Citation: Jing Zhang, Su Zhang, Qiqi Li, Linken Ji, Yutong Li, Yukang Ren, Xiaobei Zang, Ning Cao, Han Hu, Peng Liang, Zhuangjun Fan. Integrating high surface area and electric conductivity in activated carbon by in situ formation of the less-defective carbon network during selective chemical etching[J]. Acta Physico-Chimica Sinica, ;2025, 41(10): 100114. doi: 10.1016/j.actphy.2025.100114 shu

Integrating high surface area and electric conductivity in activated carbon by in situ formation of the less-defective carbon network during selective chemical etching

  • Corresponding author: Su Zhang, suzhangs@163.com Han Hu, hhu@upc.edu.cn Peng Liang, liangpeng202@hotmail.com
  • Received Date: 10 April 2025
    Revised Date: 2 June 2025
    Accepted Date: 10 June 2025

    Fund Project: the National Natural Science Foundation of China 52062046the National Natural Science Foundation of China 52302336the National Natural Science Foundation of China 22179145the Taishan Scholar Project of Shandong Province tsqn202306131the Taishan Scholar Project of Shandong Province tsqn202312123the Key Basic Research Projects of Natural Science Foundation of Shandong province ZR2019ZD51

  • Activated carbons are widely used as the electrode material for supercapacitors owing to its large surface area, good electric conductivity, and outstanding electrochemical stability. Improving the electric conductivity of activated carbon is crucial for promoting its electrochemical energy storage, but hard to achieve because well-developed pores usually break the continuous conductive network. To solve this problem, researchers have developed several methods, such as selection of highly-conjugated carbon precursors, high-temperature post-treatment, compositing with highly conductive nanocarbons, and local catalytic graphitization. However, these methods generally suffer from high cost, low efficiency, and sacrifice of specific surface area. Herein, we propose a selective chemical etching strategy to prepare activated carbon with both high surface area and electric conductivity using a mixture of pitch and polyacrylonitrile (PAN) as the precursor. Through systematic investigation of the activation behavior of pure pitch, pure PAN, and the composite precursors, we demonstrate that the PAN-derived carbon contains amorphous and crystallized components. During activation, the amorphous carbon is primarily etched away due to its high reactivity, leading to the in-situ formation of less-defective carbon as the entire conductive network. The optimized sample shows a surface area of 2773 m2·g−1 and 2.6 times increased electric conductivity of 912 S·m−1, outperforming most of the reported activated carbons. Furthermore, the strong cross-linking between pitch and PAN molecules through pre-oxidation leads to a higher activated carbon yield of 58% than the pure pitch-derived activated carbon (34%). The optimized cross-linking structure also allows the activator K+ to be adsorbed more easily in the carbon precursor, which enhances the activation efficiency. As a result, the embedded PAN simultaneously construct conductive network and promote activation efficiency, leading to the integration of high electric conductivity and surface area of the activated carbon. For aqueous supercapacitor application, at the high electrode mass loading of 10 mg·cm−2, the optimized material shows remarkable areal capacitance (2.8 F·cm−2 at 1 A·g−1) and good rate performance (41% retention at 50 A·g−1). The corresponding device shows high energy densities (10.9 Wh·kg−1) and remarkable cycle stability (100% retention after 50000 cycles). The reason is that good electric conductivity enables high surface area utilization, significantly improved electric double-layer formation and ion transport kinetics. This work demonstrates the significant potential of highly conductive activated carbon for practical applications, and provides novel insights into the design of conductive activated carbon for advanced energy storage.
  • 加载中
    1. [1]

      Y. M. Xiao, S. Yi, Z. L. Yan, X. Y. Qiu, P. P. Ning, D. R. Yang, N. Du, Small. 20 (2024) 2404440, https://doi.org/10.1002/smll.202404440  doi: 10.1002/smll.202404440

    2. [2]

