生成式人工智能在电池研究中的应用:现状与展望

张恒睿 徐熹骏 李璕琭 杲祥文

引用本文: 张恒睿, 徐熹骏, 李璕琭, 杲祥文. 生成式人工智能在电池研究中的应用:现状与展望[J]. 物理化学学报, 2025, 41(10): 100115. doi: 10.1016/j.actphy.2025.100115 shu
Citation:  Hengrui Zhang, Xijun Xu, Xun-Lu Li, Xiangwen Gao. Applications of Generative Artificial Intelligence in Battery Research: Current Status and Prospects[J]. Acta Physico-Chimica Sinica, 2025, 41(10): 100115. doi: 10.1016/j.actphy.2025.100115 shu

生成式人工智能在电池研究中的应用:现状与展望

    通讯作者: 李璕琭, xunlu.li@sjtu.edu.cn; 杲祥文, xiangwen.gao@sjtu.edu.cn
  • 基金项目:

    上海交通大学“新进青年教师启动计划” 23X010502145

摘要: 随着可再生能源与电动交通工具的快速发展,电池作为电化学储能系统的核心组件已成为全球科研与产业界的关注焦点。然而,电池内部复杂的多物理场耦合效应使得传统数学模型难以全面揭示其反应及失效机理,而数据驱动方法通过大量积累实验数据并从中提取有效信息,为电池研发奠定了坚实的基础。生成式人工智能(GAI)凭借其强大的潜在规律学习与数据生成能力,在蛋白质结构预测、材料逆向设计、数据增强等方面得到了广泛的应用,在电池多尺度研究中具有广阔的应用前景。本文阐释了生成式模型(GM)的核心原理,并从材料设计、微观表征及状态估计三方面综述了其在电池研究中的最新进展,最后探讨了其当前面临的挑战及未来发展方向,为将GAI这一创新解决方案运用于电池研发的工作流中提供了理论参考和实践依据。

English

    1. [1]

      D. Chen, X. Yue, X. Li, X. Wu, Y. Zhou, Acta Phys. -Chim. Sin. 35 (2018) 667, https://doi.org/10.3866/PKU.WHXB201806062. doi: 10.3866/PKU.WHXB201806062

    2. [2]

      J. Amici, P. Asinari, E. Ayerbe, P. Barboux, P. Bayle-Guillemaud, R. J. Behm, M. Berecibar, E. Berg, A. Bhowmik, S. Bodoardo, et al. , Adv. Energy Mater. 12 (2022) 2102785, https://doi.org/10.1002/aenm.202102785. doi: 10.1002/aenm.202102785

    3. [3]

      R. Li, W. Zhao, R. Li, C. Gan, L. Chen, Z. Wang, X. Yang, J. Energy Chem. 106 (2025) 44, https://doi.org/10.1016/j.jechem.2025.02.038. doi: 10.1016/j.jechem.2025.02.038

    4. [4]

      P. Xue, R. Qiu, C. Peng, Z. Peng, K. Ding, R. Long, L. Ma, Q. Zheng, Adv. Sci. 11 (2024) 2410065, https://doi.org/10.1002/advs.202410065. doi: 10.1002/advs.202410065

    5. [5]

      S. Q. Shi, Z. W. Tu, X. X. Zou, S. Y. Sun, Z. W. Yang, Y. Liu, Energy Storage Sci. Technol. 11 (2022) 739, https://doi.org/10.19799/j.cnki.2095-4239.2022.0051. doi: 10.19799/j.cnki.2095-4239.2022.0051

    6. [6]

      S. Shi, J. Gao, Y. Liu, Y. Zhao, Q. Wu, W. Ju, C. Ouyang, R. Xiao, Chin. Phys. B 25 (2015) 018212, https://doi.org/10.1088/1674-1056/25/1/018212. doi: 10.1088/1674-1056/25/1/018212

    7. [7]

      Y. Ren, Y. Q. Luo, S. Q. Shi, Physics 51 (2022) 384, https://doi.org/10.7693/wl20220602. doi: 10.7693/wl20220602

    8. [8]

