Citation: Wenlong Wang, Wentao Hao, Lang He, Jia Qiao, Ning Li, Chaoqiu Chen, Yong Qin. Bandgap and adsorption engineering of carbon dots/TiO2 S-scheme heterojunctions for enhanced photocatalytic CO2 methanation[J]. Acta Physico-Chimica Sinica, ;2025, 41(9): 100116. doi: 10.1016/j.actphy.2025.100116 shu

Bandgap and adsorption engineering of carbon dots/TiO2 S-scheme heterojunctions for enhanced photocatalytic CO2 methanation

  • Corresponding author: Lang He, helang@sxicc.ac.cn Ning Li, lnlong2834@yeah.net Chaoqiu Chen, chenchaoqiu@sxicc.ac.cn
  • Received Date: 27 April 2025
    Revised Date: 9 June 2025
    Accepted Date: 10 June 2025

    Fund Project: the National Natural Science Foundation of China 22372190ICC CAS SCJC-2023-20the special fund for Science and Technology Innovation Teams of Shanxi Province 202304051001007the Postdoctoral Fellowship Program of CPSF GZC20232815China Postdoctoral Science Foundation 2024M753358China Postdoctoral Science Foundation 2024M763394

  • S-scheme heterojunctions have garnered significant interest in photocatalytic CO2 conversion to valuable products (e.g., CH4) due to their enhanced charge separation and robust redox capabilities. Carbon dots (CDs), with their tunable band structures and light absorption ranges, show particular promise in constructing efficient S-scheme photocatalytic systems. Nevertheless, the critical roles of CDs' band alignment and surface adsorption properties in determining heterojunction configuration, charge carrier kinetics, and ultimately CO2 activation/product selectivity distribution remain insufficiently explored. Herein, we construct four CDs/TiO2 heterojunctions using CDs synthesized from varied carbon sources, in which S-scheme heterojunctions were successfully constructed based on cost-effective coal pitch (C-GQDs, 1.75 nm), glucose (G-CQDs, 1.84 nm), and acetone (CQDs-X, 1.82 nm) carbon sources, whereas Type-Ⅰ heterojunctions were formed by carbon black based CDs (GQDs-A, 1.92 nm). Systematic investigations reveal that both the band structure and adsorption characteristics of CDs play important roles in the charge transfer path and separation efficiency, CO2 adsorption and activation capacities, and product selectivity in photocatalytic CO2 reduction. Remarkably, the introduction of CDs significantly broadens the photo-response range compared to fresh TiO2, and in particular, the C-GQDs/TiO2 exhibits exceptional performance with a CH4 production rate of 32.7 μmol·g−1·h−1, surpassing TiO2 by 6.3-fold and outperforming GQDs-A/TiO2, CQDs-X/TiO2, and G-CQDs/TiO2 by factors of 3.8, 2.7, and 2.3, respectively. This heterojunction simultaneously achieves 72.6% CH4 selectivity and 98.1% hydrocarbons selectivity (encompassing CH4, C2H6, C2H4, and C3H8). In contrast, composites incorporating GQDs-A, CQDs-X, or G-CQDs exhibit substantially diminished CH4 selectivity (< 40.0%). The high CH4 production rate and selectivity of C-GQDs/TiO2 can be attributed to its unique S-scheme heterojunction structure, higher reduction potential, and well-matched CO2 and H2O adsorption and activation capabilities. This study provides unique insights into the efficient photoreduction of CO2 to CH4 driven by the S-scheme heterojunction electron transfer pathway in CDs/TiO2 photocatalysts.
  • 加载中
    1. [1]

      E. Ali Gong, S. Hiragond, C.B. Kim, H.S. Powar, N.S. Kim, D. Kim, H.S. In, Energy Environ. Sci. 15 (2022) 880, https://doi.org/10.1039/D1EE02714J.  doi: 10.1039/D1EE02714J

    2. [2]

      S. Fang, M. Rahaman, J. Bharti, E. Reisner, M. Robert, G.A. Ozin, Y. H. Hu, Nat. Rev. Methods Primers 3 (2023) 61, https://doi.org/10.1038/s43586-023-00243- w.  doi: 10.1038/s43586-023-00243-w

