheng, J. Zhang, L. Wang, J. Yu, Adv. Mater. 36 (2024) 2400288, https://doi.org/10.1002/adma.202400288.  doi: 10.1002/adma.202400288

    14. [14]

      Z. Jiang, J. Zhang, B. Cheng, Y. Zhang, J. Yu, L. Zhang, Small 21 (2025) 2409079, https://doi.org/10.1002/smll.202409079.  doi: 10.1002/smll.202409079

    15. [15]

      Y. Yang, B. Zhu, L. Wang, B. Cheng, L. Zhang, J. Yu, Appl. Catal. B. 317 (2022) 121788, https://doi.org/10.1016/j.apcatb.2022.121788.  doi: 10.1016/j.apcatb.2022.121788

    16. [16]

      L. Wang, J. Zhang, Y. Zhang, H. Yu, Y. Qu, J. Yu, Small 18 (2022) 2104561, https://doi.org/10.1002/smll.202104561.  doi: 10.1002/smll.202104561

    17. [17]

      H. Shi, Y. Li, X. Wang, H. Yu, J. Yu, Appl. Catal. B 297 (2021) 120414, https://doi.org/10.1016/j.apcatb.2021.120414.  doi: 10.1016/j.apcatb.2021.120414

    18. [18]

      B. Liu, C. Bie, Y. Zhang, L. Wang, Y. Li, J. Yu, Langmuir 37 (2021) 14114, https://doi.org/10.1021/acs.langmuir.1c02360.  doi: 10.1021/acs.langmuir.1c02360

    19. [19]

      K. Meng, J. Zhang, B. Zhu, C. Jiang, H. García, J. Yu, Adv. Mater. 37 (2025) 2505088, https://doi.org/10.1002/adma.202505088.  doi: 10.1002/adma.202505088

    20. [20]

      Y. Ma, S. Wang, Y. Zhang, B. Cheng, L. Zhang, J. Materiomics 11 (2025) 100978, https://doi.org/10.1016/j.jmat.2024.100978.  doi: 10.1016/j.jmat.2024.100978

    21. [21]

      Y. Zhang, Y. Wang, Y. Liu, S. Zhang, Y. Zhao, J. Zhang, J. Materiomics 11 (2025) 100985, https://doi.org/10.1016/j.jmat.2024.100985.  doi: 10.1016/j.jmat.2024.100985

    22. [22]

      Y. Zhao, Y. Zhang, L. Wang, C. Ai, J. Zhang, J. Mater. Sci. Technol. 229 (2025) 213, https://doi.org/10.1016/j.jmst.2024.12.040.  doi: 10.1016/j.jmst.2024.12.040

    23. [23]

      Y. Liu, M. Li, T. Liu, Z. Wu, L. Zhang, J. Mater. Sci. Technol. 233 (2025) 201, https://doi.org/10.1016/j.jmst.2025.03.005.  doi: 10.1016/j.jmst.2025.03.005

    24. [24]

      C. Kim, S. O Park, S. K. Kwak, Z. Xia, G. Kim, L. Dai, Nat. Commun. 14 (2023) 5822, https://doi.org/10.1038/s41467-023-41397-1.  doi: 10.1038/s41467-023-41397-1

    25. [25]

      W. Zhong, A. Meng, Y. Su, H. Yu, P. Han, J. Yu, Angew. Chem. Int. Ed. 64 (2025) e202425038, https://doi.org/10.1002/anie.202425038.  doi: 10.1002/anie.202425038

    26. [26]

      X. Zhou, C. Ai, X. Wang, Z. Wu, J. Zhang, J. Materiomics 11 (2025) 100974, https://doi.org/10.1016/j.jmat.2024.100974.  doi: 10.1016/j.jmat.2024.100974

    27. [27]

      Y. Zhang, J. Qiu, B. Zhu, G. Sun, B. Cheng, L. Wang, Chin. J. Catal. 57 (2024) 143, https://doi.org/10.1016/S1872-2067(23)64580-2.  doi: 10.1016/S1872-2067(23)64580-2