      R. F. Ziesche, T. M. M. Heenan, P. Kumari, J. Williams, W. Li, M. E. Curd, T. L. Burnett, I. Robinson, D. J. L. Brett, M. J. Ehrhardt, et al. , Adv. Energy Mater. 13 (2023) 2300103, https://doi.org/10.1002/aenm.202300103. doi: 10.1002/aenm.202300103

    9. [9]

      Y. Zhang, Y. Y. Ge, Z. Li, Energy Storage Sci. Technol. 13 (2024) 167, https://doi.org/10.19799/j.cnki.2095-4239.2023.0807. doi: 10.19799/j.cnki.2095-4239.2023.0807

    10. [10]

      X. Chen, X. Liu, X. Shen, Q. Zhang, Angew. Chem. Int. Ed. 60 (2021) 24354, https://doi.org/10.1002/anie.202107369. doi: 10.1002/anie.202107369

    11. [11]

      Y. Liu, Z. Yang, Z. Yu, Z. Liu, D. Liu, H. Lin, M. Li, S. Ma, M. Avdeev, S. Shi, J. Materiomics 9 (2023) 798, https://doi.org/10.1016/j.jmat.2023.05.001. doi: 10.1016/j.jmat.2023.05.001

    12. [12]

      H. Cao, C. Tan, Z. Gao, Y. Xu, G. Chen, P. -A. Heng, S. Z. Li, IEEE Trans. Knowl. Data Eng. 36 (2024) 2814, https://doi.org/10.1109/TKDE.2024.3361474. doi: 10.1109/TKDE.2024.3361474

    13. [13]

      J. Abramson, J. Adler, J. Dunger, R. Evans, T. Green, A. Pritzel, O. Ronneberger, L. Willmore, A. J. Ballard, J. Bambrick, et al. , Nature 630 (2024) 493, https://doi.org/10.1038/s41586-024-07487-w. doi: 10.1038/s41586-024-07487-w

    14. [14]

      H. Park, Z. Li, A. Walsh, Matter 7 (2024) 2355, https://doi.org/10.1016/j.matt.2024.05.017. doi: 10.1016/j.matt.2024.05.017

    15. [15]

      S. Li, F. You, Small 20 (2024) 2406153, https://doi.org/10.1002/smll.202406153. doi: 10.1002/smll.202406153

    16. [16]

      H. Zhang, D. Niyato, W. Zhang, C. Zhao, H. Du, A. Jamalipour, S. Sun, Y. Pei, IEEE Internet Things J. 12 (2025) 6208, https://doi.org/10.1109/JIOT.2024.3511961. doi: 10.1109/JIOT.2024.3511961

    17. [17]

      I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville, Y. Bengio, arXiv preprint (2014), https://doi.org/10.48550/arXiv.1406.2661.

    18. [18]

      L. Xu, M. Skoularidou, A. Cuesta-Infante, K. Veeramachaneni, arXiv preprint (2019), https://doi.org/10.48550/arXiv.1907.00503.

    19. [19]

      A. Radford, L. Metz, S. Chintala, arXiv preprint (2016), https://doi.org/10.48550/arXiv.1511.06434.

    20. [20]

      K. E. Smith, A. O. Smith, arXiv preprint (2020), https://doi.org/10.48550/arXiv.2006.16477.

    21. [21]

      M. Arjovsky, S. Chintala, L. Bottou, arXiv preprint (2017), https://doi.org/10.48550/arXiv.1701.07875.

    22. [22]

      I. Gulrajani, F. Ahmed, M. Arjovsky, V. Dumoulin, A. C. Courville, arXiv preprint (2017), https://doi.org/10.48550/arXiv.1704.00028.

    23. [23]

      M. Mirza, S. Osindero, arXiv preprint (2014), https://doi.org/10.48550/arXiv.1411.1784.

    24. [24]

      D. P. Kingma, M. Welling, arXiv preprint (2022), https://doi.org/10.48550/arXiv.1312.6114.

    25. [25]

      A. van den Oord, O. Vinyals, koray kavukcuoglu, arXiv preprint (2017), https://doi.org/10.48550/arXiv.1711.00937.

    26. [26]

      J. Ho, A. Jain, P. Abbeel, arXiv preprint (2020), https://doi.org/10.48550/arXiv.2006.11239.

    27. [27]