    3. [3]

      X. Deng, J. Zhang, K. Qi, G. Liang, F. Xu, J. Yu, Nat. Commun. 15 (2024) 4807, https://doi.org/10.1038/s41467-024-49004-7.  doi: 10.1038/s41467-024-49004-7

    4. [4]

      G. Dos Santos, L. Tian, R. Gonçalves, H. García, L. Rossi, Adv. Funct. Mater. 2422055, https://doi.org/10.1002/adfm.202422055.  doi: 10.1002/adfm.202422055

    5. [5]

      Y. Chai, Y. Kong, M. Lin, W. Lin, J. Shen, J. Long, R. Yuan, W. Dai, X. Wang, Z. Zhang, Nat. Commun. 14 (2023) 6168, https://doi.org/10.1038/s41467-023-41943-x.  doi: 10.1038/s41467-023-41943-x

    6. [6]

      X. Zhu, E. Zhou, X. Tai, H. Zong, J. Yi, Z. Yuan, X. Zhao, P. Huang, H. Xu, Z. Jiang, Angew. Chem. Int. Ed. 64 (2025) e202425439, https://doi.org/10.1002/anie.202425439.  doi: 10.1002/anie.202425439

    7. [7]

      Y. Cui, J. Zhang, H. Chu, L. Sun, K. Dai, Acta Phys. -Chim. Sin. 40 (2024) 2405016, https://doi.org/10.3866/PKU.WHXB202405016.  doi: 10.3866/PKU.WHXB202405016

    8. [8]

      S. Yin, Y. Zhou, Z. Liu, H. Wang, X. Zhao, Z. Zhu, Y. Yan, P. Huo, Nat. Commun. 15 (2024) 437, https://doi.org/10.1038/s41467-024-44753-x.  doi: 10.1038/s41467-024-44753-x

    9. [9]

      K. Sun, Y. Huang, Q. Wang, W. Zhao, X. Zheng, J. Jiang, H.-L. Jiang, J. Am. Chem. Soc. 146 (2024) 3241, https://doi.org/10.1021/jacs.3c11446.  doi: 10.1021/jacs.3c11446

    10. [10]

      Z.K. Xie, L. Li, S. Gong, S. Xu, H. Luo, D. Li, H. Chen, M. Chen, K. Liu, W. Shi, D. Xu, Y. Lei, Angew. Chem. Int. Ed. 63 (2024) e202410250, https://doi.org/10.1002/anie.202410250.  doi: 10.1002/anie.202410250

    11. [11]

      L. Wang, B. Zhu, J. Zhang, J.B. Ghasemi, M. Mousavi, J. Yu, Matter 5 (2022) 4187, https://doi.org/10.1016/j.matt.2022.09.009.  doi: 10.1016/j.matt.2022.09.009

    12. [12]

      F. Xu, K. Meng, B. Cheng, S. Wang, J. Xu, J. Yu, Nat. Commun. 11 (2020) 4613, https://doi.org/10.1038/s41467-020-18350-7.  doi: 10.1038/s41467-020-18350-7

    13. [13]

      W. Wang, S. Mei, H. Jiang, L. Wang, H. Tang, Q. Liu, Chin. J. Catal. 55 (2023) 137, https://doi.org/10.1016/S1872-2067(23)64551-6.  doi: 10.1016/S1872-2067(23)64551-6

    14. [14]

      X. Wu, G.C. Chen, J. Wang, J. Li, G. Wang, Acta Phys. -Chim. Sin. 39 (2023) 2212016, https://doi.org/10.3866/PKU.WHXB202212016.  doi: 10.3866/PKU.WHXB202212016

    15. [15]

      Z. Zan, X. Li, X. Gao, J. Huang, Y. Luo, L. Han, Acta Phys. -Chim. Sin. 39 (2023) 2209016, https://doi.org/10.3866/PKU.WHXB202209016.  doi: 10.3866/PKU.WHXB202209016

    16. [16]

      S. Zhou, D. Wen, W. Zhong, J. Zhang, Y, Su, A. Meng, J. Mater. Sci. Technol. 199 (2024) 53, https://doi.org/10.1016/j.jmst.2024.02.048.  doi: 10.1016/j.jmst.2024.02.048