      H. Shao, Y. C. Wu, Z. F. Lin, P. L. Taberna, P. Simon, Chem. Soc. Rev. 49 (2020) 3005, https://doi.org/10.1039/D0CS00059K  doi: 10.1039/D0CS00059K

    3. [3]

      W. Guo, C. Yu, S. F. Li, J. S. Qiu, Energy Environ. Sci. 14 (2021) 576, https://doi.org/10.1039/D0EE02649B  doi: 10.1039/D0EE02649B

    4. [4]

      Z. F. Lin, E. Goikolea, A. Balducci, K. Naoi, P. L. Taberna, M. Salanne, G. Yushin, P. Simon, Mater. Today 21 (2018) 419, https://doi.org/10.1016/j.mattod.2018.01.035  doi: 10.1016/j.mattod.2018.01.035

    5. [5]

      Z. F. Lin, E. Goikolea, A. Balducci, K. Naoi, P. L. Taberna, M. Salanne, G. Yushin, P. Simon, Small Methods 4 (2020) 1900853, https://doi.org/10.1002/smtd.201900853  doi: 10.1002/smtd.201900853

    6. [6]

      Y. Qing, Y. T. Jiang, H. Lin, L. X. Wang, A. J. Liu, Y. L. Cao, R. Sheng, Y. Guo, C. W. Fan, S. Zhang, D. Z. Jia, Z. J. Fan, J. Mater. Chem. A 7 (2019) 6021, https://doi.org/10.1039/C8TA11620B  doi: 10.1039/C8TA11620B

    7. [7]

      L. Y. Liu, X. H. Wang, V. Izotov, D. Havrykov, I. Koltsov, W. Han, Y. Zozulya, O. Linyucheva, V. Zahorodna, O. Gogotsi, Y. Gogotsi, Electrochim. Acta 302 (2019) 38, https://doi.org/10.1016/j.electacta.2019.02.004  doi: 10.1016/j.electacta.2019.02.004

    8. [8]

      R. Saha, C. J. Gómez García, Chem. Soc. Rev. 53 (2024) 9490, https://doi.org/10.1039/D4CS00141A  doi: 10.1039/D4CS00141A

    9. [9]

      P. Mao, Y. G. Guo, T. Wang, L. Q. He, W. J. Li, Z. Y. Liu, B. Xie, K. Guo, L. L. Shu, J. H. Gao, ACS Appl. Mater. Inter. 17 (2024) 1485, https://doi.org/10.1021/acsami.4c15339  doi: 10.1021/acsami.4c15339

    10. [10]

      Z. Wang, Q. H. Hu, S. B. Wang, Z. R. Liu, C. Y Tang, L. L. Li, J. Mater. Chem. A., 13 (2025) 2642, https://doi.org/10.1039/d4ta06337f  doi: 10.1039/d4ta06337f

    11. [11]

      S. Suman, D. K. Sharma, O. Szabo, B. Rakesh, M. Marton, M. Vojs, K. J. Sankaran, A. Kromka, Small 21 (2024) 2407514, https://doi.org/10.1002/smll.202407514  doi: 10.1002/smll.202407514

    12. [12]

      J. Y. Wu, X. Zhang, Z. Y. Ju, L. Wang, Z. Y. Hui, K. Mayilvahanan, K. J. Takeuchi, A. C. Marschilok, A. C. West, E. S. Takeuchi, G. H. Yu, Adv. Mater. 33 (2021) 2101275, https://doi.org/10.1002/adma.202101275  doi: 10.1002/adma.202101275

    13. [13]

      P. Ye, L. S. Qin, M. Y. He, F. F. Wu, Z. Y. Chen, M. X. Liang, L. B. Deng, Acta Phys. Chim. Sin., 41 (2025) 100023, https://doi.org/10.3866/PKU.WHXB202311032  doi: 10.3866/PKU.WHXB202311032

    14. [14]

