Citation: Hengrui Zhang, Xijun Xu, Xun-Lu Li, Xiangwen Gao. Applications of Generative Artificial Intelligence in Battery Research: Current Status and Prospects[J]. Acta Physico-Chimica Sinica, ;2025, 41(10): 100115. doi: 10.1016/j.actphy.2025.100115 shu

Applications of Generative Artificial Intelligence in Battery Research: Current Status and Prospects

  • Corresponding author: Xun-Lu Li, xunlu.li@sjtu.edu.cn Xiangwen Gao, xiangwen.gao@sjtu.edu.cn
  • Received Date: 3 April 2025
    Revised Date: 24 May 2025
    Accepted Date: 10 June 2025

    Fund Project: the Startup Fund for Young Faculty at SJTU 23X010502145

  • With the rapid development of renewable energy and electric vehicles, batteries, as the core components of electrochemical energy storage systems, have become a global focus in both scientific research and industrial sectors due to their critical impact on system efficiency and safety. However, the complex multi-physics reactions within batteries make traditional mathematical models inadequate for comprehensively revealing their mechanisms. The key to solving this problem lies in introducing data-driven approaches, which have laid a solid foundation for battery research and development through extensive accumulation of experimental data and extraction of effective information. Generative artificial intelligence (GAI), leveraging its powerful latent pattern learning and data generation capabilities, has already found widespread applications in protein structure prediction, material inverse design, and data augmentation, demonstrating its broad application prospects. Applying GAI to battery research workflows with diverse battery data resources could provide innovative solutions to challenges in battery research. In this perspective, we introduce the core principles and latest advancements of generative models (GMs), including Generative Adversarial Network (GAN), Variational Auto-Encoder (VAE), and Diffusion Model (DM), which can learn the latent distribution of the input samples to generate new data by sampling from it. Applications of GAI in battery research are then reviewed. For battery materials design, by learning material compositions, structures, and properties, GM can generate novel candidate materials with desired properties through conditional constraints, significantly extending the chemical space to be explored. For electrode microstructure characterization, GM can serve as a bridge for interconversion and integration of different image data, enhance the quality of microscopic characterization, and generate realistic synthetic data. For battery state estimation, GM can perform data augmentation and feature extraction on battery datasets, which benefits the model performance for battery state estimation. Lastly, we discuss the challenges and future development directions in terms of data governance and model design, including data quality and diversity, data standardization and sharing, usability of synthetic data, interpretability of GM, and foundational models for battery research. For the innovation and advancement of battery technology, this perspective offers theoretical references and practical guidelines for implementing GAI as an effective tool in battery research workflows by discussing its status and prospects in this field.
  • 加载中
    1. [1]

      D. Chen, X. Yue, X. Li, X. Wu, Y. Zhou, Acta Phys. -Chim. Sin. 35 (2018) 667, https://doi.org/10.3866/PKU.WHXB201806062.  doi: 10.3866/PKU.WHXB201806062

    2. [2]

      J. Amici, P. Asinari, E. Ayerbe, P. Barboux, P. Bayle-Guillemaud, R. J. Behm, M. Berecibar, E. Berg, A. Bhowmik, S. Bodoardo, et al. , Adv. Energy Mater. 12 (2022) 2102785, https://doi.org/10.1002/aenm.202102785.  doi: 10.1002/aenm.202102785

    3. [3]

      R. Li, W. Zhao, R. Li, C. Gan, L. Chen, Z. Wang, X. Yang, J. Energy Chem. 106 (2025) 44, https://doi.org/10.1016/j.jechem.2025.02.038.  doi: 10.1016/j.jechem.2025.02.038

    4. [4]

      P. Xue, R. Qiu, C. Peng, Z. Peng, K. Ding, R. Long, L. Ma, Q. Zheng, Adv. Sci. 11 (2024) 2410065, https://doi.org/10.1002/advs.202410065.  doi: 10.1002/advs.202410065

    5. [5]

