碳量子点/TiO2 S型异质结的能带和吸附工程促进光催化CO2甲烷化

王文龙 郝文韬 何浪 乔佳 李宁 陈朝秋 覃勇

引用本文: 王文龙, 郝文韬, 何浪, 乔佳, 李宁, 陈朝秋, 覃勇. 碳量子点/TiO2 S型异质结的能带和吸附工程促进光催化CO2甲烷化[J]. 物理化学学报, 2025, 41(9): 100116. doi: 10.1016/j.actphy.2025.100116 shu
Citation:  Wenlong Wang, Wentao Hao, Lang He, Jia Qiao, Ning Li, Chaoqiu Chen, Yong Qin. Bandgap and adsorption engineering of carbon dots/TiO2 S-scheme heterojunctions for enhanced photocatalytic CO2 methanation[J]. Acta Physico-Chimica Sinica, 2025, 41(9): 100116. doi: 10.1016/j.actphy.2025.100116 shu

碳量子点/TiO2 S型异质结的能带和吸附工程促进光催化CO2甲烷化

    通讯作者: 何浪, helang@sxicc.ac.cn; 李宁, lnlong2834@yeah.net; 陈朝秋, chenchaoqiu@sxicc.ac.cn
  • 基金项目:

    国家自然科学基金 22372190

    中国科学院山西煤炭化学研究所 SCJC-2023-20

    山西省科技创新人才团队(领军)专项基金 202304051001007

    2023年度国家资助博士后研究人员计划(C档) GZC20232815

    中国博士后科学基金 2024M753358

    中国博士后科学基金 2024M763394

摘要: S型异质结光催化剂因同时具有优异的光生载流子分离效率和较强的氧化还原能力,而被广泛应用于光催化二氧化碳(CO2)还原制高价值化学品(如甲烷)中。碳量子点(Carbon dots,CDs)材料具有能带结构和吸光范围可调的独特优势,可与常用半导体材料(如氧化钛,TiO 2)形成有效S型异质结光催化剂。然而,碳量子点能带结构和表面吸附性质在调控CDs/TiO2的异质结构型、载流子分离和传输动力学、以及CO2活化和还原产物选择性中的重要作用仍缺乏深入研究。本文通过改变CDs的碳源,包括低阶煤沥青(C-GQDs,1.75 nm)、葡萄糖(G-CQDs,1.84 nm)、丙酮(CQDs-X,1.82 nm)和炭黑(GQDs-A,1.92 nm),构建了四种CDs/TiO2异质结光催化剂,并将其用于光催化CO2甲烷化反应。研究发现,CDs/TiO2异质结类型、光生电荷载流子的转移路径、迁移和分离效率、CO2的吸附和活化能力以及还原产物的选择性与CDs的能带结构和表面吸附性质密切相关。CDs的引入显著增强了TiO2光利用的能力,其中,以低价煤沥青为碳源构建的C-GQDs/TiO2 S型异质结具有最高的CH4生成速率,达到32.7 μmol·g−1·h−1,是单一TiO2的6.3倍,并且显著高于其它三种异质结,分别是GQDs-A/TiO2、CQDs-X/TiO2和G-CQDs/TiO2的3.8、2.7和2.3倍。该催化剂还具有72.6%的高电子基CH4选择性和98.1%的烃类产物选择性(CH4,C2H6,C2H4和C3H8)。相反地,其它三种碳源CDs(GQDs-A、CQDs-X和G-CQDs)的引入导致CH4选择性大幅下降(均小于40.0%)。原位XPS和程序升温脱附实验结果表明,C-GQDs/TiO2高的甲烷生成速率和选择性可归因于其独特的S型异质结结构、较高的还原电势和匹配的CO2和H2O吸附活化能力。这项研究为CDs/TiO2光催化剂在S型异质结电子传递途径的驱动下将CO2高效光还原为CH4提供了独特的见解。

English

    1. [1]

      E. Ali Gong, S. Hiragond, C.B. Kim, H.S. Powar, N.S. Kim, D. Kim, H.S. In, Energy Environ. Sci. 15 (2022) 880, https://doi.org/10.1039/D1EE02714J. doi: 10.1039/D1EE02714J

    2. [2]

      S. Fang, M. Rahaman, J. Bharti, E. Reisner, M. Robert, G.A. Ozin, Y. H. Hu, Nat. Rev. Methods Primers 3 (2023) 61, https://doi.org/10.1038/s43586-023-00243- w. doi: 10.1038/s43586-023-00243-w

    3. [3]