      F. -A. Croitoru, V. Hondru, R. T. Ionescu, M. Shah, IEEE Trans. Pattern Anal. Mach. Intell. 45 (2023) 10850, https://doi.org/10.1109/TPAMI.2023.3261988. doi: 10.1109/TPAMI.2023.3261988

    28. [28]

      L. Yang, Z. Zhang, Y. Song, S. Hong, R. Xu, Y. Zhao, W. Zhang, B. Cui, M. -H. Yang, ACM Comput. Surv. 56 (2023) 105, https://doi.org/10.1145/3626235. doi: 10.1145/3626235

    29. [29]

      M. R. Palacin, Acc. Mater. Res. 2 (2021) 319, https://doi.org/10.1021/accountsmr.1c00026. doi: 10.1021/accountsmr.1c00026

    30. [30]

      X. Liu, K. Fan, X. Huang, J. Ge, Y. Liu, H. Kang, Chem. Eng. J. 490 (2024) 151625, https://doi.org/10.1016/j.cej.2024.151625. doi: 10.1016/j.cej.2024.151625

    31. [31]

      Q. Zhao, L. Zhang, B. He, A. Ye, M. Avdeev, L. Chen, S. Shi, Energy Storage Mater. 40 (2021) 386, https://doi.org/10.1016/j.ensm.2021.05.033. doi: 10.1016/j.ensm.2021.05.033

    32. [32]

      Z. Qu, X. Zhang, R. Xiao, Z. Sun, F. Li, Acta Phys. -Chim. Sin. 39 (2023) 2301019, https://doi.org/10.3866/PKU.WHXB202301019. doi: 10.3866/PKU.WHXB202301019

    33. [33]

      S. Abouali, C. -H. Yim, A. Merati, Y. Abu-Lebdeh, V. Thangadurai, ACS Energy Lett. 6 (2021) 1920, https://doi.org/10.1021/acsenergylett.1c00401. doi: 10.1021/acsenergylett.1c00401

    34. [34]

      C. Lv, X. Zhou, L. Zhong, C. Yan, M. Srinivasan, Z. W. Seh, C. Liu, H. Pan, S. Li, Y. Wen, et al. , Adv. Mater. 34 (2022) 2101474, https://doi.org/10.1002/adma.202101474. doi: 10.1002/adma.202101474

    35. [35]

      Y. Liu, B. Guo, X. Zou, Y. Li, S. Shi, Energy Storage Mater. 31 (2020) 434, https://doi.org/10.1016/j.ensm.2020.06.033. doi: 10.1016/j.ensm.2020.06.033

    36. [36]

      Y. Liu, T. Zhao, W. Ju, S. Shi, J. Materiomics 3 (2017) 159, https://doi.org/10.1016/j.jmat.2017.08.002. doi: 10.1016/j.jmat.2017.08.002

    37. [37]

      X. Guo, Z. Wang, J. -H. Yang, X. -G. Gong, J. Mater. Chem. A 12 (2024) 10124, https://doi.org/10.1039/D4TA00721B. doi: 10.1039/D4TA00721B

    38. [38]

      J. Xu, Y, Q, Wang, X, Fu, Q. F. Tang, J. C. Lian, L. Q. Wang, R. J. Xiao, Energy Storage Sci. Technol. 13 (2024) 2920, https://doi.org/10.19799/j.cnki.2095-4239.2024.0565. doi: 10.19799/j.cnki.2095-4239.2024.0565

    39. [39]

      A. Jain, S. P. Ong, G. Hautier, W. Chen, W. D. Richards, S. Dacek, S. Cholia, D. Gunter, D. Skinner, G. Ceder, et al. , APL Mater. 1 (2013) 011002, https://doi.org/10.1063/1.4812323. doi: 10.1063/1.4812323

    40. [40]

      V. Gupta, K. Choudhary, F. Tavazza, C. Campbell, W. Liao, A. Choudhary, A. Agrawal, Nat. Commun. 12 (2021) 6595, https://doi.org/10.1038/s41467-021-26921-5. doi: 10.1038/s41467-021-26921-5

    41. [41]

