Bandgap and adsorption engineering of carbon dots/TiO2 S-scheme heterojunctions for enhanced photocatalytic CO2 methanation
- Corresponding author: Lang He, helang@sxicc.ac.cn Ning Li, lnlong2834@yeah.net Chaoqiu Chen, chenchaoqiu@sxicc.ac.cn
Citation:
Wenlong Wang, Wentao Hao, Lang He, Jia Qiao, Ning Li, Chaoqiu Chen, Yong Qin. Bandgap and adsorption engineering of carbon dots/TiO2 S-scheme heterojunctions for enhanced photocatalytic CO2 methanation[J]. Acta Physico-Chimica Sinica,
;2025, 41(9): 100116.
doi:
10.1016/j.actphy.2025.100116
E. Ali Gong, S. Hiragond, C.B. Kim, H.S. Powar, N.S. Kim, D. Kim, H.S. In, Energy Environ. Sci. 15 (2022) 880, https://doi.org/10.1039/D1EE02714J.
doi: 10.1039/D1EE02714J
S. Fang, M. Rahaman, J. Bharti, E. Reisner, M. Robert, G.A. Ozin, Y. H. Hu, Nat. Rev. Methods Primers 3 (2023) 61, https://doi.org/10.1038/s43586-023-00243- w.
doi: 10.1038/s43586-023-00243-w
X. Deng, J. Zhang, K. Qi, G. Liang, F. Xu, J. Yu, Nat. Commun. 15 (2024) 4807, https://doi.org/10.1038/s41467-024-49004-7.
doi: 10.1038/s41467-024-49004-7
G. Dos Santos, L. Tian, R. Gonçalves, H. García, L. Rossi, Adv. Funct. Mater. 2422055, https://doi.org/10.1002/adfm.202422055.
doi: 10.1002/adfm.202422055
Y. Chai, Y. Kong, M. Lin, W. Lin, J. Shen, J. Long, R. Yuan, W. Dai, X. Wang, Z. Zhang, Nat. Commun. 14 (2023) 6168, https://doi.org/10.1038/s41467-023-41943-x.
doi: 10.1038/s41467-023-41943-x
X. Zhu, E. Zhou, X. Tai, H. Zong, J. Yi, Z. Yuan, X. Zhao, P. Huang, H. Xu, Z. Jiang, Angew. Chem. Int. Ed. 64 (2025) e202425439, https://doi.org/10.1002/anie.202425439.
doi: 10.1002/anie.202425439
Y. Cui, J. Zhang, H. Chu, L. Sun, K. Dai, Acta Phys. -Chim. Sin. 40 (2024) 2405016, https://doi.org/10.3866/PKU.WHXB202405016.
doi: 10.3866/PKU.WHXB202405016
S. Yin, Y. Zhou, Z. Liu, H. Wang, X. Zhao, Z. Zhu, Y. Yan, P. Huo, Nat. Commun. 15 (2024) 437, https://doi.org/10.1038/s41467-024-44753-x.
doi: 10.1038/s41467-024-44753-x
K. Sun, Y. Huang, Q. Wang, W. Zhao, X. Zheng, J. Jiang, H.-L. Jiang, J. Am. Chem. Soc. 146 (2024) 3241, https://doi.org/10.1021/jacs.3c11446.
doi: 10.1021/jacs.3c11446
Z.K. Xie, L. Li, S. Gong, S. Xu, H. Luo, D. Li, H. Chen, M. Chen, K. Liu, W. Shi, D. Xu, Y. Lei, Angew. Chem. Int. Ed. 63 (2024) e202410250, https://doi.org/10.1002/anie.202410250.
doi: 10.1002/anie.202410250
L. Wang, B. Zhu, J. Zhang, J.B. Ghasemi, M. Mousavi, J. Yu, Matter 5 (2022) 4187, https://doi.org/10.1016/j.matt.2022.09.009.
doi: 10.1016/j.matt.2022.09.009
F. Xu, K. Meng, B. Cheng, S. Wang, J. Xu, J. Yu, Nat. Commun. 11 (2020) 4613, https://doi.org/10.1038/s41467-020-18350-7.