    17. [17]

      Z. Li, W. Liu, C. Chen, T. Ma, J. Zhang, Z. Wang, Acta Phys. -Chim. Sin. 39 (2023) 2208030, https://doi.org/10.3866/PKU.WHXB202208030.  doi: 10.3866/PKU.WHXB202208030

    18. [18]

      L. Zhang, J. Yu, J. García, H, Nat. Rev. Chem. 9 (2025) 328, https://doi.org/10.1038/s41570-025-00698-3.  doi: 10.1038/s41570-025-00698-3

    19. [19]

      P. Li, Y. Cui, Z. Wang, G. Dawson, C. Shao, K. Dai, Acta Phys -Chim Sin 41 (2025) 100065, https://doi.org/10.1016/j.actphy.2025.100065.  doi: 10.1016/j.actphy.2025.100065

    20. [20]

      Y. Liu, C. Chen, G. Dawson, J. Zhang, C. Shao, K. Dai, J. Mater. Sci. Technol. 233 (2025) 10, https://doi.org/10.1016/j.jmst.2024.12.094.  doi: 10.1016/j.jmst.2024.12.094

    21. [21]

      T. Yang, J. Wang, Z. Wang, J. Zhang, K. Dai, Chin. J. Catal. 58 (2024) 157, https://doi.org/10.1016/S1872-2067(23)64607-8.  doi: 10.1016/S1872-2067(23)64607-8

    22. [22]

      Q. Xu, L. Zhang, B. Cheng, J. Fan, J. Yu, Chem 6 (2020) 1543, https://doi.org/10.1016/j.chempr.2020.06.010.  doi: 10.1016/j.chempr.2020.06.010

    23. [23]

      H. Yu, R. Shi, Y. Zhao, G.I.N. Waterhouse, L.-Z. Wu, C.-H. Tung, T. Zhang, Adv. Mater. 28 (2016) 9454, https://doi.org/10.1002/adma.201602581.  doi: 10.1002/adma.201602581

    24. [24]

      H. Ren, A. Labidi, A. Sial, T. Gao, X. Xu, J. Liang, H. Kang, Y. Liao, K. Zhao, M. Padervand, E. Lichtfouse, C. Wang, Sep. Purif. Technol. 346 (2024) 127508, https://doi.org/10.1016/j.seppur.2024.127508.  doi: 10.1016/j.seppur.2024.127508

    25. [25]

      H. Zhong, R. Sa, H. Lv, S. Yang, D. Yuan, X. Wang, R. Wang, Adv. Funct. Mater. 30 (2020) 2002654, https://doi.org/10.1002/adfm.202002654.  doi: 10.1002/adfm.202002654

    26. [26]

      S. Li, K. Rong, X. Wang, C. Shen, F. Yang, Q. Zhang, Acta Phys. -Chim. Sin. 40 (2024) 2403005, https://doi.org/10.3866PKU.WHXB202403005.  doi: 10.3866/PKU.WHXB202403005

    27. [27]

      C. Cheng, Q. Liang, M. Yan, Z. Liu, Q. He, T. Wu, S. Luo, Y. Pan, C. Y. Zhao, J. Liu, J. Hazard Mater. (2022) 127721, https://doi.org/10.1016/j.jhazmat.2021.127721.  doi: 10.1016/j.jhazmat.2021.127721

    28. [28]

      M. Bilal, I. Ali, S. AlFaify, T. L. Tamang, J. Alloys Compd. 1010 (2025) 177098, https://doi.org/10.1016/j.jallcom.2024.177098.  doi: 10.1016/j.jallcom.2024.177098

    29. [29]

      N. Li, J. Ma, W. Wang, Q. Chang, L. Liu, C. Hao, H. Zhang, H. Zhang, S. Hu, S. Wang, J. Colloid Interface Sci. 676 (2024) 496, https://doi.org/10.1016/j. jcis.2024.07.144.  doi: 10.1016/j.jcis.2024.07.144

    30. [30]

      X. Chang, Q. Meng, C. Xue, J. Yang, S. Hu, Chem. Commun. 53 (2017) 3074, https://doi.org/10.1039/C7CC00461C.  doi: 10.1039/C7CC00461C