      Q. Q. Li, Y. T. Jiang, Z. M. Jiang, J. Y. Zhu, X. M. Gan, F. W. Qin, T. T. Tang, W. X. Luo, N. N. Guo, Z. Liu, L. X. Wang, S. Zhang, D. Z. Jia, Z. J. Fan, Carbon 191 (2022) 19, https://doi.org/10.1016/j.carbon.2022.01.042  doi: 10.1016/j.carbon.2022.01.042

    15. [15]

      M. Yu, X. H. Ning, Chem. Eng. J. 503 (2025) 158554, https://doi.org/10.1016/j.cej.2024.158554  doi: 10.1016/j.cej.2024.158554

    16. [16]

      X. X. Yang, G. X. Sun, F. Wang, X. Li, Z. Z. Zhang, Y. Z. Zhen, D. J. Wang, X. M. Gao, F. Fu, R. A. Chi, J. Colloid Interface Sci. 646 (2023) 228, https://doi.org/10.1016/j.jcis.2023.04.179  doi: 10.1016/j.jcis.2023.04.179

    17. [17]

      J. X. Cheng, Z. J. Lu, X. F. Zhao, X. X. Chen, Y. H. Liu, J. Power Sources. 494 (2021) 229770, https://doi.org/10.1016/j.jpowsour.2021.229770  doi: 10.1016/j.jpowsour.2021.229770

    18. [18]

      Y. Xiao, D. Dong, J. W. Wang, J. N. Liu, T. Wang, Y. S. Zhang, Chem. Eng. J. 500 (2024) 157084, https://doi.org/10.1016/j.cej.2024.157084  doi: 10.1016/j.cej.2024.157084

    19. [19]

      G. L. Zhang, T. T. Guan, N. Wang, J. C. Wu, J. L. Wang, J. L. Qiao, K. X. Li, Chem. Eng. J. 399 (2020) 125818, https://doi.org/10.1016/j.cej.2020.125818

    20. [20]

      X. Y. Liu, D. Lyu, C. Merlet, M. J. A. Leesmith, X. Hua, Z. Xu, Grey C. P., Forse A. C., Science 384 (2024) 321, https://doi.org/10.1126/science.adn6242  doi: 10.1126/science.adn6242

    21. [21]

      W. H. Chi, G. W. Wang, Z. P. Qiu, Q. Q. Li, Z. Xu, Z. Y. Li, B. Qi, K. Cao, C. L. Chi, T. Wei, Z. J. Fan, Batteries. 10 (2024) 5, https://doi.org/10.3390/batteries10010005  doi: 10.3390/batteries10010005

    22. [22]

      M. Majumder, R. B. Choudhary, S. P. Koiry, A. K. Thakur, U. Kumar, Electrochim. Acta 248 (2017) 98, https://doi.org/10.1016/j.electacta.2017.07.107  doi: 10.1016/j.electacta.2017.07.107

    23. [23]

      S. J. Zhu, M. H. Sun, J. Y. Jiang, X. F. Zhan, C. Y. Du, C. Ding, D. H. Wei, X. C. Huang, ACS Appl. Nano Mater. 7 (2024) 28593, https://doi.org/10.1021/acsanm.4c05742  doi: 10.1021/acsanm.4c05742

    24. [24]

      T. D. Silva, C. Damery, R. Alkhaldi, R. Karunanithy, D. H. Gallaba, P. D. Patil, M. Wasala, P. Sivakumar, A. Migone, S. Talapatra, ACS Appl. Mater. Interfaces 13 (2021) 56004, https://doi.org/10.1021/acsami.1c12551  doi: 10.1021/acsami.1c12551

    25. [25]

      S. Zhu, J. F. Ni, Y. Li, Nano Res. 13 (2020) 1825, https://doi.org/10.1007/s12274-020-2729-5  doi: 10.1007/s12274-020-2729-5

    26. [26]

      J. Tian, S. Wu, X. L. Yin, W. Wu, Appl. Surf. Sci. 496 (2019) 143696, https://doi.org/10.1016/j.apsusc.2019.143696  doi: 10.1016/j.apsusc.2019.143696