doi: 10.1038/s41467-020-18350-7
W. Wang, S. Mei, H. Jiang, L. Wang, H. Tang, Q. Liu, Chin. J. Catal. 55 (2023) 137, https://doi.org/10.1016/S1872-2067(23)64551-6.
doi: 10.1016/S1872-2067(23)64551-6
X. Wu, G.C. Chen, J. Wang, J. Li, G. Wang, Acta Phys. -Chim. Sin. 39 (2023) 2212016, https://doi.org/10.3866/PKU.WHXB202212016.
doi: 10.3866/PKU.WHXB202212016
Z. Zan, X. Li, X. Gao, J. Huang, Y. Luo, L. Han, Acta Phys. -Chim. Sin. 39 (2023) 2209016, https://doi.org/10.3866/PKU.WHXB202209016.
doi: 10.3866/PKU.WHXB202209016
S. Zhou, D. Wen, W. Zhong, J. Zhang, Y, Su, A. Meng, J. Mater. Sci. Technol. 199 (2024) 53, https://doi.org/10.1016/j.jmst.2024.02.048.
doi: 10.1016/j.jmst.2024.02.048
Z. Li, W. Liu, C. Chen, T. Ma, J. Zhang, Z. Wang, Acta Phys. -Chim. Sin. 39 (2023) 2208030, https://doi.org/10.3866/PKU.WHXB202208030.
doi: 10.3866/PKU.WHXB202208030
L. Zhang, J. Yu, J. García, H, Nat. Rev. Chem. 9 (2025) 328, https://doi.org/10.1038/s41570-025-00698-3.
doi: 10.1038/s41570-025-00698-3
P. Li, Y. Cui, Z. Wang, G. Dawson, C. Shao, K. Dai, Acta Phys -Chim Sin 41 (2025) 100065, https://doi.org/10.1016/j.actphy.2025.100065.
doi: 10.1016/j.actphy.2025.100065
Y. Liu, C. Chen, G. Dawson, J. Zhang, C. Shao, K. Dai, J. Mater. Sci. Technol. 233 (2025) 10, https://doi.org/10.1016/j.jmst.2024.12.094.
doi: 10.1016/j.jmst.2024.12.094
T. Yang, J. Wang, Z. Wang, J. Zhang, K. Dai, Chin. J. Catal. 58 (2024) 157, https://doi.org/10.1016/S1872-2067(23)64607-8.
doi: 10.1016/S1872-2067(23)64607-8
Q. Xu, L. Zhang, B. Cheng, J. Fan, J. Yu, Chem 6 (2020) 1543, https://doi.org/10.1016/j.chempr.2020.06.010.
doi: 10.1016/j.chempr.2020.06.010
H. Yu, R. Shi, Y. Zhao, G.I.N. Waterhouse, L.-Z. Wu, C.-H. Tung, T. Zhang, Adv. Mater. 28 (2016) 9454, https://doi.org/10.1002/adma.201602581.
doi: 10.1002/adma.201602581
H. Ren, A. Labidi, A. Sial, T. Gao, X. Xu, J. Liang, H. Kang, Y. Liao, K. Zhao, M. Padervand, E. Lichtfouse, C. Wang, Sep. Purif. Technol. 346 (2024) 127508, https://doi.org/10.1016/j.seppur.2024.127508.
doi: 10.1016/j.seppur.2024.127508
H. Zhong, R. Sa, H. Lv, S. Yang, D. Yuan, X. Wang, R. Wang, Adv. Funct. Mater. 30 (2020) 2002654, https://doi.org/10.1002/adfm.202002654.
doi: 10.1002/adfm.202002654
S. Li, K. Rong, X. Wang, C. Shen, F. Yang, Q. Zhang, Acta Phys. -Chim. Sin. 40 (2024) 2403005, https://doi.org/10.3866PKU.WHXB202403005.
doi: 10.3866/PKU.WHXB202403005
C. Cheng, Q. Liang, M. Yan, Z. Liu, Q. He, T. Wu, S. Luo, Y. Pan, C. Y. Zhao, J. Liu, J. Hazard Mater. (2022) 127721, https://doi.org/10.1016/j.jhazmat.2021.127721.
