细胞膜锚定的纳米工程化碳点作为焦亡放大器用于增强的肿瘤光动力免疫治疗

陈铁金 薛小矿 李建 崔敏辉 郝永梁 薛面起 肖海华 葛介超 汪鹏飞

引用本文: 陈铁金, 薛小矿, 李建, 崔敏辉, 郝永梁, 薛面起, 肖海华, 葛介超, 汪鹏飞. 细胞膜锚定的纳米工程化碳点作为焦亡放大器用于增强的肿瘤光动力免疫治疗[J]. 物理化学学报, 2025, 41(10): 100113. doi: 10.1016/j.actphy.2025.100113 shu
Citation:  Tiejin Chen, Xiaokuang Xue, Jian Li, Minhui Cui, Yongliang Hao, Mianqi Xue, Haihua Xiao, Jiechao Ge, Pengfei Wang. Membrane-anchoring nanoengineered carbon dots as a pyroptosis amplifier for robust tumor photodynamic-immunotherapy[J]. Acta Physico-Chimica Sinica, 2025, 41(10): 100113. doi: 10.1016/j.actphy.2025.100113 shu

细胞膜锚定的纳米工程化碳点作为焦亡放大器用于增强的肿瘤光动力免疫治疗

    通讯作者: 肖海华, hhxiao@iccas.ac.cn; 葛介超, jchge2010@mail.ipc.ac.cn
  • 基金项目:

    国家自然科学基金 52272052

    国家重点研发计划 2022YFA1207600

摘要: 光动力疗法(PDT)作为一种美国食品药品监督管理局(FDA)批准的治疗手段,在肿瘤治疗领域取得了显著进展。然而,传统的PDT由于活性氧(ROS)的瞬时性、过度的光毒性以及诱导经典凋亡的特性,可能导致预后效果较差。本研究利用带正电荷的碳点光敏剂(PCDs)与新吲哚菁绿(IR820)之间的静电相互作用构建了一种纳米工程化碳点(NCDs)。通过调控IR820的引入比例,可改变NCDs的表面电荷与两亲性特征,从而优化其细胞膜锚定能力。此外,IR820的J聚集导致其荧光从NIR-Ⅰ区红移到NIR-Ⅱ区,从而实现NIR-Ⅱ成像。值得注意的是,IR820对PCDs的光活性具有淬灭作用,因此,NCDs的PDT效应依赖于750 nm激光照射下IR820的光漂白和577 nm激光照射下PCDs的光动力。最终,体外与体内实验均表明,在级联激光照射下,膜靶向的NCDs可以有效增强肿瘤细胞焦亡,从而以最小副作用实现肿瘤清除,同时激活免疫响应以抑制肿瘤的肺转移。本研究开发了一种多功能的纳米工程化碳点,提供了一种可控性强、治疗效果好以及安全性高的肿瘤光动力免疫治疗新策略,展现出良好的临床应用前景。

English

    1. [1]

      Y. Wang, K. Ma, M. Kang, D. Yan, N. Niu, S. Yan, P. Sun, L. Zhang, L. Sun, D. Wang, et al., Chem. Soc. Rev. 53 (2024) 12014, https://doi.org/10.1039/D4CS00708E. doi: 10.1039/D4CS00708E

    2. [2]

      E. Nestoros, A. Sharma, E. Kim, J. S. Kim, M. Vendrell, Nat. Rev. Chem. 9 (2025) 46, https://doi.org/10.1038/s41570-024-00662-7. doi: 10.1038/s41570-024-00662-7

    3. [3]

      T. C. Pham, V. N. Nguyen, Y. Choi, S. Lee, J. Yoon, Chem. Rev. 121 (2021) 13454, https://doi.org/10.1021/acs.chemrev.1c00381. doi: 10.1021/acs.chemrev.1c00381

    4. [4]

      J. Kang, H. Jeong, M. Jeong, J. Kim, S. Park, J. Jung, J. M. An, D. Kim, J. Am. Chem. Soc. 145 (2023) 27587, https://doi.org/10.1021/jacs.3c09339. doi: 10.1021/jacs.3c09339

    5. [5]

      L. Li, X. Zhang, Y. Ren, Q. Yuan, Y. Wang, B. Bao, M. Li, Y. Tang, J. Am. Chem. Soc. 146 (2024) 5927, https://doi.org/10.1021/jacs.3c12132. doi: 10.1021/jacs.3c12132