    27. [27]

      S. Y. Lu, M. Jin, Y. Zhang, Y. B. Niu, J. C. Gao, C. M. Li, Adv. Energy Mater. 8 (2018) 1702545, https://doi.org/10.1002/aenm.201702545  doi: 10.1002/aenm.201702545

    28. [28]

      J. Y. Zhu, L. X. Wang, X. M. Gan, T. T. Tang, F. W. Qin, W. X. Luo, Q. Q. Li, N. N. Guo, S. Zhang, D. Z. Jia, H. H. Song, Energy Storage Mater. 47 (2022) 158, https://doi.org/10.1016/j.ensm.2022.02.015  doi: 10.1016/j.ensm.2022.02.015

    29. [29]

      J. Zhao, J. Y. Zhu, Y. Li, L. X. Wang, Y. Dong, Z. M. Jiang, C. W. Fan, Y. L. Cao, R. Sheng, A. J. Liu, S. Zhang, H. H. Song, D. Z. Jia, Z. J. Fan, ACS Appl. Mater. Interfaces. 12 (2020) 11669, https://doi.org/10.1021/acsami.9b22408  doi: 10.1021/acsami.9b22408

    30. [30]

      K. H. Lee, H. Park, W. Eom, D. J. Kang, S. H. Noh, T. H. Han, J. Mater. Chem. A 7 (2019) 23727, https://doi.org/10.1039/C9TA05242A  doi: 10.1039/C9TA05242A

    31. [31]

      C. Shi, L. T. Hu, J. X. Hou, K. Guo, T. Y. Zhai, H. Q. Li, Energy Storage Mater. 15 (2018) 82, https://doi.org/10.1016/j.ensm.2018.03.010  doi: 10.1016/j.ensm.2018.03.010

    32. [32]

      F. Herold, S. Prosch, N. Oefner, K. Brunnengräber, O. Leubner, Y. Hermans, K. Hofmann, A. Drochner, J. P. Hofmann, W. Qi, B. J. M. Etzold, Angew. Chem. Int. Ed. 133 (2021) 5962, https://doi.org/10.1002/anie.202014862  doi: 10.1002/anie.202014862

    33. [33]

      G. H. Choi, M. G. Nam, S. J. Kwak, S. H. Kim, H. Chang, C. Shin, W. B. Lee, P. J. Yoo, Energy Environ. Sci. 14 (2021) 3203, https://doi.org/10.1039/D1EE00402F  doi: 10.1039/D1EE00402F

    34. [34]

      Z. L. Yu, S. Xin, Y. You, L. Yu, Y. Lin, D. W. Xu, C. Qiao, Z. H. Huang, N. Yang, S. H. Yu, J. B. Goodenough, J. Am. Chem. Soc. 138 (2016) 14915, https://doi.org/10.1021/jacs.6b06673  doi: 10.1021/jacs.6b06673

    35. [35]

      Z. W. Li, S. Gao, H. Y. Mi, C. C. Lei, C. C. Ji, Z. L. Xie, C. Yu, J. S. Qiu, Carbon. 149 (2019) 273, https://doi.org/10.1016/j.carbon.2019.04.056  doi: 10.1016/j.carbon.2019.04.056

    36. [36]

      C. F. Liu, C. K. Zhang, H. Y. Fu, X. H. Nan, G. Z. Cao, Adv. Energy Mater. 7 (2017) 1601127, https://doi.org/10.1002/aenm.201601127  doi: 10.1002/aenm.201601127

    37. [37]

      Q. Wang, Y. X. Qu, J. Bai, Z. Y. Chen, Q. T. Luo, H. J. Li, J. Li, W. Q. Yang, Nano Energy. 120 (2024) 109147, https://doi.org/10.1016/j.nanoen.2023.109147  doi: 10.1016/j.nanoen.2023.109147

    38. [38]