doi: 10.1016/j.jhazmat.2021.127721
M. Bilal, I. Ali, S. AlFaify, T. L. Tamang, J. Alloys Compd. 1010 (2025) 177098, https://doi.org/10.1016/j.jallcom.2024.177098.
doi: 10.1016/j.jallcom.2024.177098
N. Li, J. Ma, W. Wang, Q. Chang, L. Liu, C. Hao, H. Zhang, H. Zhang, S. Hu, S. Wang, J. Colloid Interface Sci. 676 (2024) 496, https://doi.org/10.1016/j. jcis.2024.07.144.
doi: 10.1016/j.jcis.2024.07.144
X. Chang, Q. Meng, C. Xue, J. Yang, S. Hu, Chem. Commun. 53 (2017) 3074, https://doi.org/10.1039/C7CC00461C.
doi: 10.1039/C7CC00461C
S. Xie, Y. Wang, Q. Zhang, W. Deng, Y. Wang, ACS Catal. 4 (2014) 3644, https://doi.org/10.1021/cs500648p.
doi: 10.1021/cs500648p
Y. Chen, C. Chen, W. Hao, W. Wang, K. Xiong, Y. Qin, J. Fuel Chem. Technol. 52 (2024) 1798, https://doi.org/10.1016/S1872-5813(24)60472-X.
doi: 10.1016/S1872-5813(24)60472-X
G.-B. Xochiquetzalli, H.-P.M. Leticia, M.-M.J. Vicente, d.A.V. Paz, M.-C. Rubéen, M.-R. M. Elena, Tungsten 7 (2025) 284, https://doi.org/10.1007/s42864-024- 00303-y.
doi: 10.1007/s42864-024-00303-y
X. Wang, C. Chen, Q. Wang, K. Dai, Jiegou Huaxue 43 (2024) 100473, https://doi.org/10.1016/j.cjsc.2024.100473.
doi: 10.1016/j.cjsc.2024.100473
Q. Han, C. Wu, H. Jiao, R. Xu, Y. Wang, J. Xie, Q. Guo, J. Tang, Adv. Mater. 33 (2021) 2008180, https://doi.org/10.1002/adma.202008180.
doi: 10.1002/adma.202008180
M. Wu, J. Zhu, Y. Wu, S. Liu, K. Zheng, S. Wang, B. Li, J. Li, C. Liu, J. Hu, J. Zhu, Y. Pan, Y. Sun, Y. Xie, Angew. Chem. Int. Ed. 64 (2025) e202414814, https://doi.org/10.1002/anie.202414814.
doi: 10.1002/anie.202414814
H. Yu, Y. Zhao, C. Zhou, L. Shang, Y. Peng, Y. Cao, L.-Z. Wu, C.-H. Tung, T, Zhang, J. Mater. Chem. A 2 (2014) 3344, https://doi.org/10.1039/C3TA14108
doi: 10.1039/C3TA14108
L. Wang, Z. Mao, X. Mao, H. Sun, P. Guo, R. Huang, C. Han, X. Hu, A. Du, X. Wang, Small 20 (2024) 2309791, https://doi.org/10.1002/smll.202309791.
doi: 10.1002/smll.202309791
T. Jia, L. Wang, Z. Zhu, B. Zhu, Y. Zhou, G. Zhu, M. Zhu, H. Tao, Chin. Chem. Lett. 35 (2024) 108692, https://doi.org/10.1016/j.cclet.2023.108692.
doi: 10.1016/j.cclet.2023.108692
Y. Xu, W. Hou, K. Huang, H. Guo, Z. Wang, C. Lian, J. Zhang, D. Wu, Z. Lei, Z. Liu, L. Wang, Adv. Sci. 11 (2024) 2403607, https://doi.org/10.1002/advs.202403607.
doi: 10.1002/advs.202403607
R. Purbia, S.Y. Choi, C.H. Woo, J. Jeon, C. Lim, D.K. Lee, J.Y. Choi, H.-S. Oh, J. M. Baik, Appl. Catal. B Environ. Energy 345 (2024) 123694, https://doi.org/10.1016/j.apcatb.2024.123694.