    31. [31]

      S. Xie, Y. Wang, Q. Zhang, W. Deng, Y. Wang, ACS Catal. 4 (2014) 3644, https://doi.org/10.1021/cs500648p.  doi: 10.1021/cs500648p

    32. [32]

      Y. Chen, C. Chen, W. Hao, W. Wang, K. Xiong, Y. Qin, J. Fuel Chem. Technol. 52 (2024) 1798, https://doi.org/10.1016/S1872-5813(24)60472-X.  doi: 10.1016/S1872-5813(24)60472-X

    33. [33]

      G.-B. Xochiquetzalli, H.-P.M. Leticia, M.-M.J. Vicente, d.A.V. Paz, M.-C. Rubéen, M.-R. M. Elena, Tungsten 7 (2025) 284, https://doi.org/10.1007/s42864-024- 00303-y.  doi: 10.1007/s42864-024-00303-y

    34. [34]

      X. Wang, C. Chen, Q. Wang, K. Dai, Jiegou Huaxue 43 (2024) 100473, https://doi.org/10.1016/j.cjsc.2024.100473.  doi: 10.1016/j.cjsc.2024.100473

    35. [35]

      Q. Han, C. Wu, H. Jiao, R. Xu, Y. Wang, J. Xie, Q. Guo, J. Tang, Adv. Mater. 33 (2021) 2008180, https://doi.org/10.1002/adma.202008180.  doi: 10.1002/adma.202008180

    36. [36]

      M. Wu, J. Zhu, Y. Wu, S. Liu, K. Zheng, S. Wang, B. Li, J. Li, C. Liu, J. Hu, J. Zhu, Y. Pan, Y. Sun, Y. Xie, Angew. Chem. Int. Ed. 64 (2025) e202414814, https://doi.org/10.1002/anie.202414814.  doi: 10.1002/anie.202414814

    37. [37]

      H. Yu, Y. Zhao, C. Zhou, L. Shang, Y. Peng, Y. Cao, L.-Z. Wu, C.-H. Tung, T, Zhang, J. Mater. Chem. A 2 (2014) 3344, https://doi.org/10.1039/C3TA14108  doi: 10.1039/C3TA14108

    38. [38]

      L. Wang, Z. Mao, X. Mao, H. Sun, P. Guo, R. Huang, C. Han, X. Hu, A. Du, X. Wang, Small 20 (2024) 2309791, https://doi.org/10.1002/smll.202309791.  doi: 10.1002/smll.202309791

    39. [39]

      T. Jia, L. Wang, Z. Zhu, B. Zhu, Y. Zhou, G. Zhu, M. Zhu, H. Tao, Chin. Chem. Lett. 35 (2024) 108692, https://doi.org/10.1016/j.cclet.2023.108692.  doi: 10.1016/j.cclet.2023.108692

    40. [40]

      Y. Xu, W. Hou, K. Huang, H. Guo, Z. Wang, C. Lian, J. Zhang, D. Wu, Z. Lei, Z. Liu, L. Wang, Adv. Sci. 11 (2024) 2403607, https://doi.org/10.1002/advs.202403607.  doi: 10.1002/advs.202403607

    41. [41]

      R. Purbia, S.Y. Choi, C.H. Woo, J. Jeon, C. Lim, D.K. Lee, J.Y. Choi, H.-S. Oh, J. M. Baik, Appl. Catal. B Environ. Energy 345 (2024) 123694, https://doi.org/10.1016/j.apcatb.2024.123694.  doi: 10.1016/j.apcatb.2024.123694

    42. [42]

      X. Wang, X. Wang, H. Yang, A. Meng, Z. Li, L. Yang, L. Wang, S. Li, G. Li, J. Huang, Chem. Eng. J. 431 (2022) 134000, https://doi.org/10.1016/j.cej.2021.134000.  doi: 10.1016/j.cej.2021.134000

    43. [43]

      R. Yang, L. Mei, Y. Fan, Q. Zhang, R. Zhu, R. Amal, Z. Yin, Z. Zeng, Small Met. 5 (2021) 2100887, https://doi.org/10.1002/smtd.202100887.  doi: 10.1002/smtd.202100887

    44. [44]