      X. Y. Li, C. C. Cai, P. Hu, B. Zhang, P. J. Wu, H. Fan, Z. Chen, L. Zhou, L. Q. Mai, H. J. Fan, Adv. Mater. 36 (2024) 2400184, https://doi.org/10.1002/adma.202400184  doi: 10.1002/adma.202400184

    39. [39]

      Q. F. Peng, K. Wang, Y. Gong, X. D. Zhang, Y. N. Xu, Y. B. Ma, X. Zhang, X. Z. Sun, Y. W. Ma, Adv. Funct. Mater. 33 (2023) 2308284, https://doi.org/10.1002/adfm.202308284  doi: 10.1002/adfm.202308284

    40. [40]

      X. Y. Li, C. C. Cai, L. Zhou, L. Q. Mai, H. J. Fan, Adv. Mater. 36 (2024) 2404393, https://doi.org/10.1002/adma.202404393  doi: 10.1002/adma.202404393

    41. [41]

      M. Yuan, C. Y. Meng, A. Li, B. Cao, Y. Dong, D. K. Wang, X. W. Liu, X. H. Chen, H. H. Song, Small 18 (2022) 2105738, https://doi.org/10.1002/smll.202105738  doi: 10.1002/smll.202105738

    42. [42]

      P. Li, H. Li, D. L. Han, T. X. Shang, Y. Q. Deng, Y. Tao, W. Lv, Q. H. Yang, Adv. Sci. 6 (2019) 1802355, https://doi.org/10.1002/advs.201802355  doi: 10.1002/advs.201802355

    43. [43]

      T. Lv, X. M. Yang, Y. Zhang, X. F. Wang, J. S. Qiu, Small 20 (2024) 2310645, https://doi.org/10.1002/smll.202310645  doi: 10.1002/smll.202310645

    44. [44]

      G. Z. Wang, D. B. Ji, H. J. Wu, X. L. Ma, Adv. Powder Tech. 32 (2021) 4677, https://doi.org/10.1016/j.apt.2021.10.013  doi: 10.1016/j.apt.2021.10.013

    45. [45]

      H. Wu, W. Y. Yuan, X. W. Yuan, L. F. Cheng, Energy Storage Mater. 50 (2022) 514, https://doi.org/10.1016/j.ensm.2022.05.046  doi: 10.1016/j.ensm.2022.05.046

    46. [46]

      W. Q. Tian, Q. M. Gao, Y. L. Tan, K. Yang, L. H. Zhu, C. X. Yang, H. Zhang, J. Mater. Chem. A 3 (2015) 5656, https://doi.org/10.1039/C4TA06620K  doi: 10.1039/C4TA06620K

    47. [47]

      W. H. Tian, J. Y. Zhu, Y. Dong, J. Zhao, J. Li, N. N. Guo, H. Lin, S. Zhang, D. Z. Jia, Carbon 161 (2020) 89, https://doi.org/10.1016/j.carbon.2020.01.044  doi: 10.1016/j.carbon.2020.01.044

    48. [48]

      C. W. Fan, Y. Dong, Y. F. Liu, L. H. Zhang, D. K. Wang, X. J. Lin, Y. Lv, S. Zhang, H. H. Song, D. Z. Jia, Carbon 160 (2020) 328, https://doi.org/10.1016/j.carbon.2020.01.034  doi: 10.1016/j.carbon.2020.01.034

    49. [49]

      E. B. Barros, N. S. Demir, A. G. Souza Filho, J. Mendes Filho, A. Jorio, G. Dresselhaus, M. S. Dresselhaus, Phys. Rev. B 71 (2005) 165422, https://doi.org/10.1103/PhysRevB.71.165422  doi: 10.1103/PhysRevB.71.165422

    50. [50]

      Y. Dong, S. Zhang, X. Du, S. Hong, S. N. Zhao, Y. X. Chen, X. H. Chen, H. H. Song, Adv. Funct. Mater. 29 (2019) 1901127, https://doi.org/10.1002/adfm.201901127  doi: 10.1002/adfm.201901127