      Y. Yang, N. Yao, Y. C. Gao, X. Chen, Y. X. Huang, S. Zhang, H. B. Zhu, L. Xu, Y. X. Yao, S. J. Yang, et al. , Angew. Chem. Int. Ed. (2025) e202505212, https://doi.org/10.1002/anie.202505212. doi: 10.1002/anie.202505212

    42. [42]

      Y. Liu, L. Wu, Z. Yang, X. Zou, Z. Zou, Y. Lin, M. Avdeev, S. Shi, Adv. Funct. Mater. (2025) 2421621, https://doi.org/10.1002/adfm.202421621. doi: 10.1002/adfm.202421621

    43. [43]

      Y. Liu, X. Ge, Z. Yang, S. Sun, D. Liu, M. Avdeev, S. Shi, J. Power Sources 545 (2022) 231946, https://doi.org/10.1016/j.jpowsour.2022.231946. doi: 10.1016/j.jpowsour.2022.231946

    44. [44]

      Y. Liu, J. M. Wu, M. Avdeev, S. Q. Shi, Adv. Theory Simul. 3 (2020) 1900215, https://doi.org/10.1002/adts.201900215. doi: 10.1002/adts.201900215

    45. [45]

      T. Weiss, E. M. Yanes, S. Chakraborty, L. Cosmo, A. M. Bronstein, R. Gershoni-Poranne, Nat. Comput. Sci. 3 (2023) 873, https://doi.org/10.1038/s43588-023-00532-0. doi: 10.1038/s43588-023-00532-0

    46. [46]

      Z. Ren, S. I. P. Tian, J. Noh, F. Oviedo, G. Xing, J. Li, Q. Liang, R. Zhu, A. G. Aberle, S. Sun, et al. , Matter 5 (2022) 314, https://doi.org/10.1016/j.matt.2021.11.032. doi: 10.1016/j.matt.2021.11.032

    47. [47]

      A. S. Fuhr, B. G. Sumpter, Front. Mater. 9 (2022) 865270, https://doi.org/10.3389/fmats.2022.865270. doi: 10.3389/fmats.2022.865270

    48. [48]

      C. Zeni, R. Pinsler, D. Zügner, A. Fowler, M. Horton, X. Fu, Z. Wang, A. Shysheya, J. Crabbé, S. Ueda, et al. , Nature (2025) 1, https://doi.org/10.1038/s41586-025-08628-5. doi: 10.1038/s41586-025-08628-5

    49. [49]

      Z. Yang, W. Ye, X. Lei, D. Schweigert, H. -K. Kwon, A. Khajeh, Npj Comput. Mater 10 (2024) 296.https://doi.org/10.1038/s41524-024-01470-9. doi: 10.1038/s41524-024-01470-9

    50. [50]

      X. Chen, M. Liu, S. Yin, Y. C. Gao, N. Yao, Q. Zhang, Angew. Chem. Int. Ed. (2025) e202503105, https://doi.org/10.1002/anie.202503105. doi: 10.1002/anie.202503105

    51. [51]

      A. C. Ngandjong, T. Lombardo, E. N. Primo, M. Chouchane, A. Shodiev, O. Arcelus, A. A. Franco, J. Power Sources 485 (2021) 229320, https://doi.org/10.1016/j.jpowsour.2020.229320. doi: 10.1016/j.jpowsour.2020.229320

    52. [52]

      S. Kench, I. Squires, A. Dahari, F. Brosa Planella, S. A. Roberts, S. J. Cooper, Matter 7 (2024) 4260, https://doi.org/10.1016/j.matt.2024.08.014. doi: 10.1016/j.matt.2024.08.014

    53. [53]

      D. Liu, Z. Shadike, R. Lin, K. Qian, H. Li, K. Li, S. Wang, Q. Yu, M. Liu, S. Ganapathy, et al., Adv. Mater. 31 (2019) 1806620, https://doi.org/10.1002/adma.201806620. doi: 10.1002/adma.201806620

    54. [54]

      X. Liu, L. Zhang, H. Yu, J. Wang, J. Li, K. Yang, Y. Zhao, H. Wang, B. Wu, N. P. Brandon, et al. , Adv. Energy Mater. 12 (2022) 2200889, https://doi.org/10.1002/aenm.202200889. doi: 10.1002/aenm.202200889

    55. [55]