    6. [6]

      X. Qu, F. Yin, M. Pei, Q. Chen, Y. Zhang, S. Lu, X. Zhang, Z. Liu, X. Li, H. Chen, et al., ACS Nano 17 (2023) 11466, https://doi.org/10.1021/acsnano.3c01308. doi: 10.1021/acsnano.3c01308

    7. [7]

      L. Feng, D. Tao, Z. Dong, Q. Chen, Y. Chao, Z. Liu, M. Chen, Biomaterials 127 (2017) 13, https://doi.org/10.1016/j.biomaterials.2016.11.027. doi: 10.1016/j.biomaterials.2016.11.027

    8. [8]

      X. Zhang, J. Xiong, K. Wang, H. Yu, B. Sun, H. Ye, Z. Zhao, N. Wang, Y. Wang, S. Zhang, et al., Bioact. Mater. 6 (2021) 2291, https://doi.org/10.1016/j.bioactmat.2021.01.004. doi: 10.1016/j.bioactmat.2021.01.004

    9. [9]

      M. Dirak, C. M. Yenici, S. Kolemen, Coord. Chem. Rev. 506 (2024) 215710, https://doi.org/10.1016/j.ccr.2024.215710. doi: 10.1016/j.ccr.2024.215710

    10. [10]

      J. B. Zhuang, Z. D. Ma, N. Li, H. Chen, L. J. Yang, Y. Lu, K. Y. Guo, N. Zhao, B. Z. Tang, Adv. Mater. 36 (2024) 2309488, https://doi.org/10.1002/adma.202309488. doi: 10.1002/adma.202309488

    11. [11]

      F. H. Igney, P. H. Krammer, Nat. Rev. Cancer 2 (2002) 277, https://doi.org/10.1038/nrc776. doi: 10.1038/nrc776

    12. [12]

      K. Hadian, B. R. Stockwell, Nat. Rev. Drug Discov. 22 (2023) 723, https://doi.org/10.1038/s41573-023-00749-8. doi: 10.1038/s41573-023-00749-8

    13. [13]

      X. Sun, M. Li, P. Wang, Q. Bai, X. Cao, D. Mao, Small Methods 7 (2023) 2201614, https://doi.org/10.1002/smtd.202201614. doi: 10.1002/smtd.202201614

    14. [14]

      W. T. Gao, X. Y. Wang, Y. Zhou, X. Q. Wang, Y. Yu, Sig. Transdut. Target. Ther. 7 (2022) 196, https://doi.org/10.1038/s41392-022-01046-3. doi: 10.1038/s41392-022-01046-3

    15. [15]

      P. Fontana, G. Du, Y. Zhang, H. Zhang, S. M. Vora, J. J. Hu, M. Shi, A. B. Tufan, L. B. Healy, S. Xia, et al., Cell 187 (2024) 6165, https://doi.org/10.1016/j.cell.2024.08.007. doi: 10.1016/j.cell.2024.08.007

    16. [16]

      Q. Y. Wang, Y. P. Wang, J. J. Ding, C. H. Wang, X. H. Zhou, W. Q. Gao, H. W. Huang, F. Shao, Z. B. Liu, Nature 579 (2020) 421, https://doi.org/10.1038/s41586-020-2079-1. doi: 10.1038/s41586-020-2079-1

    17. [17]

      Z. B. Zhang, Y. Zhang, S. Y. Xia, Q. Kong, S. Y. Li, X. Liu, C. Junqueira, K. F. Meza-Sosa, T. M. Y. Mok, J. Ansara, et al., Nature 579 (2020) 415, https://doi.org/10.1038/s41586-020-2071-9. doi: 10.1038/s41586-020-2071-9

    18. [18]

      Z. He, D. Feng, C. Zhang, Z. Chen, H. Wang, J. Hou, S. Li, X. Wei, J. Control. Release 366 (2024) 375, https://doi.org/10.1016/j.jconrel.2023.12.023. doi: 10.1016/j.jconrel.2023.12.023

    19. [19]

      M. Wu, X. G. Liu, H. Chen, Y. K. Duan, J. J. Liu, Y. T. Pan, B. Liu, Angew. Chem. Int. Ed. 60 (2021) 9093, https://doi.org/10.1002/anie.202016399. doi: 10.1002/anie.202016399

    20. [20]