      P. Hu, G. Liang, B. Zhu, W. Macyk, J. Yu, F. Xu, ACS Catal. 13 (2023) 12623, https://doi.org/10.1021/acscatal.3c03095.  doi: 10.1021/acscatal.3c03095

    45. [45]

      J. Bian, C. Huang, L. Wang, T. Hung, W.A. Daoud, R. Zhang, ACS Appl. Mater. Interfaces 6 (2014) 4883, https://doi.org/10.1021/am4059183.  doi: 10.1021/am4059183

    46. [46]

      S. Shen, H. Zhang, K. Song, Z. Wang, T. Shang, A. Gao, Q. Zhang, L, Gu, W. Zhong, Angew. Chem. Int. Ed. 63 (2024) e202315340, https://doi.org/10.1002/anie.202315340.  doi: 10.1002/anie.202315340

    47. [47]

      Z. Li, X. Wang, W. Tian, A. Meng, L. Yang, ACS Sustain. Chem. Eng. 7 (2019) 20190, https://doi.org/10.1021/acssuschemeng.9b06430.  doi: 10.1021/acssuschemeng.9b06430

    48. [48]

      J. Li, C. Zhang, T. Bao, Y. Xi, L. Yuan, Y. Zou, Y. Bi, C. Liu, C. Yu, Adv. Mater. 37 (2025) 2416210, https://doi.org/10.1002/adma.202416210.  doi: 10.1002/adma.202416210

    49. [49]

      H. Zhang, Y. Gao, S. Meng, Z. Wang, P. Wang, Z, Wang, C. Qiu, S. Chen, B. Weng, Y.- M. Zheng, Adv. Sci. 11 (2024) 2400099, https://doi.org/10.1002/advs.202400099.  doi: 10.1002/advs.202400099

    50. [50]

      Q. Li, Q. Tang, P. Xiong, D. Chen, J. Chen, Z. Wu, H. Wang, 46 (2023), https://doi.org/10.1016/S1872-2067(22)64199-8177.

    51. [51]

      Q. Chen, Y. Liu, B. Mao, Z. Wu, W. Yan, D. Zhang, Q. Li, H. Huang, Z. Kang, W. Shi, Adv. Funct. Mater. 33 (2023) 2305318, https://doi.org/10.1002/adfm.202305318.  doi: 10.1002/adfm.202305318

    52. [52]

      Y. Zhang, X. Ren, X. Zhao, S. Ding, X. Wu, Y. Liu, X. Zeng, X. Qu, H. Song, Y. Hu, L. Shi, S. Lu, Adv. Mater. 37 (2025) 2420197, https://doi.org/10.1002/adma.202420197.  doi: 10.1002/adma.202420197

    53. [53]

      X. Li, Y. Sun, J. Xu, Y. Shao, J. Wu, X. Xu, Y. Pan, H. Ju, J. Zhu, Y. Xie, Nat. Energy 4 (2019) 690, https://doi.org/10.1038/s41560-019-0431-1.  doi: 10.1038/s41560-019-0431-1

    54. [54]

      Y. Sun, K. Lai, X. Shi, N. Li, Y. Gao, L. Ge, Appl. Catal. B Environ. Energy 365 (2025) 124907, https://doi.org/10.1016/j.apcatb.2024.124907.  doi: 10.1016/j.apcatb.2024.124907

    55. [55]

      F. Xu, Y. He, J. Zhang, G. Liang, C. Liu, J. Yu, Angew. Chem. Int. Ed. 64 (2025) e202414672, https://doi.org/10.1002/anie.202414672.  doi: 10.1002/anie.202414672

    56. [56]

      W. Meng, X. Sui, Y. Liu, Y. He, H. Yuan, X. Zhu, Y. Zhou, Y. Zhou, Appl. Catal. B Environ. Energy 366 (2025) 125033, https://doi.org/10.1016/j. apcatb.2025.125033.  doi: 10.1016/j.apcatb.2025.125033

    57. [57]

      S. Si, H. Shou, Y. Mao, X. Bao, G. Zhai, K. Song, Z. Wang, P. Wang, Y. Liu, Z. Zheng, Y. Dai, L. Song, B. Huang, H. Cheng, Angew. Chem. Int. Ed. 61 (2022) e202209446, https://doi.org/10.1002/anie.202209446.  doi: 10.1002/anie.202209446