    51. [51]

      H. F. Tian, Y. H. Ma, Z. J. Li, M. Y. Cheng, S. C. Ning, E. X. Han, M. Q. Xu, P. F. Zhang, K. X. Zhao, R. J. Li, Y. T. Zou, P. C. Liao, S. L. Yu, X. M. Li, J. L. Wang, S. Z. Liu, Y. F. Li, X. Y. Huang, Z. X. Yao, D. D. Ding, J. J. Guo, Y. Huang, J. M. Lu, Y. Y. Han, Z. S. Wang, Z. G. Cheng, J. X. Liu, Z. Xu, K. H. Liu, P. Gao, Y. Jiang, L. Lin, X. X. Zhao, L. F. Wang, X. D. Bai, W. Y. Fu, J. Y. Wang, M. Z. Li, T. Lei, Y. F. Zhang, Y. L. Hou, J. Pei, S. J. Pennycook, E. Wang, J. Chen, W. Zhou, L. Liu, Nature 615 (2023) 56, https://doi.org/10.1038/s41586-022-05617-w  doi: 10.1038/s41586-022-05617-w

    52. [52]

      S. Li, E. T. Kang, K. G. Neoh, Z. H. Ma, K. L. Tan, W. Huang, Appl. Surf. Sci. 181 (2001) 201, https://doi.org/10.1016/S0169-4332(01)00397-X  doi: 10.1016/S0169-4332(01)00397-X

    53. [53]

      J. Y. Zhu, Y. Dong, S. Zhang, Z. J. Fan, Acta Phys. Chim. Sin. 36 (2020) 1903052, https://doi.org/10.3866/pku.whxb201903052  doi: 10.3866/pku.whxb201903052

    54. [54]

      Q. Q. Li, S. Zhang, Y. T. Jiang, L. N. Zhu, N. N. Guo, J. Zhang, Y. T. Li, T. Wei, Z. J. Fan, Acta Phys. Chim. Sin. 41 (2025) 100028, https://doi.org/10.3866/PKU.WHXB202406009  doi: 10.3866/PKU.WHXB202406009

    55. [55]

      Y. X. Lu, C. L. Zhao, X. G. Qi, Y. Qi, H. Li, X. J. Huang, L. Q. Chen, Y. S. Hu, Adv. Energy Mater. 8 (2018) 1800108, https://doi.org/10.1002/aenm.201800108  doi: 10.1002/aenm.201800108

    56. [56]

      H. Y. Mao, J. Tang, J. Chen, J. Y. Wan, K. Hou, Y. Peng, D. M. Halat, L. G. Xiao, R. F. Zhang, X. D. Lv, A. K. Yang, Y. Cui, J. A. Reimer, Sci. Adv. 6 (2020) eabb0694, https://doi.org/10.1126/sciadv.abb0694  doi: 10.1126/sciadv.abb0694

    57. [57]

      S. Zhang, Y. T. Li, Y. Kang, Y. Dong, S. Hong, X. X. Chen, J. S. Zhou, Y. V. Fedoseeva, I. P. Asanov, L. G. Bulusheva, H. Song, A. V. Okotrub, Carbon 108 (2016) 461, https://doi.org/10.1016/j.carbon.2016.07.046  doi: 10.1016/j.carbon.2016.07.046

    58. [58]

      Y. P. Huang, F. L. Lai, L. S. Zhang, H. Y. Lu, Y. Miao, T. X. Liu, T. Sci. Rep. 6 (2016) 31541, https://doi.org/10.1038/srep31541  doi: 10.1038/srep31541

    59. [59]

      D. D. Zhang, C. He, Y. Z. Wang, J. H. Zhao, J. L. Wang, K. X. Li, J. Colloid Interface Sci. 540 (2019) 439, https://doi.org/10.1016/j.jcis.2019.01.038  doi: 10.1016/j.jcis.2019.01.038