      S. Q. Shi, Z. W. Tu, X. X. Zou, S. Y. Sun, Z. W. Yang, Y. Liu, Energy Storage Sci. Technol. 11 (2022) 739, https://doi.org/10.19799/j.cnki.2095-4239.2022.0051.  doi: 10.19799/j.cnki.2095-4239.2022.0051

    6. [6]

      S. Shi, J. Gao, Y. Liu, Y. Zhao, Q. Wu, W. Ju, C. Ouyang, R. Xiao, Chin. Phys. B 25 (2015) 018212, https://doi.org/10.1088/1674-1056/25/1/018212.  doi: 10.1088/1674-1056/25/1/018212

    7. [7]

      Y. Ren, Y. Q. Luo, S. Q. Shi, Physics 51 (2022) 384, https://doi.org/10.7693/wl20220602.  doi: 10.7693/wl20220602

    8. [8]

      R. F. Ziesche, T. M. M. Heenan, P. Kumari, J. Williams, W. Li, M. E. Curd, T. L. Burnett, I. Robinson, D. J. L. Brett, M. J. Ehrhardt, et al. , Adv. Energy Mater. 13 (2023) 2300103, https://doi.org/10.1002/aenm.202300103.  doi: 10.1002/aenm.202300103

    9. [9]

      Y. Zhang, Y. Y. Ge, Z. Li, Energy Storage Sci. Technol. 13 (2024) 167, https://doi.org/10.19799/j.cnki.2095-4239.2023.0807.  doi: 10.19799/j.cnki.2095-4239.2023.0807

    10. [10]

      X. Chen, X. Liu, X. Shen, Q. Zhang, Angew. Chem. Int. Ed. 60 (2021) 24354, https://doi.org/10.1002/anie.202107369.  doi: 10.1002/anie.202107369

    11. [11]

      Y. Liu, Z. Yang, Z. Yu, Z. Liu, D. Liu, H. Lin, M. Li, S. Ma, M. Avdeev, S. Shi, J. Materiomics 9 (2023) 798, https://doi.org/10.1016/j.jmat.2023.05.001.  doi: 10.1016/j.jmat.2023.05.001

    12. [12]

      H. Cao, C. Tan, Z. Gao, Y. Xu, G. Chen, P. -A. Heng, S. Z. Li, IEEE Trans. Knowl. Data Eng. 36 (2024) 2814, https://doi.org/10.1109/TKDE.2024.3361474.  doi: 10.1109/TKDE.2024.3361474

    13. [13]

      J. Abramson, J. Adler, J. Dunger, R. Evans, T. Green, A. Pritzel, O. Ronneberger, L. Willmore, A. J. Ballard, J. Bambrick, et al. , Nature 630 (2024) 493, https://doi.org/10.1038/s41586-024-07487-w.  doi: 10.1038/s41586-024-07487-w

    14. [14]

      H. Park, Z. Li, A. Walsh, Matter 7 (2024) 2355, https://doi.org/10.1016/j.matt.2024.05.017.  doi: 10.1016/j.matt.2024.05.017

    15. [15]

      S. Li, F. You, Small 20 (2024) 2406153, https://doi.org/10.1002/smll.202406153.  doi: 10.1002/smll.202406153

    16. [16]

      H. Zhang, D. Niyato, W. Zhang, C. Zhao, H. Du, A. Jamalipour, S. Sun, Y. Pei, IEEE Internet Things J. 12 (2025) 6208, https://doi.org/10.1109/JIOT.2024.3511961.  doi: 10.1109/JIOT.2024.3511961

    17. [17]

      I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville, Y. Bengio, arXiv preprint (2014), https://doi.org/10.48550/arXiv.1406.2661.

    18. [18]

      L. Xu, M. Skoularidou, A. Cuesta-Infante, K. Veeramachaneni, arXiv preprint (2019), https://doi.org/10.48550/arXiv.1907.00503.