      D. P. Finegan, I. Squires, A. Dahari, S. Kench, K. L. Jungjohann, S. J. Cooper, ACS Energy Lett. 7 (2022) 4368, https://doi.org/10.1021/acsenergylett.2c01996. doi: 10.1021/acsenergylett.2c01996

    56. [56]

      O. Furat, D. P. Finegan, Z. Yang, M. Neumann, S. Kim, T. R. Tanim, P. Weddle, K. Smith, V. Schmidt, Energy Storage Mater. 64 (2024) 103036, https://doi.org/10.1016/j.ensm.2023.103036. doi: 10.1016/j.ensm.2023.103036

    57. [57]

      O. Furat, D. P. Finegan, Z. Yang, T. Kirstein, K. Smith, V. Schmidt, Npj Comput. Mater. 8 (2022) 68, https://doi.org/10.1038/s41524-022-00749-z. doi: 10.1038/s41524-022-00749-z

    58. [58]

      S. Müller, C. Sauter, R. Shunmugasundaram, N. Wenzler, V. De Andrade, F. De Carlo, E. Konukoglu, V. Wood, Nat. Commun. 12 (2021) 6205, https://doi.org/10.1038/s41467-021-26480-9. doi: 10.1038/s41467-021-26480-9

    59. [59]

      A. Khan, C. H. Lee, P. Y. Huang, B. K. Clark, Npj Comput. Mater. 9 (2023) 85, https://doi.org/10.1038/s41524-023-01042-3. doi: 10.1038/s41524-023-01042-3

    60. [60]

      A. Gayon-Lombardo, L. Mosser, N. P. Brandon, S. J. Cooper, Npj Comput. Mater. 6 (2020) 82, https://doi.org/10.1038/s41524-020-0340-7. doi: 10.1038/s41524-020-0340-7

    61. [61]

      S. Kench, S. J. Cooper, Nat. Mach. Intell. 3 (2021) 299, https://doi.org/10.1038/s42256-021-00322-1. doi: 10.1038/s42256-021-00322-1

    62. [62]

      W. Wang, Y. Zhang, B. Xie, L. Huang, S. Dong, G. Xu, G. Cui, Adv. Energy Mater. 14 (2024) 2304173, https://doi.org/10.1002/aenm.202304173. doi: 10.1002/aenm.202304173

    63. [63]

      K. Liu, Z. Wei, C. Zhang, Y. Shang, R. Teodorescu, Q. L. Han, IEEECAA J. Autom. Sin. 9 (2022) 1139, https://doi.org/10.1109/JAS.2022.105599. doi: 10.1109/JAS.2022.105599

    64. [64]

      C. Sun, Z. He, H. Lin, L. Cai, H. Cai, M. Gao, Appl. Soft Comput. 132 (2023) 109903, https://doi.org/10.1016/j.asoc.2022.109903. doi: 10.1016/j.asoc.2022.109903

    65. [65]

      F. Hu, C. Dong, L. Tian, Y. Mu, X. Yu, H. Jia, Energy AI 16 (2024) 100321, https://doi.org/10.1016/j.egyai.2023.100321. doi: 10.1016/j.egyai.2023.100321

    66. [66]

      X. Qiu, S. Wang, K. Chen, Appl. Soft Comput. 142 (2023) 110281, https://doi.org/10.1016/j.asoc.2023.110281. doi: 10.1016/j.asoc.2023.110281

    67. [67]

      L. Jiang, C. Hu, S. Ji, H. Zhao, J. Chen, G. He, Appl. Energy 377 (2025) 124604, https://doi.org/10.1016/j.apenergy.2024.124604. doi: 10.1016/j.apenergy.2024.124604

    68. [68]

      S. Tao, R. Ma, Z. Zhao, G. Ma, L. Su, H. Chang, Y. Chen, H. Liu, Z. Liang, T. Cao, et al. , Nat. Commun. 15 (2024) 10154, https://doi.org/10.1038/s41467-024-54454-0. doi: 10.1038/s41467-024-54454-0

    69. [69]

      S. Kim, Y. Y. Choi, J. I. Choi, Appl. Energy 308 (2022) 118317, https://doi.org/10.1016/j.apenergy.2021.118317. doi: 10.1016/j.apenergy.2021.118317