    28. [28]

      Y. Wu, Y. Yang, M. Gu, C. Bie, H. Tan, B. Cheng, J. Xu, Chin. J. Catal. 53 (2023) 123, https://doi.org/10.1016/S1872-2067(23)64514-0.  doi: 10.1016/S1872-2067(23)64514-0

    29. [29]

      F. J. Millero, F. Huang, A. L. Laferiere, Geochim. Cosmochim. Ac. 66 (2002) 2349, https://doi.org/10.1016/S0016-7037(02)00838-4.  doi: 10.1016/S0016-7037(02)00838-4

    30. [30]

      S. Zhou, D. Wen, W. Zhong, J. Zhang, Y. Su, A. Meng, J. Mater. Sci. Technol. 199 (2024) 53, https://doi.org/10.1016/j.jmst.2024.02.048.  doi: 10.1016/j.jmst.2024.02.048

    31. [31]

      H. Li, B. Zhu, B. Cheng, G. Luo, J. Xu, S. Cao, J. Mater. Sci. Technol. 161 (2023) 192, https://doi.org/10.1016/j.jmst.2023.03.039.  doi: 10.1016/j.jmst.2023.03.039

    32. [32]

      C. Bie, L. Wang, J. Yu, Chem 8 (2022) 1567, https://doi.org/10.1016/j.chempr.2022.04.013.  doi: 10.1016/j.chempr.2022.04.013

    33. [33]

      M. Teranishi, S. Naya, H. Tada, J. Am. Chem. Soc. 132 (2010) 7850, https://doi.org/10.1021/ja102651g.  doi: 10.1021/ja102651g

    34. [34]

      X. Yin, H. Shi, Y. Wang, X. Wang, P. Wang, H. Yu, Acta Phys.-Chim. Sin. 40 (2024) 2312007, https://doi.org/10.3866/PKU.WHXB202312007.  doi: 10.3866/PKU.WHXB202312007

    35. [35]

      A. Meng, X. Ma, D. Wen, W. Zhong, S. Zhou, Y. Su, Chin. J. Catal. 60 (2024) 231, https://doi.org/10.1016/S1872-2067(24)60008-2.  doi: 10.1016/S1872-2067(24)60008-2

    36. [36]

      Y. Zhao, S. Zhang, Z. Wu, B. Zhu, G. Sun, J. Zhang, Chin. J. Catal. 60 (2024) 219, https://doi.org/10.1016/S1872-2067(23)64645-5.  doi: 10.1016/S1872-2067(23)64645-5

    37. [37]

      Y. Wu, C. Cheng, K. Qi, B. Cheng, J. Zhang, J. Yu, L. Zhang, Acta Phys.-Chim. Sin. 40 (2024) 2406027, https://doi.org/10.3866/PKU.WHXB202406027.  doi: 10.3866/PKU.WHXB202406027

    38. [38]

      Y. Yang, X. Zhou, M. Gu, B. Cheng, Z. Wu, J. Zhang, Acta Phys.-Chim. Sin. 41 (2025) 100064, https://doi.org/10.1016/j.actphy.2025.100064.  doi: 10.1016/j.actphy.2025.100064

    39. [39]

      L. Liu, M. Gao, H. Yang, X. Wang, X. Li, A. I. Cooper, J. Am. Chem. Soc. 143 (2021) 19287, https://doi.org/10.1021/jacs.1c09979.  doi: 10.1021/jacs.1c09979

    40. [40]

      K. Meng, J. Zhang, B. Cheng, X. Ren, Z. Xia, F. Xu, L. Zhang, J. Yu, Adv. Mater. 36 (2024) 2406460, https://doi.org/10.1002/adma.202406460.  doi: 10.1002/adma.202406460

    41. [41]

      R. He, D. Xu, X. Li, J. Mater. Sci. Technol. 138 (2023) 256, https://doi.org/10.1016/j.jmst.2022.09.002.  doi: 10.1016/j.jmst.2022.09.002