    58. [58]

      Y. Wu, Q. Chen, J. Zhu, K. Zheng, M. Wu, M. Fan, W. Yan, J. Hu, J. Zhu, Y. Pan, X. Jiao, Y. Sun, Y. Xie, Angew. Chem. Int. Ed. 62 (2023) e202301075, https://doi.org/10.1002/anie.202301075.  doi: 10.1002/anie.202301075

    59. [59]

      S. Gao, Q. Zhang, X. Su, X. Wu, X.-G. Zhang, Y. Guo, Z. Li, J. Wei, H. Wang, S. Zhang, J. Wang, J. Am. Chem. Soc. 145 (2023) 9520, https://doi.org/10.1021/jacs.2c11146.  doi: 10.1021/jacs.2c11146

    60. [60]

      T. Wang, L. Chen, C. Chen, M. Huang, Y. Huang, S. Liu, B. Li, ACS Nano 16 (2022) 2306, https://doi.org/10.1021/acsnano.1c08505.  doi: 10.1021/acsnano.1c08505

    61. [61]

      D. Chen, Z. Wang, J. Fu, J. Zhang, K. Dai, Sci. China Mater. 67 (2024) 541, https://doi.org/10.1007/s40843-023-2770-8.  doi: 10.1007/s40843-023-2770-8

  • 加载中
    1. [1]

      Yuejiao An Wenxuan Liu Yanfeng Zhang Jianjun Zhang Zhansheng Lu . Revealing Photoinduced Charge Transfer Mechanism of SnO2/BiOBr S-Scheme Heterostructure for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2407021-. doi: 10.3866/PKU.WHXB202407021

    2. [2]

      Xiutao Xu Chunfeng Shao Jinfeng Zhang Zhongliao Wang Kai Dai . Rational Design of S-Scheme CeO2/Bi2MoO6 Microsphere Heterojunction for Efficient Photocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309031-. doi: 10.3866/PKU.WHXB202309031

    3. [3]

      Jiaxing Cai Wendi Xu Haoqiang Chi Qian Liu Wa Gao Li Shi Jingxiang Low Zhigang Zou Yong Zhou . 具有0D/2D界面的InOOH/ZnIn2S4空心球S型异质结用于增强光催化CO2转化性能. Acta Physico-Chimica Sinica, 2024, 40(11): 2407002-. doi: 10.3866/PKU.WHXB202407002

    4. [4]

      Peng LiYuanying CuiZhongliao WangGraham DawsonChunfeng ShaoKai Dai . Efficient interfacial charge transfer of CeO2/Bi19Br3S27 S-scheme heterojunction for boosted photocatalytic CO2 reduction. Acta Physico-Chimica Sinica, 2025, 41(6): 100065-0. doi: 10.1016/j.actphy.2025.100065

    5. [5]

      Jianyu Qin Yuejiao An Yanfeng ZhangIn Situ Assembled ZnWO4/g-C3N4 S-Scheme Heterojunction with Nitrogen Defect for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2408002-. doi: 10.3866/PKU.WHXB202408002

    6. [6]

      Shijie Li Ke Rong Xiaoqin Wang Chuqi Shen Fang Yang Qinghong Zhang . Design of Carbon Quantum Dots/CdS/Ta3N5 S-Scheme Heterojunction Nanofibers for Efficient Photocatalytic Antibiotic Removal. Acta Physico-Chimica Sinica, 2024, 40(12): 2403005-. doi: 10.3866/PKU.WHXB202403005

    7. [7]

      Jiajie CaiChang ChengBowen LiuJianjun ZhangChuanjia JiangBei Cheng . CdS/DBTSO-BDTO S-scheme photocatalyst for H2 production and its charge transfer dynamics. Acta Physico-Chimica Sinica, 2025, 41(8): 100084-0. doi: 10.1016/j.actphy.2025.100084

    8. [8]

      Chenye An Abiduweili Sikandaier Xue Guo Yukun Zhu Hua Tang Dongjiang Yang . 红磷纳米颗粒嵌入花状CeO2分级S型异质结高效光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2405019-. doi: 10.3866/PKU.WHXB202405019