    19. [19]

      A. Radford, L. Metz, S. Chintala, arXiv preprint (2016), https://doi.org/10.48550/arXiv.1511.06434.

    20. [20]

      K. E. Smith, A. O. Smith, arXiv preprint (2020), https://doi.org/10.48550/arXiv.2006.16477.

    21. [21]

      M. Arjovsky, S. Chintala, L. Bottou, arXiv preprint (2017), https://doi.org/10.48550/arXiv.1701.07875.

    22. [22]

      I. Gulrajani, F. Ahmed, M. Arjovsky, V. Dumoulin, A. C. Courville, arXiv preprint (2017), https://doi.org/10.48550/arXiv.1704.00028.

    23. [23]

      M. Mirza, S. Osindero, arXiv preprint (2014), https://doi.org/10.48550/arXiv.1411.1784.

    24. [24]

      D. P. Kingma, M. Welling, arXiv preprint (2022), https://doi.org/10.48550/arXiv.1312.6114.

    25. [25]

      A. van den Oord, O. Vinyals, koray kavukcuoglu, arXiv preprint (2017), https://doi.org/10.48550/arXiv.1711.00937.

    26. [26]

      J. Ho, A. Jain, P. Abbeel, arXiv preprint (2020), https://doi.org/10.48550/arXiv.2006.11239.

    27. [27]

      F. -A. Croitoru, V. Hondru, R. T. Ionescu, M. Shah, IEEE Trans. Pattern Anal. Mach. Intell. 45 (2023) 10850, https://doi.org/10.1109/TPAMI.2023.3261988.  doi: 10.1109/TPAMI.2023.3261988

    28. [28]

      L. Yang, Z. Zhang, Y. Song, S. Hong, R. Xu, Y. Zhao, W. Zhang, B. Cui, M. -H. Yang, ACM Comput. Surv. 56 (2023) 105, https://doi.org/10.1145/3626235.  doi: 10.1145/3626235

    29. [29]

      M. R. Palacin, Acc. Mater. Res. 2 (2021) 319, https://doi.org/10.1021/accountsmr.1c00026.  doi: 10.1021/accountsmr.1c00026

    30. [30]

      X. Liu, K. Fan, X. Huang, J. Ge, Y. Liu, H. Kang, Chem. Eng. J. 490 (2024) 151625, https://doi.org/10.1016/j.cej.2024.151625.  doi: 10.1016/j.cej.2024.151625

    31. [31]

      Q. Zhao, L. Zhang, B. He, A. Ye, M. Avdeev, L. Chen, S. Shi, Energy Storage Mater. 40 (2021) 386, https://doi.org/10.1016/j.ensm.2021.05.033.  doi: 10.1016/j.ensm.2021.05.033

    32. [32]

      Z. Qu, X. Zhang, R. Xiao, Z. Sun, F. Li, Acta Phys. -Chim. Sin. 39 (2023) 2301019, https://doi.org/10.3866/PKU.WHXB202301019.  doi: 10.3866/PKU.WHXB202301019

    33. [33]

      S. Abouali, C. -H. Yim, A. Merati, Y. Abu-Lebdeh, V. Thangadurai, ACS Energy Lett. 6 (2021) 1920, https://doi.org/10.1021/acsenergylett.1c00401.  doi: 10.1021/acsenergylett.1c00401

    34. [34]

      C. Lv, X. Zhou, L. Zhong, C. Yan, M. Srinivasan, Z. W. Seh, C. Liu, H. Pan, S. Li, Y. Wen, et al. , Adv. Mater. 34 (2022) 2101474, https://doi.org/10.1002/adma.202101474.  doi: 10.1002/adma.202101474

    35. [35]

      Y. Liu, B. Guo, X. Zou, Y. Li, S. Shi, Energy Storage Mater. 31 (2020) 434, https://doi.org/10.1016/j.ensm.2020.06.033.  doi: 10.1016/j.ensm.2020.06.033

    36. [36]

      Y. Liu, T. Zhao, W. Ju, S. Shi, J. Materiomics 3 (2017) 159, https://doi.org/10.1016/j.jmat.2017.08.002.  doi: 10.1016/j.jmat.2017.08.002

    37. [37]

      X. Guo, Z. Wang, J. -H. Yang, X. -G. Gong, J. Mater. Chem. A 12 (2024) 10124, https://doi.org/10.1039/D4TA00721B.  doi: 10.1039/D4TA00721B