    60. [60]

      E. Ismar, A. S. Sarac, Polym. Bull. 75 (2018) 485, https://doi.org/10.1007/s00289-017-2043-x  doi: 10.1007/s00289-017-2043-x

    61. [61]

      S. Y. Li, Q. Y. Zhang, L. N. Liu, J. G. Wang, L. Zhang, M. J. Shi, X. C. Chen, J. Alloy. Compd. 941 (2023) 168963, https://doi.org/10.1016/j.jallcom.2023.168963  doi: 10.1016/j.jallcom.2023.168963

    62. [62]

      B. Zhang, F. Sun, Y. Li, D. Wu, C. Yang, Z. Wang, J. Gao, G. Zhao, S. Sun, Carbon 219 (2024) 118812, https://doi.org/10.1016/j.carbon.2024.118812  doi: 10.1016/j.carbon.2024.118812

    63. [63]

      Z. Tian, G. Duan, F. Wang, Y. Wang, H. Hou, C. Zhang, S. He, J. Han, X. Han, S. Jiang, Chem. Eng. J. 484 (2024) 149615, https://doi.org/10.1016/j.cej.2024.149615  doi: 10.1016/j.cej.2024.149615

    64. [64]

      H. Liu, S. Zhu, Y. Zhang, H. Song, Y. Zhang, Y. Chang, W. Hou, G. Han Small 19 (2023) 2204119, https://doi.org/10.1002/smll.202204119  doi: 10.1002/smll.202204119

  • 加载中
    1. [1]

      Qiqi LiSu ZhangYuting JiangLinna ZhuNannan GuoJing ZhangYutong LiTong WeiZhuangjun Fan . Preparation of High Density Activated Carbon by Mechanical Compression of Precursors for Compact Capacitive Energy Storage. Acta Physico-Chimica Sinica, 2025, 41(3): 2406009-0. doi: 10.3866/PKU.WHXB202406009

    2. [2]

      Jin CHANG . Supercapacitor performance and first-principles calculation study of Co-doping Ni(OH)2. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1697-1707. doi: 10.11862/CJIC.20240108

    3. [3]

      Zhaomei LIUWenshi ZHONGJiaxin LIGengshen HU . Preparation of nitrogen-doped porous carbons with ultra-high surface areas for high-performance supercapacitors. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 677-685. doi: 10.11862/CJIC.20230404

    4. [4]

      Jianjun LIMingjie RENLili ZHANGLingling ZENGHuiling WANGXiangwu MENG . UV-assisted degradation of tetracycline hydrochloride by MnFe2O4@activated carbon activated persulfate. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1869-1880. doi: 10.11862/CJIC.20240187

    5. [5]

      Yanhui XUEShaofei CHAOMan XUQiong WUFufa WUSufyan Javed Muhammad . Construction of high energy density hexagonal hole MXene aqueous supercapacitor by vacancy defect control strategy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1640-1652. doi: 10.11862/CJIC.20240183

    6. [6]

      Huayan LiuYifei ChenMengzhao YangJiajun Gu . Strategies for enhancing capacity and rate performance of two-dimensional material-based supercapacitors. Acta Physico-Chimica Sinica, 2025, 41(6): 100063-0. doi: 10.1016/j.actphy.2025.100063

    7. [7]

      Yijing GUHuan PANGRongmei ZHU . Applications of nickel-based metal-organic framework compounds in supercapacitors. Chinese Journal of Inorganic Chemistry, 2025, 41(10): 2029-2038. doi: 10.11862/CJIC.20250186

    8. [8]

      Xia Shu Longtian Sima Jiali Wang Jiacheng Chu Xieyidai·Yusunjiang Mubareke·Maimaitijiang Yingwei Lu Yan Wang . Analysis of the Report Generated by the QuadraSorb evo BET Surface Area Analyzer. University Chemistry, 2025, 40(5): 391-400. doi: 10.12461/PKU.DXHX202411013