doi: 10.1016/j.apcatb.2024.123694
X. Wang, X. Wang, H. Yang, A. Meng, Z. Li, L. Yang, L. Wang, S. Li, G. Li, J. Huang, Chem. Eng. J. 431 (2022) 134000, https://doi.org/10.1016/j.cej.2021.134000.
doi: 10.1016/j.cej.2021.134000
R. Yang, L. Mei, Y. Fan, Q. Zhang, R. Zhu, R. Amal, Z. Yin, Z. Zeng, Small Met. 5 (2021) 2100887, https://doi.org/10.1002/smtd.202100887.
doi: 10.1002/smtd.202100887
P. Hu, G. Liang, B. Zhu, W. Macyk, J. Yu, F. Xu, ACS Catal. 13 (2023) 12623, https://doi.org/10.1021/acscatal.3c03095.
doi: 10.1021/acscatal.3c03095
J. Bian, C. Huang, L. Wang, T. Hung, W.A. Daoud, R. Zhang, ACS Appl. Mater. Interfaces 6 (2014) 4883, https://doi.org/10.1021/am4059183.
doi: 10.1021/am4059183
S. Shen, H. Zhang, K. Song, Z. Wang, T. Shang, A. Gao, Q. Zhang, L, Gu, W. Zhong, Angew. Chem. Int. Ed. 63 (2024) e202315340, https://doi.org/10.1002/anie.202315340.
doi: 10.1002/anie.202315340
Z. Li, X. Wang, W. Tian, A. Meng, L. Yang, ACS Sustain. Chem. Eng. 7 (2019) 20190, https://doi.org/10.1021/acssuschemeng.9b06430.
doi: 10.1021/acssuschemeng.9b06430
J. Li, C. Zhang, T. Bao, Y. Xi, L. Yuan, Y. Zou, Y. Bi, C. Liu, C. Yu, Adv. Mater. 37 (2025) 2416210, https://doi.org/10.1002/adma.202416210.
doi: 10.1002/adma.202416210
H. Zhang, Y. Gao, S. Meng, Z. Wang, P. Wang, Z, Wang, C. Qiu, S. Chen, B. Weng, Y.- M. Zheng, Adv. Sci. 11 (2024) 2400099, https://doi.org/10.1002/advs.202400099.
doi: 10.1002/advs.202400099
Q. Li, Q. Tang, P. Xiong, D. Chen, J. Chen, Z. Wu, H. Wang, 46 (2023),
Q. Chen, Y. Liu, B. Mao, Z. Wu, W. Yan, D. Zhang, Q. Li, H. Huang, Z. Kang, W. Shi, Adv. Funct. Mater. 33 (2023) 2305318, https://doi.org/10.1002/adfm.202305318.
doi: 10.1002/adfm.202305318
Y. Zhang, X. Ren, X. Zhao, S. Ding, X. Wu, Y. Liu, X. Zeng, X. Qu, H. Song, Y. Hu, L. Shi, S. Lu, Adv. Mater. 37 (2025) 2420197, https://doi.org/10.1002/adma.202420197.
doi: 10.1002/adma.202420197
X. Li, Y. Sun, J. Xu, Y. Shao, J. Wu, X. Xu, Y. Pan, H. Ju, J. Zhu, Y. Xie, Nat. Energy 4 (2019) 690, https://doi.org/10.1038/s41560-019-0431-1.
doi: 10.1038/s41560-019-0431-1
Y. Sun, K. Lai, X. Shi, N. Li, Y. Gao, L. Ge, Appl. Catal. B Environ. Energy 365 (2025) 124907, https://doi.org/10.1016/j.apcatb.2024.124907.
doi: 10.1016/j.apcatb.2024.124907
F. Xu, Y. He, J. Zhang, G. Liang, C. Liu, J. Yu, Angew. Chem. Int. Ed. 64 (2025) e202414672, https://doi.org/10.1002/anie.202414672.
doi: 10.1002/anie.202414672
W. Meng, X. Sui, Y. Liu, Y. He, H. Yuan, X. Zhu, Y. Zhou, Y. Zhou, Appl. Catal. B Environ. Energy 366 (2025) 125033, https://doi.org/10.1016/j. apcatb.2025.125033.