    38. [38]

      J. Xu, Y, Q, Wang, X, Fu, Q. F. Tang, J. C. Lian, L. Q. Wang, R. J. Xiao, Energy Storage Sci. Technol. 13 (2024) 2920, https://doi.org/10.19799/j.cnki.2095-4239.2024.0565.  doi: 10.19799/j.cnki.2095-4239.2024.0565

    39. [39]

      A. Jain, S. P. Ong, G. Hautier, W. Chen, W. D. Richards, S. Dacek, S. Cholia, D. Gunter, D. Skinner, G. Ceder, et al. , APL Mater. 1 (2013) 011002, https://doi.org/10.1063/1.4812323.  doi: 10.1063/1.4812323

    40. [40]

      V. Gupta, K. Choudhary, F. Tavazza, C. Campbell, W. Liao, A. Choudhary, A. Agrawal, Nat. Commun. 12 (2021) 6595, https://doi.org/10.1038/s41467-021-26921-5.  doi: 10.1038/s41467-021-26921-5

    41. [41]

      Y. Yang, N. Yao, Y. C. Gao, X. Chen, Y. X. Huang, S. Zhang, H. B. Zhu, L. Xu, Y. X. Yao, S. J. Yang, et al. , Angew. Chem. Int. Ed. (2025) e202505212, https://doi.org/10.1002/anie.202505212.  doi: 10.1002/anie.202505212

    42. [42]

      Y. Liu, L. Wu, Z. Yang, X. Zou, Z. Zou, Y. Lin, M. Avdeev, S. Shi, Adv. Funct. Mater. (2025) 2421621, https://doi.org/10.1002/adfm.202421621.  doi: 10.1002/adfm.202421621

    43. [43]

      Y. Liu, X. Ge, Z. Yang, S. Sun, D. Liu, M. Avdeev, S. Shi, J. Power Sources 545 (2022) 231946, https://doi.org/10.1016/j.jpowsour.2022.231946.  doi: 10.1016/j.jpowsour.2022.231946

    44. [44]

      Y. Liu, J. M. Wu, M. Avdeev, S. Q. Shi, Adv. Theory Simul. 3 (2020) 1900215, https://doi.org/10.1002/adts.201900215.  doi: 10.1002/adts.201900215

    45. [45]

      T. Weiss, E. M. Yanes, S. Chakraborty, L. Cosmo, A. M. Bronstein, R. Gershoni-Poranne, Nat. Comput. Sci. 3 (2023) 873, https://doi.org/10.1038/s43588-023-00532-0.  doi: 10.1038/s43588-023-00532-0

    46. [46]

      Z. Ren, S. I. P. Tian, J. Noh, F. Oviedo, G. Xing, J. Li, Q. Liang, R. Zhu, A. G. Aberle, S. Sun, et al. , Matter 5 (2022) 314, https://doi.org/10.1016/j.matt.2021.11.032.  doi: 10.1016/j.matt.2021.11.032

    47. [47]

      A. S. Fuhr, B. G. Sumpter, Front. Mater. 9 (2022) 865270, https://doi.org/10.3389/fmats.2022.865270.  doi: 10.3389/fmats.2022.865270

    48. [48]

      C. Zeni, R. Pinsler, D. Zügner, A. Fowler, M. Horton, X. Fu, Z. Wang, A. Shysheya, J. Crabbé, S. Ueda, et al. , Nature (2025) 1, https://doi.org/10.1038/s41586-025-08628-5.  doi: 10.1038/s41586-025-08628-5

    49. [49]

      Z. Yang, W. Ye, X. Lei, D. Schweigert, H. -K. Kwon, A. Khajeh, Npj Comput. Mater 10 (2024) 296.https://doi.org/10.1038/s41524-024-01470-9.  doi: 10.1038/s41524-024-01470-9

    50. [50]

      X. Chen, M. Liu, S. Yin, Y. C. Gao, N. Yao, Q. Zhang, Angew. Chem. Int. Ed. (2025) e202503105, https://doi.org/10.1002/anie.202503105.  doi: 10.1002/anie.202503105