    42. [42]

      T. Zhou, X. Liu, L. Zhao, M. Qiao, W. Lei, Acta Phys.-Chim. Sin. 40 (2024) 2309020, https://doi.org/10.3866/PKU.WHXB202309020.  doi: 10.3866/PKU.WHXB202309020

    43. [43]

      G. Liu, R. Chen, B. Xia, Z. Wu, S. Liu, A. T.-Kiakalaieh, J. Ran, Chin. J. Catal. 61 (2024) 97, https://doi.org/10.1016/S1872-2067(24)60014-8.  doi: 10.1016/S1872-2067(24)60014-8

    44. [44]

      K. Li, J. Mei, J. Li, Y. Liu, G. Wang, D. Hu, S. Yan, K. Wang, Sci. China Mater. 67 (2024) 484, https://doi.org/10.1007/s40843-023-2717-0.  doi: 10.1007/s40843-023-2717-0

    45. [45]

      C. Xia, L. Yuan, H. Song, C. Zhang, Z. Li, Y. Zou, J. Li, T. Bao, C. Yu, C. Liu, Small 19 (2023) 2300292, https://doi.org/10.1002/smll.202300292.  doi: 10.1002/smll.202300292

    46. [46]

      Z. Chen, D. Yao, C. Chu, S. Mao, Chem. Eng. J. 451 (2023) 138489, https://doi.org/10.1016/j.cej.2022.138489.  doi: 10.1016/j.cej.2022.138489

  • 加载中
    1. [1]

      Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, 2024, 39(4): 395-400. doi: 10.3866/PKU.DXHX202310047

    2. [2]

      Jiaxi Xu Yuan Ma . Influence of Hyperconjugation on the Stability and Stable Conformation of Ethane, Hydrazine, and Hydrogen Peroxide. University Chemistry, 2024, 39(11): 374-377. doi: 10.3866/PKU.DXHX202402049

    3. [3]

      Yu Dai Xueting Sun Haoyu Wu Naizhu Li Guoe Cheng Xiaojin Zhang Fan Xia . Determination of the Michaelis Constant for Gold Nanozyme-Catalyzed Decomposition of Hydrogen Peroxide. University Chemistry, 2025, 40(5): 351-356. doi: 10.12461/PKU.DXHX202407052

    4. [4]

      Yiying Yang Dongju Zhang . Elucidating the Concepts of Thermodynamic Control and Kinetic Control in Chemical Reactions through Theoretical Chemistry Calculations: A Computational Chemistry Experiment on the Diels-Alder Reaction. University Chemistry, 2024, 39(3): 327-335. doi: 10.3866/PKU.DXHX202309074

    5. [5]

      Yeyun Zhang Ling Fan Yanmei Wang Zhenfeng Shang . Development and Application of Kinetic Reaction Flasks in Physical Chemistry Experimental Teaching. University Chemistry, 2024, 39(4): 100-106. doi: 10.3866/PKU.DXHX202308044

    6. [6]

      Jiageng Li Putrama . 数值积分耦合非线性最小二乘法一步确定反应动力学参数. University Chemistry, 2025, 40(6): 364-370. doi: 10.12461/PKU.DXHX202407098

    7. [7]

      Ruming Yuan Pingping Wu Laiying Zhang Xiaoming Xu Gang Fu . Patriotic Devotion, Upholding Integrity and Innovation, Wholeheartedly Nurturing the New: The Ideological and Political Design of the Experiment on Determining the Thermodynamic Functions of Chemical Reactions by Electromotive Force Method. University Chemistry, 2024, 39(4): 125-132. doi: 10.3866/PKU.DXHX202311057

    8. [8]

      Zhiwen HUPing LIYulong YANGWeixia DONGQifu BAO . Morphology effects on the piezocatalytic performance of BaTiO3. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 339-348. doi: 10.11862/CJIC.20240172

    9. [9]