doi: 10.1016/j.apcatb.2025.125033
S. Si, H. Shou, Y. Mao, X. Bao, G. Zhai, K. Song, Z. Wang, P. Wang, Y. Liu, Z. Zheng, Y. Dai, L. Song, B. Huang, H. Cheng, Angew. Chem. Int. Ed. 61 (2022) e202209446, https://doi.org/10.1002/anie.202209446.
doi: 10.1002/anie.202209446
Y. Wu, Q. Chen, J. Zhu, K. Zheng, M. Wu, M. Fan, W. Yan, J. Hu, J. Zhu, Y. Pan, X. Jiao, Y. Sun, Y. Xie, Angew. Chem. Int. Ed. 62 (2023) e202301075, https://doi.org/10.1002/anie.202301075.
doi: 10.1002/anie.202301075
S. Gao, Q. Zhang, X. Su, X. Wu, X.-G. Zhang, Y. Guo, Z. Li, J. Wei, H. Wang, S. Zhang, J. Wang, J. Am. Chem. Soc. 145 (2023) 9520, https://doi.org/10.1021/jacs.2c11146.
doi: 10.1021/jacs.2c11146
T. Wang, L. Chen, C. Chen, M. Huang, Y. Huang, S. Liu, B. Li, ACS Nano 16 (2022) 2306, https://doi.org/10.1021/acsnano.1c08505.
doi: 10.1021/acsnano.1c08505
D. Chen, Z. Wang, J. Fu, J. Zhang, K. Dai, Sci. China Mater. 67 (2024) 541, https://doi.org/10.1007/s40843-023-2770-8.
doi: 10.1007/s40843-023-2770-8
Yuejiao An , Wenxuan Liu , Yanfeng Zhang , Jianjun Zhang , Zhansheng Lu . Revealing Photoinduced Charge Transfer Mechanism of SnO2/BiOBr S-Scheme Heterostructure for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2407021-. doi: 10.3866/PKU.WHXB202407021
Xiutao Xu , Chunfeng Shao , Jinfeng Zhang , Zhongliao Wang , Kai Dai . Rational Design of S-Scheme CeO2/Bi2MoO6 Microsphere Heterojunction for Efficient Photocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309031-. doi: 10.3866/PKU.WHXB202309031
Jiaxing Cai , Wendi Xu , Haoqiang Chi , Qian Liu , Wa Gao , Li Shi , Jingxiang Low , Zhigang Zou , Yong Zhou . 具有0D/2D界面的InOOH/ZnIn2S4空心球S型异质结用于增强光催化CO2转化性能. Acta Physico-Chimica Sinica, 2024, 40(11): 2407002-. doi: 10.3866/PKU.WHXB202407002
Peng Li , Yuanying Cui , Zhongliao Wang , Graham Dawson , Chunfeng Shao , Kai Dai . Efficient interfacial charge transfer of CeO2/Bi19Br3S27 S-scheme heterojunction for boosted photocatalytic CO2 reduction. Acta Physico-Chimica Sinica, 2025, 41(6): 100065-0. doi: 10.1016/j.actphy.2025.100065
Jianyu Qin , Yuejiao An , Yanfeng Zhang . In Situ Assembled ZnWO4/g-C3N4 S-Scheme Heterojunction with Nitrogen Defect for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2408002-. doi: 10.3866/PKU.WHXB202408002
Shijie Li , Ke Rong , Xiaoqin Wang , Chuqi Shen , Fang Yang , Qinghong Zhang . Design of Carbon Quantum Dots/CdS/Ta3N5 S-Scheme Heterojunction Nanofibers for Efficient Photocatalytic Antibiotic Removal. Acta Physico-Chimica Sinica, 2024, 40(12): 2403005-. doi: 10.3866/PKU.WHXB202403005
Jiajie Cai , Chang Cheng , Bowen Liu , Jianjun Zhang , Chuanjia Jiang , Bei Cheng . CdS/DBTSO-BDTO S-scheme photocatalyst for H2 production and its charge transfer dynamics. Acta Physico-Chimica Sinica, 2025, 41(8): 100084-0. doi: 10.1016/j.actphy.2025.100084
Chenye An , Abiduweili Sikandaier , Xue Guo , Yukun Zhu , Hua Tang , Dongjiang Yang . 红磷纳米颗粒嵌入花状CeO2分级S型异质结高效光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2405019-. doi: 10.3866/PKU.WHXB202405019