    51. [51]

      A. C. Ngandjong, T. Lombardo, E. N. Primo, M. Chouchane, A. Shodiev, O. Arcelus, A. A. Franco, J. Power Sources 485 (2021) 229320, https://doi.org/10.1016/j.jpowsour.2020.229320.  doi: 10.1016/j.jpowsour.2020.229320

    52. [52]

      S. Kench, I. Squires, A. Dahari, F. Brosa Planella, S. A. Roberts, S. J. Cooper, Matter 7 (2024) 4260, https://doi.org/10.1016/j.matt.2024.08.014.  doi: 10.1016/j.matt.2024.08.014

    53. [53]

      D. Liu, Z. Shadike, R. Lin, K. Qian, H. Li, K. Li, S. Wang, Q. Yu, M. Liu, S. Ganapathy, et al., Adv. Mater. 31 (2019) 1806620, https://doi.org/10.1002/adma.201806620.  doi: 10.1002/adma.201806620

    54. [54]

      X. Liu, L. Zhang, H. Yu, J. Wang, J. Li, K. Yang, Y. Zhao, H. Wang, B. Wu, N. P. Brandon, et al. , Adv. Energy Mater. 12 (2022) 2200889, https://doi.org/10.1002/aenm.202200889.  doi: 10.1002/aenm.202200889

    55. [55]

      D. P. Finegan, I. Squires, A. Dahari, S. Kench, K. L. Jungjohann, S. J. Cooper, ACS Energy Lett. 7 (2022) 4368, https://doi.org/10.1021/acsenergylett.2c01996.  doi: 10.1021/acsenergylett.2c01996

    56. [56]

      O. Furat, D. P. Finegan, Z. Yang, M. Neumann, S. Kim, T. R. Tanim, P. Weddle, K. Smith, V. Schmidt, Energy Storage Mater. 64 (2024) 103036, https://doi.org/10.1016/j.ensm.2023.103036.  doi: 10.1016/j.ensm.2023.103036

    57. [57]

      O. Furat, D. P. Finegan, Z. Yang, T. Kirstein, K. Smith, V. Schmidt, Npj Comput. Mater. 8 (2022) 68, https://doi.org/10.1038/s41524-022-00749-z.  doi: 10.1038/s41524-022-00749-z

    58. [58]

      S. Müller, C. Sauter, R. Shunmugasundaram, N. Wenzler, V. De Andrade, F. De Carlo, E. Konukoglu, V. Wood, Nat. Commun. 12 (2021) 6205, https://doi.org/10.1038/s41467-021-26480-9.  doi: 10.1038/s41467-021-26480-9

    59. [59]

      A. Khan, C. H. Lee, P. Y. Huang, B. K. Clark, Npj Comput. Mater. 9 (2023) 85, https://doi.org/10.1038/s41524-023-01042-3.  doi: 10.1038/s41524-023-01042-3

    60. [60]

      A. Gayon-Lombardo, L. Mosser, N. P. Brandon, S. J. Cooper, Npj Comput. Mater. 6 (2020) 82, https://doi.org/10.1038/s41524-020-0340-7.  doi: 10.1038/s41524-020-0340-7

    61. [61]

      S. Kench, S. J. Cooper, Nat. Mach. Intell. 3 (2021) 299, https://doi.org/10.1038/s42256-021-00322-1.  doi: 10.1038/s42256-021-00322-1

    62. [62]

      W. Wang, Y. Zhang, B. Xie, L. Huang, S. Dong, G. Xu, G. Cui, Adv. Energy Mater. 14 (2024) 2304173, https://doi.org/10.1002/aenm.202304173.  doi: 10.1002/aenm.202304173

    63. [63]

      K. Liu, Z. Wei, C. Zhang, Y. Shang, R. Teodorescu, Q. L. Han, IEEECAA J. Autom. Sin. 9 (2022) 1139, https://doi.org/10.1109/JAS.2022.105599.  doi: 10.1109/JAS.2022.105599