      X. Deng, J. Zhang, K. Qi, G. Liang, F. Xu, J. Yu, Nat. Commun. 15 (2024) 4807, https://doi.org/10.1038/s41467-024-49004-7. doi: 10.1038/s41467-024-49004-7

    4. [4]

      G. Dos Santos, L. Tian, R. Gonçalves, H. García, L. Rossi, Adv. Funct. Mater. 2422055, https://doi.org/10.1002/adfm.202422055. doi: 10.1002/adfm.202422055

    5. [5]

      Y. Chai, Y. Kong, M. Lin, W. Lin, J. Shen, J. Long, R. Yuan, W. Dai, X. Wang, Z. Zhang, Nat. Commun. 14 (2023) 6168, https://doi.org/10.1038/s41467-023-41943-x. doi: 10.1038/s41467-023-41943-x

    6. [6]

      X. Zhu, E. Zhou, X. Tai, H. Zong, J. Yi, Z. Yuan, X. Zhao, P. Huang, H. Xu, Z. Jiang, Angew. Chem. Int. Ed. 64 (2025) e202425439, https://doi.org/10.1002/anie.202425439. doi: 10.1002/anie.202425439

    7. [7]

      Y. Cui, J. Zhang, H. Chu, L. Sun, K. Dai, Acta Phys. -Chim. Sin. 40 (2024) 2405016, https://doi.org/10.3866/PKU.WHXB202405016. doi: 10.3866/PKU.WHXB202405016

    8. [8]

      S. Yin, Y. Zhou, Z. Liu, H. Wang, X. Zhao, Z. Zhu, Y. Yan, P. Huo, Nat. Commun. 15 (2024) 437, https://doi.org/10.1038/s41467-024-44753-x. doi: 10.1038/s41467-024-44753-x

    9. [9]

      K. Sun, Y. Huang, Q. Wang, W. Zhao, X. Zheng, J. Jiang, H.-L. Jiang, J. Am. Chem. Soc. 146 (2024) 3241, https://doi.org/10.1021/jacs.3c11446. doi: 10.1021/jacs.3c11446

    10. [10]

      Z.K. Xie, L. Li, S. Gong, S. Xu, H. Luo, D. Li, H. Chen, M. Chen, K. Liu, W. Shi, D. Xu, Y. Lei, Angew. Chem. Int. Ed. 63 (2024) e202410250, https://doi.org/10.1002/anie.202410250. doi: 10.1002/anie.202410250

    11. [11]

      L. Wang, B. Zhu, J. Zhang, J.B. Ghasemi, M. Mousavi, J. Yu, Matter 5 (2022) 4187, https://doi.org/10.1016/j.matt.2022.09.009. doi: 10.1016/j.matt.2022.09.009

    12. [12]

      F. Xu, K. Meng, B. Cheng, S. Wang, J. Xu, J. Yu, Nat. Commun. 11 (2020) 4613, https://doi.org/10.1038/s41467-020-18350-7. doi: 10.1038/s41467-020-18350-7

    13. [13]

      W. Wang, S. Mei, H. Jiang, L. Wang, H. Tang, Q. Liu, Chin. J. Catal. 55 (2023) 137, https://doi.org/10.1016/S1872-2067(23)64551-6. doi: 10.1016/S1872-2067(23)64551-6

    14. [14]

      X. Wu, G.C. Chen, J. Wang, J. Li, G. Wang, Acta Phys. -Chim. Sin. 39 (2023) 2212016, https://doi.org/10.3866/PKU.WHXB202212016. doi: 10.3866/PKU.WHXB202212016

    15. [15]

      Z. Zan, X. Li, X. Gao, J. Huang, Y. Luo, L. Han, Acta Phys. -Chim. Sin. 39 (2023) 2209016, https://doi.org/10.3866/PKU.WHXB202209016. doi: 10.3866/PKU.WHXB202209016

    16. [16]

      S. Zhou, D. Wen, W. Zhong, J. Zhang, Y, Su, A. Meng, J. Mater. Sci. Technol. 199 (2024) 53, https://doi.org/10.1016/j.jmst.2024.02.048. doi: 10.1016/j.jmst.2024.02.048

    17. [17]

      Z. Li, W. Liu, C. Chen, T. Ma, J. Zhang, Z. Wang, Acta Phys. -Chim. Sin. 39 (2023) 2208030, https://doi.org/10.3866/PKU.WHXB202208030. doi: 10.3866/PKU.WHXB202208030

    18. [18]

      L. Zhang, J. Yu, J. García, H, Nat. Rev. Chem. 9 (2025) 328, https://doi.org/10.1038/s41570-025-00698-3. doi: 10.1038/s41570-025-00698-3