Kaihui Huang , Dejun Chen , Xin Zhang , Rongchen Shen , Peng Zhang , Difa Xu , Xin Li . Constructing Covalent Triazine Frameworks/N-Doped Carbon-Coated Cu2O S-Scheme Heterojunctions for Boosting Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(12): 2407020-. doi: 10.3866/PKU.WHXB202407020
Tieping CAO , Yuejun LI , Dawei SUN . Surface plasmon resonance effect enhanced photocatalytic CO2 reduction performance of S-scheme Bi2S3/TiO2 heterojunction. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 903-912. doi: 10.11862/CJIC.20240366
Menglan Wei , Xiaoxia Ou , Yimeng Wang , Mengyuan Zhang , Fei Teng , Kaixuan Wang . S-scheme heterojunction g-C3N4/Bi2WO6 highly efficient degradation of levofloxacin: performance, mechanism and degradation pathway. Acta Physico-Chimica Sinica, 2025, 41(9): 100105-0. doi: 10.1016/j.actphy.2025.100105
You Wu , Chang Cheng , Kezhen Qi , Bei Cheng , Jianjun Zhang , Jiaguo Yu , Liuyang Zhang . ZnO/D-A共轭聚合物S型异质结高效光催化产H2O2及其电荷转移动力学研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-. doi: 10.3866/PKU.WHXB202406027
Weikang Wang , Yadong Wu , Jianjun Zhang , Kai Meng , Jinhe Li , Lele Wang , Qinqin Liu . Green H2O2 synthesis via melamine-foam supported S-scheme Cd0.5Zn0.5In2S4/S-doped carbon nitride heterojunction: synergistic interfacial charge transfer and local photothermal effect. Acta Physico-Chimica Sinica, 2025, 41(8): 100093-0. doi: 10.1016/j.actphy.2025.100093
Yang Xia , Kangyan Zhang , Heng Yang , Lijuan Shi , Qun Yi . 构建双通道路径增强iCOF/Bi2O3 S型异质结在纯水体系中光催化合成H2O2性能. Acta Physico-Chimica Sinica, 2024, 40(11): 2407012-. doi: 10.3866/PKU.WHXB202407012
Yi Yang , Xin Zhou , Miaoli Gu , Bei Cheng , Zhen Wu , Jianjun Zhang . Femtosecond transient absorption spectroscopy investigation on ultrafast electron transfer in S-scheme ZnO/CdIn2S4 photocatalyst for H2O2 production and benzylamine oxidation. Acta Physico-Chimica Sinica, 2025, 41(6): 100064-0. doi: 10.1016/j.actphy.2025.100064
Xinyu Miao , Hao Yang , Jie He , Jing Wang , Zhiliang Jin . Adjusting the electronic structure of Keggin-type polyoxometalates to construct S-scheme heterojunction for photocatalytic hydrogen evolution. Acta Physico-Chimica Sinica, 2025, 41(6): 100051-0. doi: 10.1016/j.actphy.2025.100051
Jinwang Wu , Qijing Xie , Chengliang Zhang , Haifeng Shi . 自旋极化增强ZnFe1.2Co0.8O4/BiVO4 S型异质结光催化性能降解四环素. Acta Physico-Chimica Sinica, 2025, 41(5): 100050-. doi: 10.1016/j.actphy.2025.100050
Kexin Dong , Chuqi Shen , Ruyu Yan , Yanping Liu , Chunqiang Zhuang , Shijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-. doi: 10.3866/PKU.WHXB202310013
Changjun You , Chunchun Wang , Mingjie Cai , Yanping Liu , Baikang Zhu , Shijie Li . 引入内建电场强化BiOBr/C3N5 S型异质结中光载流子分离以实现高效催化降解微污染物. Acta Physico-Chimica Sinica, 2024, 40(11): 2407014-. doi: 10.3866/PKU.WHXB202407014
Xuejiao Wang , Suiying Dong , Kezhen Qi , Vadim Popkov , Xianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-. doi: 10.3866/PKU.WHXB202408005