    64. [64]

      C. Sun, Z. He, H. Lin, L. Cai, H. Cai, M. Gao, Appl. Soft Comput. 132 (2023) 109903, https://doi.org/10.1016/j.asoc.2022.109903.  doi: 10.1016/j.asoc.2022.109903

    65. [65]

      F. Hu, C. Dong, L. Tian, Y. Mu, X. Yu, H. Jia, Energy AI 16 (2024) 100321, https://doi.org/10.1016/j.egyai.2023.100321.  doi: 10.1016/j.egyai.2023.100321

    66. [66]

      X. Qiu, S. Wang, K. Chen, Appl. Soft Comput. 142 (2023) 110281, https://doi.org/10.1016/j.asoc.2023.110281.  doi: 10.1016/j.asoc.2023.110281

    67. [67]

      L. Jiang, C. Hu, S. Ji, H. Zhao, J. Chen, G. He, Appl. Energy 377 (2025) 124604, https://doi.org/10.1016/j.apenergy.2024.124604.  doi: 10.1016/j.apenergy.2024.124604

    68. [68]

      S. Tao, R. Ma, Z. Zhao, G. Ma, L. Su, H. Chang, Y. Chen, H. Liu, Z. Liang, T. Cao, et al. , Nat. Commun. 15 (2024) 10154, https://doi.org/10.1038/s41467-024-54454-0.  doi: 10.1038/s41467-024-54454-0

    69. [69]

      S. Kim, Y. Y. Choi, J. I. Choi, Appl. Energy 308 (2022) 118317, https://doi.org/10.1016/j.apenergy.2021.118317.  doi: 10.1016/j.apenergy.2021.118317

    70. [70]

      D. Doonyapisut, B. Kim, J. K. Kim, E. Lee, C. -H. Chung, Eng. Appl. Artif. Intell. 126 (2023) 107027, https://doi.org/10.1016/j.engappai.2023.107027.  doi: 10.1016/j.engappai.2023.107027

    71. [71]

      Y. Liu, Q. Li, K. Wang, Energy Storage Mater. 69 (2024) 103394, https://doi.org/10.1016/j.ensm.2024.103394.  doi: 10.1016/j.ensm.2024.103394

    72. [72]

      Y. Liu, Z. Yang, X. Zou, S. Ma, D. Liu, M. Avdeev, S. Shi, Natl. Sci. Rev. 10 (2023) nwad125, https://doi.org/10.1093/nsr/nwad125.  doi: 10.1093/nsr/nwad125

    73. [73]

      Y. Liu, S. C. Ma, Z. W. Yang, X. X. Zou, S. Q. Shi, J. Chin. Ceram. Soc. 51 (2023) 427, https://doi.org/10.14062/j.issn.0454-5648.20220991.  doi: 10.14062/j.issn.0454-5648.20220991

    74. [74]

      D. Lyu, B. Zhang, E. Zio, J. Xiang, Cell Rep. Phys. Sci. 5 (2024) 102164, https://doi.org/10.1016/j.xcrp.2024.102164.  doi: 10.1016/j.xcrp.2024.102164

    75. [75]

      H. Zhang, X. Gui, S. Zheng, Z. Lu, Y. Li, J. Bian, arXiv preprint (2024), https://doi.org/10.48550/arXiv.2310.14714.

    76. [76]

      F. L. Barsha, W. Eberle, Mach. Learn. 114 (2025) 141, https://doi.org/10.1007/s10994-025-06772-7.  doi: 10.1007/s10994-025-06772-7

    77. [77]

      A. Bandi, P. V. S. R. Adapa, Y. E. V. P. K. Kuchi, Future Internet 15 (2023) 260, https://doi.org/10.3390/fi15080260.  doi: 10.3390/fi15080260

    78. [78]

      W. Saeed, C. Omlin, Knowl. -Based Syst. 263 (2023) 110273, https://doi.org/10.1016/j.knosys.2023.110273.  doi: 10.1016/j.knosys.2023.110273

    79. [79]