    19. [19]

      P. Li, Y. Cui, Z. Wang, G. Dawson, C. Shao, K. Dai, Acta Phys -Chim Sin 41 (2025) 100065, https://doi.org/10.1016/j.actphy.2025.100065. doi: 10.1016/j.actphy.2025.100065

    20. [20]

      Y. Liu, C. Chen, G. Dawson, J. Zhang, C. Shao, K. Dai, J. Mater. Sci. Technol. 233 (2025) 10, https://doi.org/10.1016/j.jmst.2024.12.094. doi: 10.1016/j.jmst.2024.12.094

    21. [21]

      T. Yang, J. Wang, Z. Wang, J. Zhang, K. Dai, Chin. J. Catal. 58 (2024) 157, https://doi.org/10.1016/S1872-2067(23)64607-8. doi: 10.1016/S1872-2067(23)64607-8

    22. [22]

      Q. Xu, L. Zhang, B. Cheng, J. Fan, J. Yu, Chem 6 (2020) 1543, https://doi.org/10.1016/j.chempr.2020.06.010. doi: 10.1016/j.chempr.2020.06.010

    23. [23]

      H. Yu, R. Shi, Y. Zhao, G.I.N. Waterhouse, L.-Z. Wu, C.-H. Tung, T. Zhang, Adv. Mater. 28 (2016) 9454, https://doi.org/10.1002/adma.201602581. doi: 10.1002/adma.201602581

    24. [24]

      H. Ren, A. Labidi, A. Sial, T. Gao, X. Xu, J. Liang, H. Kang, Y. Liao, K. Zhao, M. Padervand, E. Lichtfouse, C. Wang, Sep. Purif. Technol. 346 (2024) 127508, https://doi.org/10.1016/j.seppur.2024.127508. doi: 10.1016/j.seppur.2024.127508

    25. [25]

      H. Zhong, R. Sa, H. Lv, S. Yang, D. Yuan, X. Wang, R. Wang, Adv. Funct. Mater. 30 (2020) 2002654, https://doi.org/10.1002/adfm.202002654. doi: 10.1002/adfm.202002654

    26. [26]

      S. Li, K. Rong, X. Wang, C. Shen, F. Yang, Q. Zhang, Acta Phys. -Chim. Sin. 40 (2024) 2403005, https://doi.org/10.3866PKU.WHXB202403005. doi: 10.3866/PKU.WHXB202403005

    27. [27]

      C. Cheng, Q. Liang, M. Yan, Z. Liu, Q. He, T. Wu, S. Luo, Y. Pan, C. Y. Zhao, J. Liu, J. Hazard Mater. (2022) 127721, https://doi.org/10.1016/j.jhazmat.2021.127721. doi: 10.1016/j.jhazmat.2021.127721

    28. [28]

      M. Bilal, I. Ali, S. AlFaify, T. L. Tamang, J. Alloys Compd. 1010 (2025) 177098, https://doi.org/10.1016/j.jallcom.2024.177098. doi: 10.1016/j.jallcom.2024.177098

    29. [29]

      N. Li, J. Ma, W. Wang, Q. Chang, L. Liu, C. Hao, H. Zhang, H. Zhang, S. Hu, S. Wang, J. Colloid Interface Sci. 676 (2024) 496, https://doi.org/10.1016/j. jcis.2024.07.144. doi: 10.1016/j.jcis.2024.07.144

    30. [30]

      X. Chang, Q. Meng, C. Xue, J. Yang, S. Hu, Chem. Commun. 53 (2017) 3074, https://doi.org/10.1039/C7CC00461C. doi: 10.1039/C7CC00461C

    31. [31]

      S. Xie, Y. Wang, Q. Zhang, W. Deng, Y. Wang, ACS Catal. 4 (2014) 3644, https://doi.org/10.1021/cs500648p. doi: 10.1021/cs500648p

    32. [32]

      Y. Chen, C. Chen, W. Hao, W. Wang, K. Xiong, Y. Qin, J. Fuel Chem. Technol. 52 (2024) 1798, https://doi.org/10.1016/S1872-5813(24)60472-X. doi: 10.1016/S1872-5813(24)60472-X

    33. [33]

      G.-B. Xochiquetzalli, H.-P.M. Leticia, M.-M.J. Vicente, d.A.V. Paz, M.-C. Rubéen, M.-R. M. Elena, Tungsten 7 (2025) 284, https://doi.org/10.1007/s42864-024- 00303-y. doi: 10.1007/s42864-024-00303-y

    34. [34]