    70. [70]

      D. Doonyapisut, B. Kim, J. K. Kim, E. Lee, C. -H. Chung, Eng. Appl. Artif. Intell. 126 (2023) 107027, https://doi.org/10.1016/j.engappai.2023.107027. doi: 10.1016/j.engappai.2023.107027

    71. [71]

      Y. Liu, Q. Li, K. Wang, Energy Storage Mater. 69 (2024) 103394, https://doi.org/10.1016/j.ensm.2024.103394. doi: 10.1016/j.ensm.2024.103394

    72. [72]

      Y. Liu, Z. Yang, X. Zou, S. Ma, D. Liu, M. Avdeev, S. Shi, Natl. Sci. Rev. 10 (2023) nwad125, https://doi.org/10.1093/nsr/nwad125. doi: 10.1093/nsr/nwad125

    73. [73]

      Y. Liu, S. C. Ma, Z. W. Yang, X. X. Zou, S. Q. Shi, J. Chin. Ceram. Soc. 51 (2023) 427, https://doi.org/10.14062/j.issn.0454-5648.20220991. doi: 10.14062/j.issn.0454-5648.20220991

    74. [74]

      D. Lyu, B. Zhang, E. Zio, J. Xiang, Cell Rep. Phys. Sci. 5 (2024) 102164, https://doi.org/10.1016/j.xcrp.2024.102164. doi: 10.1016/j.xcrp.2024.102164

    75. [75]

      H. Zhang, X. Gui, S. Zheng, Z. Lu, Y. Li, J. Bian, arXiv preprint (2024), https://doi.org/10.48550/arXiv.2310.14714.

    76. [76]

      F. L. Barsha, W. Eberle, Mach. Learn. 114 (2025) 141, https://doi.org/10.1007/s10994-025-06772-7. doi: 10.1007/s10994-025-06772-7

    77. [77]

      A. Bandi, P. V. S. R. Adapa, Y. E. V. P. K. Kuchi, Future Internet 15 (2023) 260, https://doi.org/10.3390/fi15080260. doi: 10.3390/fi15080260

    78. [78]

      W. Saeed, C. Omlin, Knowl. -Based Syst. 263 (2023) 110273, https://doi.org/10.1016/j.knosys.2023.110273. doi: 10.1016/j.knosys.2023.110273

    79. [79]

      P. Li, F. Guo, Y. Li, X. Yang, X. Yang, Energy 315 (2025) 134344, https://doi.org/10.1016/j.energy.2024.134344. doi: 10.1016/j.energy.2024.134344

    80. [80]

      Y. Xu, S. Kohtz, J. Boakye, P. Gardoni, P. Wang, Reliab. Eng. Syst. Saf. 230 (2023) 108900, https://doi.org/10.1016/j.ress.2022.108900. doi: 10.1016/j.ress.2022.108900

    81. [81]

      F. Wang, Z. Zhai, Z. Zhao, Y. Di, X. Chen, Nat. Commun. 15 (2024) 4332, https://doi.org/10.1038/s41467-024-48779-z. doi: 10.1038/s41467-024-48779-z

    82. [82]

      R. Tan, X. Lu, M. Cheng, J. Li, J. Huang, T. Y. Zhang, Energy Storage Mater. 72 (2024) 103725, https://doi.org/10.1016/j.ensm.2024.103725. doi: 10.1016/j.ensm.2024.103725

    83. [83]

      Z. Wang, D. Shi, J. Zhao, Z. Chu, D. Guo, C. Eze, X. Qu, Y. Lian, A. F. Burke, eTransportation 19 (2024) 100309, https://doi.org/10.1016/j.etran.2023.100309. doi: 10.1016/j.etran.2023.100309

    84. [84]

      S. Tu, Y. Zhang, J. Zhang, Z. Fu, Y. Zhang, Y. Yang, arXiv preprint (2024), https://doi.org/10.48550/arXiv.2408.04057.

  • 加载中
计量
  • PDF下载量:  0
  • 文章访问数:  8
  • HTML全文浏览量:  1
文章相关
  • 发布日期:  2025-10-15
  • 收稿日期:  2025-04-03
  • 接受日期:  2025-06-10
  • 修回日期:  2025-05-24
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章