      P. Li, F. Guo, Y. Li, X. Yang, X. Yang, Energy 315 (2025) 134344, https://doi.org/10.1016/j.energy.2024.134344.  doi: 10.1016/j.energy.2024.134344

    80. [80]

      Y. Xu, S. Kohtz, J. Boakye, P. Gardoni, P. Wang, Reliab. Eng. Syst. Saf. 230 (2023) 108900, https://doi.org/10.1016/j.ress.2022.108900.  doi: 10.1016/j.ress.2022.108900

    81. [81]

      F. Wang, Z. Zhai, Z. Zhao, Y. Di, X. Chen, Nat. Commun. 15 (2024) 4332, https://doi.org/10.1038/s41467-024-48779-z.  doi: 10.1038/s41467-024-48779-z

    82. [82]

      R. Tan, X. Lu, M. Cheng, J. Li, J. Huang, T. Y. Zhang, Energy Storage Mater. 72 (2024) 103725, https://doi.org/10.1016/j.ensm.2024.103725.  doi: 10.1016/j.ensm.2024.103725

    83. [83]

      Z. Wang, D. Shi, J. Zhao, Z. Chu, D. Guo, C. Eze, X. Qu, Y. Lian, A. F. Burke, eTransportation 19 (2024) 100309, https://doi.org/10.1016/j.etran.2023.100309.  doi: 10.1016/j.etran.2023.100309

    84. [84]

      S. Tu, Y. Zhang, J. Zhang, Z. Fu, Y. Zhang, Y. Yang, arXiv preprint (2024), https://doi.org/10.48550/arXiv.2408.04057.

  • 加载中
    1. [1]

      Lingli Wu Shengbin Lei . Generative AI-Driven Innovative Chemistry Teaching: Current Status and Future Prospects. University Chemistry, 2025, 40(9): 206-219. doi: 10.12461/PKU.DXHX202503069

    2. [2]

      Jiandong LiuZhijia ZhangKamenskii MikhailVolkov FilippEliseeva SvetlanaJianmin Ma . Research Progress on Cathode Electrolyte Interphase in High-Voltage Lithium Batteries. Acta Physico-Chimica Sinica, 2025, 41(2): 2308048-0. doi: 10.3866/PKU.WHXB202308048

    3. [3]

      Qi Lin Jianhua Liu Liyun Yao Xiuyan Yang Weina He Ruolin Yang . Exploring the Application of Superstar AI Teaching Assistant in Medical Organic Chemistry Courses. University Chemistry, 2025, 40(9): 142-147. doi: 10.12461/PKU.DXHX202502035

    4. [4]

      Caiyun JinZexuan WuGuopeng LiZhan LuoNian-Wu Li . Phosphazene-based flame-retardant artificial interphase layer for lithium metal batteries. Acta Physico-Chimica Sinica, 2025, 41(8): 100094-0. doi: 10.1016/j.actphy.2025.100094

    5. [5]

      Da WangXiaobin YinJianfang WuYaqiao LuoSiqi Shi . All-Solid-State Lithium Cathode/Electrolyte Interfacial Resistance: From Space-Charge Layer Model to Characterization and Simulation. Acta Physico-Chimica Sinica, 2024, 40(7): 2307029-0. doi: 10.3866/PKU.WHXB202307029

    6. [6]

      Lei Qin Kai Guo . Application of Generative Artificial Intelligence in the Simulation of Acid-Base Titration Images. University Chemistry, 2025, 40(9): 11-18. doi: 10.12461/PKU.DXHX202408123

    7. [7]

      Ruming Yuan Laiying Zhang Xiaoming Xu Pingping Wu Gang Fu . Generative Artificial Intelligence Empowering Physical Chemistry Teaching. University Chemistry, 2025, 40(9): 238-244. doi: 10.12461/PKU.DXHX202504069

    8. [8]

      Meirong Cui Mo Xie Jie Chao . Design and Reflections on the Integration of Artificial Intelligence in Physical Chemistry Laboratory Courses. University Chemistry, 2025, 40(5): 291-300. doi: 10.12461/PKU.DXHX202412015

    9. [9]