      X. Wang, C. Chen, Q. Wang, K. Dai, Jiegou Huaxue 43 (2024) 100473, https://doi.org/10.1016/j.cjsc.2024.100473. doi: 10.1016/j.cjsc.2024.100473

    35. [35]

      Q. Han, C. Wu, H. Jiao, R. Xu, Y. Wang, J. Xie, Q. Guo, J. Tang, Adv. Mater. 33 (2021) 2008180, https://doi.org/10.1002/adma.202008180. doi: 10.1002/adma.202008180

    36. [36]

      M. Wu, J. Zhu, Y. Wu, S. Liu, K. Zheng, S. Wang, B. Li, J. Li, C. Liu, J. Hu, J. Zhu, Y. Pan, Y. Sun, Y. Xie, Angew. Chem. Int. Ed. 64 (2025) e202414814, https://doi.org/10.1002/anie.202414814. doi: 10.1002/anie.202414814

    37. [37]

      H. Yu, Y. Zhao, C. Zhou, L. Shang, Y. Peng, Y. Cao, L.-Z. Wu, C.-H. Tung, T, Zhang, J. Mater. Chem. A 2 (2014) 3344, https://doi.org/10.1039/C3TA14108 doi: 10.1039/C3TA14108

    38. [38]

      L. Wang, Z. Mao, X. Mao, H. Sun, P. Guo, R. Huang, C. Han, X. Hu, A. Du, X. Wang, Small 20 (2024) 2309791, https://doi.org/10.1002/smll.202309791. doi: 10.1002/smll.202309791

    39. [39]

      T. Jia, L. Wang, Z. Zhu, B. Zhu, Y. Zhou, G. Zhu, M. Zhu, H. Tao, Chin. Chem. Lett. 35 (2024) 108692, https://doi.org/10.1016/j.cclet.2023.108692. doi: 10.1016/j.cclet.2023.108692

    40. [40]

      Y. Xu, W. Hou, K. Huang, H. Guo, Z. Wang, C. Lian, J. Zhang, D. Wu, Z. Lei, Z. Liu, L. Wang, Adv. Sci. 11 (2024) 2403607, https://doi.org/10.1002/advs.202403607. doi: 10.1002/advs.202403607

    41. [41]

      R. Purbia, S.Y. Choi, C.H. Woo, J. Jeon, C. Lim, D.K. Lee, J.Y. Choi, H.-S. Oh, J. M. Baik, Appl. Catal. B Environ. Energy 345 (2024) 123694, https://doi.org/10.1016/j.apcatb.2024.123694. doi: 10.1016/j.apcatb.2024.123694

    42. [42]

      X. Wang, X. Wang, H. Yang, A. Meng, Z. Li, L. Yang, L. Wang, S. Li, G. Li, J. Huang, Chem. Eng. J. 431 (2022) 134000, https://doi.org/10.1016/j.cej.2021.134000. doi: 10.1016/j.cej.2021.134000

    43. [43]

      R. Yang, L. Mei, Y. Fan, Q. Zhang, R. Zhu, R. Amal, Z. Yin, Z. Zeng, Small Met. 5 (2021) 2100887, https://doi.org/10.1002/smtd.202100887. doi: 10.1002/smtd.202100887

    44. [44]

      P. Hu, G. Liang, B. Zhu, W. Macyk, J. Yu, F. Xu, ACS Catal. 13 (2023) 12623, https://doi.org/10.1021/acscatal.3c03095. doi: 10.1021/acscatal.3c03095

    45. [45]

      J. Bian, C. Huang, L. Wang, T. Hung, W.A. Daoud, R. Zhang, ACS Appl. Mater. Interfaces 6 (2014) 4883, https://doi.org/10.1021/am4059183. doi: 10.1021/am4059183

    46. [46]

      S. Shen, H. Zhang, K. Song, Z. Wang, T. Shang, A. Gao, Q. Zhang, L, Gu, W. Zhong, Angew. Chem. Int. Ed. 63 (2024) e202315340, https://doi.org/10.1002/anie.202315340. doi: 10.1002/anie.202315340

    47. [47]

      Z. Li, X. Wang, W. Tian, A. Meng, L. Yang, ACS Sustain. Chem. Eng. 7 (2019) 20190, https://doi.org/10.1021/acssuschemeng.9b06430. doi: 10.1021/acssuschemeng.9b06430

    48. [48]

      J. Li, C. Zhang, T. Bao, Y. Xi, L. Yuan, Y. Zou, Y. Bi, C. Liu, C. Yu, Adv. Mater. 37 (2025) 2416210, https://doi.org/10.1002/adma.202416210. doi: 10.1002/adma.202416210