      Xuzhen Wang Xinkui Wang Dongxu Tian Wei Liu . Enhancing the Comprehensive Quality and Innovation Abilities of Graduate Students through a “Student-Centered, Dual Integration and Dual Drive” Teaching Model: A Case Study in the Course of Chemical Reaction Kinetics. University Chemistry, 2024, 39(6): 160-165. doi: 10.3866/PKU.DXHX202401074

    10. [10]

      Dexin Tan Limin Liang Baoyi Lv Huiwen Guan Haicheng Chen Yanli Wang . Exploring Reverse Teaching Practices in Physical Chemistry Experiment Courses: A Case Study on Chemical Reaction Kinetics. University Chemistry, 2024, 39(11): 79-86. doi: 10.12461/PKU.DXHX202403048

    11. [11]

      Yue Wu Jun Li Bo Zhang Yan Yang Haibo Li Xian-Xi Zhang . Research on Kinetic and Thermodynamic Transformations of Organic-Inorganic Hybrid Materials for Fluorescent Anti-Counterfeiting Application information: Introducing a Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(6): 390-399. doi: 10.3866/PKU.DXHX202403028

    12. [12]

      Jianchun Wang Ruyu Xie . The Fantastical Dance of Miss Electron: Contra-Thermodynamic Electrocatalytic Reactions. University Chemistry, 2025, 40(4): 331-339. doi: 10.12461/PKU.DXHX202406082

    13. [13]

      Tongqi Ye Yanqing Wang Qi Wang Huaiping Cong Xianghua Kong Yuewen Ye . Reform of Classical Thermodynamics Curriculum from the Perspective of Computational Chemistry. University Chemistry, 2025, 40(7): 387-392. doi: 10.12461/PKU.DXHX202409128

    14. [14]

      Yuchen ZhouHuanmin LiuHongxing LiXinyu SongYonghua TangPeng Zhou . Designing thermodynamically stable noble metal single-atom photocatalysts for highly efficient non-oxidative conversion of ethanol into high-purity hydrogen and value-added acetaldehyde. Acta Physico-Chimica Sinica, 2025, 41(6): 100067-0. doi: 10.1016/j.actphy.2025.100067

    15. [15]

      Xiaohui Li Ze Zhang Jingyi Cui Juanjuan Yin . Advanced Exploration and Practice of Teaching in the Experimental Course of Chemical Engineering Thermodynamics under the “High Order, Innovative, and Challenging” Framework. University Chemistry, 2024, 39(7): 368-376. doi: 10.3866/PKU.DXHX202311027

    16. [16]

      Shule Liu . Application of SPC/E Water Model in Molecular Dynamics Teaching Experiments. University Chemistry, 2024, 39(4): 338-342. doi: 10.3866/PKU.DXHX202310029

    17. [17]

      Yaling Chen . Basic Theory and Competitive Exam Analysis of Dynamic Isotope Effect. University Chemistry, 2024, 39(8): 403-410. doi: 10.3866/PKU.DXHX202311093

    18. [18]

      Jiayu Gu Siqi Wang Jun Ling . Kinetics of Living Copolymerization: A Brief Discussion. University Chemistry, 2025, 40(4): 100-107. doi: 10.12461/PKU.DXHX202406012

    19. [19]

      Zhuoya WANGLe HEZhiquan LINYingxi WANGLing LI . Multifunctional nanozyme Prussian blue modified copper peroxide: Synthesis and photothermal enhanced catalytic therapy of self-provided hydrogen peroxide. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2445-2454. doi: 10.11862/CJIC.20240194

    20. [20]

      Jinfu Ma Hui Lu Jiandong Wu Zhongli Zou . Teaching Design of Electrochemical Principles Course Based on “Cognitive Laws”: Kinetics of Electron Transfer Steps. University Chemistry, 2024, 39(3): 174-177. doi: 10.3866/PKU.DXHX202309052

Metrics
  • PDF Downloads(0)
  • Abstract views(18)
  • HTML views(8)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return