    9. [9]

      Kaihui Huang Dejun Chen Xin Zhang Rongchen Shen Peng Zhang Difa Xu Xin Li . Constructing Covalent Triazine Frameworks/N-Doped Carbon-Coated Cu2O S-Scheme Heterojunctions for Boosting Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(12): 2407020-. doi: 10.3866/PKU.WHXB202407020

    10. [10]

      Tieping CAOYuejun LIDawei SUN . Surface plasmon resonance effect enhanced photocatalytic CO2 reduction performance of S-scheme Bi2S3/TiO2 heterojunction. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 903-912. doi: 10.11862/CJIC.20240366

    11. [11]

      Menglan WeiXiaoxia OuYimeng WangMengyuan ZhangFei TengKaixuan Wang . S-scheme heterojunction g-C3N4/Bi2WO6 highly efficient degradation of levofloxacin: performance, mechanism and degradation pathway. Acta Physico-Chimica Sinica, 2025, 41(9): 100105-0. doi: 10.1016/j.actphy.2025.100105

    12. [12]

      You Wu Chang Cheng Kezhen Qi Bei Cheng Jianjun Zhang Jiaguo Yu Liuyang Zhang . ZnO/D-A共轭聚合物S型异质结高效光催化产H2O2及其电荷转移动力学研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-. doi: 10.3866/PKU.WHXB202406027

    13. [13]

      Weikang WangYadong WuJianjun ZhangKai MengJinhe LiLele WangQinqin Liu . Green H2O2 synthesis via melamine-foam supported S-scheme Cd0.5Zn0.5In2S4/S-doped carbon nitride heterojunction: synergistic interfacial charge transfer and local photothermal effect. Acta Physico-Chimica Sinica, 2025, 41(8): 100093-0. doi: 10.1016/j.actphy.2025.100093

    14. [14]

      Yang Xia Kangyan Zhang Heng Yang Lijuan Shi Qun Yi . 构建双通道路径增强iCOF/Bi2O3 S型异质结在纯水体系中光催化合成H2O2性能. Acta Physico-Chimica Sinica, 2024, 40(11): 2407012-. doi: 10.3866/PKU.WHXB202407012

    15. [15]

      Yi YangXin ZhouMiaoli GuBei ChengZhen WuJianjun Zhang . Femtosecond transient absorption spectroscopy investigation on ultrafast electron transfer in S-scheme ZnO/CdIn2S4 photocatalyst for H2O2 production and benzylamine oxidation. Acta Physico-Chimica Sinica, 2025, 41(6): 100064-0. doi: 10.1016/j.actphy.2025.100064

    16. [16]

      Xinyu MiaoHao YangJie HeJing WangZhiliang Jin . Adjusting the electronic structure of Keggin-type polyoxometalates to construct S-scheme heterojunction for photocatalytic hydrogen evolution. Acta Physico-Chimica Sinica, 2025, 41(6): 100051-0. doi: 10.1016/j.actphy.2025.100051

    17. [17]

      Jinwang Wu Qijing Xie Chengliang Zhang Haifeng Shi . 自旋极化增强ZnFe1.2Co0.8O4/BiVO4 S型异质结光催化性能降解四环素. Acta Physico-Chimica Sinica, 2025, 41(5): 100050-. doi: 10.1016/j.actphy.2025.100050

    18. [18]

      Kexin Dong Chuqi Shen Ruyu Yan Yanping Liu Chunqiang Zhuang Shijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-. doi: 10.3866/PKU.WHXB202310013

    19. [19]

      Changjun You Chunchun Wang Mingjie Cai Yanping Liu Baikang Zhu Shijie Li . 引入内建电场强化BiOBr/C3N5 S型异质结中光载流子分离以实现高效催化降解微污染物. Acta Physico-Chimica Sinica, 2024, 40(11): 2407014-. doi: 10.3866/PKU.WHXB202407014

    20. [20]

      Xuejiao Wang Suiying Dong Kezhen Qi Vadim Popkov Xianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-. doi: 10.3866/PKU.WHXB202408005

Metrics
  • PDF Downloads(1)
  • Abstract views(12)
  • HTML views(6)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return