    9. [9]

      Xiaofang DONGYue YANGShen WANGXiaofang HAOYuxia WANGPeng CHENG . Research progress of conductive metal-organic frameworks. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 14-34. doi: 10.11862/CJIC.20240388

    10. [10]

      Huirong BAOJun YANGXiaomiao FENG . Preparation and electrochemical properties of NiCoP/polypyrrole/carbon cloth by electrodeposition. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1083-1093. doi: 10.11862/CJIC.20250008

    11. [11]

      Feng Lin Zhongxin Jin Caiying Li Cheng Shao Yang Xu Fangze Li Siqi Liu Ruining Gu . Preparation and Electrochemical Properties of Nickel Foam-Supported Ni(OH)2-NiMoO4 Electrode Material. University Chemistry, 2025, 40(10): 225-232. doi: 10.12461/PKU.DXHX202412017

    12. [12]

      Jiahong ZHENGJingyun YANG . Preparation and electrochemical properties of hollow dodecahedral CoNi2S4 supported by MnO2 nanowires. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1881-1891. doi: 10.11862/CJIC.20240170

    13. [13]

      Jiahong ZHENGJiajun SHENXin BAI . Preparation and electrochemical properties of nickel foam loaded NiMoO4/NiMoS4 composites. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 581-590. doi: 10.11862/CJIC.20230253

    14. [14]

      Guanghui SUIYanyan CHENG . Application of rice husk-based activated carbon-loaded MgO composite for symmetric supercapacitors. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 521-530. doi: 10.11862/CJIC.20240221

    15. [15]

      Qing XueShengyi LiYanan ZhaoPeng ShengLi XuZhengxi LiBo ZhangHui LiBo WangLibin YangYuliang CaoZhongxue Chen . Novel Alkaline Sodium-Ion Battery Capacitor Based on Active Carbon||Na0.44MnO2 towards Low Cost, High-Rate Capability and Long-Term Lifespan. Acta Physico-Chimica Sinica, 2024, 40(2): 2303041-0. doi: 10.3866/PKU.WHXB202303041

    16. [16]

      Kuaibing Wang Honglin Zhang Wenjie Lu Weihua Zhang . Experimental Design and Practice for Recycling and Nickel Content Detection from Waste Nickel-Metal Hydride Batteries. University Chemistry, 2024, 39(11): 335-341. doi: 10.12461/PKU.DXHX202403084

    17. [17]

      Yuting ZHANGZunyi LIUNing LIDongqiang ZHANGShiling ZHAOYu ZHAO . Nickel vanadate anode material with high specific surface area through improved co-precipitation method: Preparation and electrochemical properties. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2163-2174. doi: 10.11862/CJIC.20240204

    18. [18]

      Heng ChenLonghui NieKai XuYiqiong YangCaihong Fang . Remarkable Photocatalytic H2O2 Production Efficiency over Ultrathin g-C3N4 Nanosheet with Large Surface Area and Enhanced Crystallinity by Two-Step Calcination. Acta Physico-Chimica Sinica, 2024, 40(11): 2406019-0. doi: 10.3866/PKU.WHXB202406019

    19. [19]

      Jun HuangPengfei NieYongchao LuJiayang LiYiwen WangJianyun Liu . 丝光沸石负载自支撑氮掺杂多孔碳纳米纤维电容器及高效选择性去除硬度离子. Acta Physico-Chimica Sinica, 2025, 41(7): 100066-0. doi: 10.1016/j.actphy.2025.100066

    20. [20]

      Huimin LiuKezhi LiXin ZhangXuemin YinQiangang FuHejun Li . SiC Nanomaterials and Their Derived Carbons for High-Performance Supercapacitors. Acta Physico-Chimica Sinica, 2024, 40(2): 2304026-0. doi: 10.3866/PKU.WHXB202304026

Metrics
  • PDF Downloads(0)
  • Abstract views(13)
  • HTML views(1)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return