      Zhenming Xu Mingbo Zheng Zhenhui Liu Duo Chen Qingsheng Liu . Experimental Design of Project-Driven Teaching in Computational Materials Science: First-Principles Calculations of the LiFePO4 Cathode Material for Lithium-Ion Batteries. University Chemistry, 2024, 39(4): 140-148. doi: 10.3866/PKU.DXHX202307022

    10. [10]

      Jiahe LIUGan TANGKai CHENMingda ZHANG . Effect of low-temperature electrolyte additives on low-temperature performance of lithium cobaltate batteries. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 719-728. doi: 10.11862/CJIC.20250023

    11. [11]

      Zhuo HanDanfeng ZhangHaixian WangGuorui ZhengMing LiuYanbing He . Research Progress and Prospect on Electrolyte Additives for Interface Reconstruction of Long-Life Ni-Rich Lithium Batteries. Acta Physico-Chimica Sinica, 2024, 40(9): 2307034-0. doi: 10.3866/PKU.WHXB202307034

    12. [12]

      Kai Yang Gehua Bi Yong Zhang Delin Jin Ziwei Xu Qian Wang Lingbao Xing . Comprehensive Polymer Chemistry Experiment Design: Preparation and Characterization of Rigid Polyurethane Foam Materials. University Chemistry, 2024, 39(4): 206-212. doi: 10.3866/PKU.DXHX202308045

    13. [13]

      Feng Lu Tao Wang Qi Wang . Preparation and Characterization of Water-Soluble Silver Nanoclusters: A New Design and Teaching Practice in Materials Chemistry Experiment. University Chemistry, 2025, 40(4): 375-381. doi: 10.12461/PKU.DXHX202406005

    14. [14]

      Mingyang MenJinghua WuGaozhan LiuJing ZhangNini ZhangXiayin Yao . Sulfide Solid Electrolyte Synthesized by Liquid Phase Approach and Application in All-Solid-State Lithium Batteries. Acta Physico-Chimica Sinica, 2025, 41(1): 100004-0. doi: 10.3866/PKU.WHXB202309019

    15. [15]

      Jing Du Xi Yu Xiaofei Ma Wentao Zhao . Artificial Intelligence & Chemistry Course Construction. University Chemistry, 2024, 39(11): 65-71. doi: 10.12461/PKU.DXHX202403072

    16. [16]

      Tianlong Zhang Rongling Zhang Hongsheng Tang Yan Li Hua Li . Exploration on the Integration Mode of Instrumental Analysis with Science and Education under the Background of Artificial Intelligence Era. University Chemistry, 2024, 39(8): 365-374. doi: 10.12461/PKU.DXHX202403014

    17. [17]

      Cheng-an Tao Jian Huang Yujiao Li . Exploring the Application of Artificial Intelligence in University Chemistry Laboratory Instruction. University Chemistry, 2025, 40(9): 5-10. doi: 10.12461/PKU.DXHX202408132

    18. [18]

      Xiao Ma Junjie Wang Xin Chen Jingcheng Li Lihong Zhao Xueping Sun Shaojuan Cheng Fang Wang . Exploring Innovative Approaches to Chemistry Instructional Organization Driven by Artificial Intelligence. University Chemistry, 2025, 40(9): 99-106. doi: 10.12461/PKU.DXHX202410085

    19. [19]

      Run Yang Huajie Pang Huiping Zang Ruizhong Zhang Zhicheng Zhang Xiyan Li Libing Zhang . Artificial Intelligence-Enabled DNA Computing: Exploring New Frontiers in Bioinformatics. University Chemistry, 2025, 40(9): 107-117. doi: 10.12461/PKU.DXHX202412135

    20. [20]

      Yan Zhang Limin Zhou Xiaoyan Cao Mutai Bao . Exploring the Application of Artificial Intelligence in Marine-Themed Integrated Physical Chemistry Experiments. University Chemistry, 2025, 40(9): 118-125. doi: 10.12461/PKU.DXHX202503062

Metrics
  • PDF Downloads(0)
  • Abstract views(19)
  • HTML views(3)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return