    49. [49]

      H. Zhang, Y. Gao, S. Meng, Z. Wang, P. Wang, Z, Wang, C. Qiu, S. Chen, B. Weng, Y.- M. Zheng, Adv. Sci. 11 (2024) 2400099, https://doi.org/10.1002/advs.202400099. doi: 10.1002/advs.202400099

    50. [50]

      Q. Li, Q. Tang, P. Xiong, D. Chen, J. Chen, Z. Wu, H. Wang, 46 (2023), https://doi.org/10.1016/S1872-2067(22)64199-8177.

    51. [51]

      Q. Chen, Y. Liu, B. Mao, Z. Wu, W. Yan, D. Zhang, Q. Li, H. Huang, Z. Kang, W. Shi, Adv. Funct. Mater. 33 (2023) 2305318, https://doi.org/10.1002/adfm.202305318. doi: 10.1002/adfm.202305318

    52. [52]

      Y. Zhang, X. Ren, X. Zhao, S. Ding, X. Wu, Y. Liu, X. Zeng, X. Qu, H. Song, Y. Hu, L. Shi, S. Lu, Adv. Mater. 37 (2025) 2420197, https://doi.org/10.1002/adma.202420197. doi: 10.1002/adma.202420197

    53. [53]

      X. Li, Y. Sun, J. Xu, Y. Shao, J. Wu, X. Xu, Y. Pan, H. Ju, J. Zhu, Y. Xie, Nat. Energy 4 (2019) 690, https://doi.org/10.1038/s41560-019-0431-1. doi: 10.1038/s41560-019-0431-1

    54. [54]

      Y. Sun, K. Lai, X. Shi, N. Li, Y. Gao, L. Ge, Appl. Catal. B Environ. Energy 365 (2025) 124907, https://doi.org/10.1016/j.apcatb.2024.124907. doi: 10.1016/j.apcatb.2024.124907

    55. [55]

      F. Xu, Y. He, J. Zhang, G. Liang, C. Liu, J. Yu, Angew. Chem. Int. Ed. 64 (2025) e202414672, https://doi.org/10.1002/anie.202414672. doi: 10.1002/anie.202414672

    56. [56]

      W. Meng, X. Sui, Y. Liu, Y. He, H. Yuan, X. Zhu, Y. Zhou, Y. Zhou, Appl. Catal. B Environ. Energy 366 (2025) 125033, https://doi.org/10.1016/j. apcatb.2025.125033. doi: 10.1016/j.apcatb.2025.125033

    57. [57]

      S. Si, H. Shou, Y. Mao, X. Bao, G. Zhai, K. Song, Z. Wang, P. Wang, Y. Liu, Z. Zheng, Y. Dai, L. Song, B. Huang, H. Cheng, Angew. Chem. Int. Ed. 61 (2022) e202209446, https://doi.org/10.1002/anie.202209446. doi: 10.1002/anie.202209446

    58. [58]

      Y. Wu, Q. Chen, J. Zhu, K. Zheng, M. Wu, M. Fan, W. Yan, J. Hu, J. Zhu, Y. Pan, X. Jiao, Y. Sun, Y. Xie, Angew. Chem. Int. Ed. 62 (2023) e202301075, https://doi.org/10.1002/anie.202301075. doi: 10.1002/anie.202301075

    59. [59]

      S. Gao, Q. Zhang, X. Su, X. Wu, X.-G. Zhang, Y. Guo, Z. Li, J. Wei, H. Wang, S. Zhang, J. Wang, J. Am. Chem. Soc. 145 (2023) 9520, https://doi.org/10.1021/jacs.2c11146. doi: 10.1021/jacs.2c11146

    60. [60]

      T. Wang, L. Chen, C. Chen, M. Huang, Y. Huang, S. Liu, B. Li, ACS Nano 16 (2022) 2306, https://doi.org/10.1021/acsnano.1c08505. doi: 10.1021/acsnano.1c08505

    61. [61]

      D. Chen, Z. Wang, J. Fu, J. Zhang, K. Dai, Sci. China Mater. 67 (2024) 541, https://doi.org/10.1007/s40843-023-2770-8. doi: 10.1007/s40843-023-2770-8

  • 加载中
计量
  • PDF下载量:  1
  • 文章访问数:  36
  • HTML全文浏览量:  10
文章相关
  • 发布日期:  2025-09-15
  • 收稿日期:  2025-04-27
  • 接受日期:  2025-06-10
  • 修回日期:  2025-06-09
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章