      M. Li, J. Kim, H. Rha, S. Son, M. S. Levine, Y. Xu, J. L. Sessler, J. S. Kim, J. Am. Chem. Soc. 145 (2023) 6007, https://doi.org/10.1021/jacs.3c01231. doi: 10.1021/jacs.3c01231

    21. [21]

      M. Wang, M. Wu, X. Liu, S. Shao, J. Huang, B. Liu, T. Liang, Adv. Sci. 9 (2022) 2202914, https://doi.org/10.1002/advs.202202914. doi: 10.1002/advs.202202914

    22. [22]

      Z. G. Yi, X. J. Qin, L. Zhang, H. Chen, T. L. Song, Z. C. Luo, T. Wang, J. Lau, Y. L. Wu, T. B. Toh, et al., J. Am. Chem. Soc. 146 (2024) 9413, https://doi.org/10.1021/jacs.4c01929. doi: 10.1021/jacs.4c01929

    23. [23]

      Q. Liu, X. Yao, L. Zhou, W. Wu, J. Cheng, Z. Zhang, Z. Li, H. Sun, J. Jin, M. Zhang, et al., Adv. Mater. 36 (2024) 2401145, https://doi.org/10.1002/adma.202401145. doi: 10.1002/adma.202401145

    24. [24]

      X. Wu, J. J. Hu, J. Yoon, Angew. Chem. Int. Ed. 63 (2024) e202400249, https://doi.org/10.1002/anie.202400249. doi: 10.1002/anie.202400249

    25. [25]

      C. Xiang, Y. Liu, Q. Ding, T. Jiang, C. Li, J. Xiang, X. Yang, T. Yang, Y. Wang, Y. Tan, et al., Adv. Funct. Mater. 35 (2024) 2417979, https://doi.org/10.1002/adfm.202417979. doi: 10.1002/adfm.202417979

    26. [26]

      Z. Li, F. Mo, Y. Wang, W. Li, Y. Chen, J. Liu, T. -J. Chen-Mayfield, Q. Hu, Nat. Commun. 13 (2022) 6321, https://doi.org/10.1038/s41467-022-34036-8. doi: 10.1038/s41467-022-34036-8

    27. [27]

      Y. Q. Tang, H. K. Bisoyi, X. M. Chen, Z. Y. Liu, X. Chen, S. Zhang, Q. Li, Adv. Mater. 35 (2023) 2300232, https://doi.org/10.1002/adma.202300232. doi: 10.1002/adma.202300232

    28. [28]

      Y. Liu, Z. Huang, X. Wang, Y. Hao, J. Yang, H. Wang, S. Qu, Adv. Funct. Mater. 35 (2025) 2420587, https://doi.org/10.1002/adfm.202420587. doi: 10.1002/adfm.202420587

    29. [29]

      B. Y. Wang, S. Y. Lu, Matter 5 (2022) 110, https://doi.org/10.1016/j.matt.2021.10.016. doi: 10.1016/j.matt.2021.10.016

    30. [30]

      L. Jiang, H. Cai, W. W. Zhou, Z. J. Li, L. Zhang, H. Bi, Adv. Mater. 35 (2023) 2210776, https://doi.org/10.1002/adma.202210776. doi: 10.1002/adma.202210776

    31. [31]

      J. C. Ge, M. H. Lan, B. J. Zhou, W. M. Liu, L. Guo, H. Wang, Q. Y. Jia, G. L. Niu, X. Huang, H. Y. Zhou, et al., Nat. Commun. 5 (2014) 4596, https://doi.org/10.1038/ncomms5596. doi: 10.1038/ncomms5596

    32. [32]

      S. H. Li, W. Su, H. Wu, T. Yuan, C. Yuan, J. Liu, G. Deng, X. C. Gao, Z. M. Chen, Y. M. Bao, et al. , Nat. Biomed. Eng. 4 (2020) 704, https://doi.org/10.1038/s41551-020-0540-y. doi: 10.1038/s41551-020-0540-y

    33. [33]

      L. Ðorđević, F. Arcudi, M. Cacioppo, M. Prato, Nat. Nanotechnol. 17 (2022) 112, https://doi.org/10.1038/s41565-021-01051-7. doi: 10.1038/s41565-021-01051-7

    34. [34]

      T. Han, Y. Wang, S. Ma, M. Li, N. Zhu, S. Tao, J. Xu, B. Sun, Y. Jia, Y. Zhang, et al., Adv. Sci. 9 (2022) 2203474, https://doi.org/10.1002/advs.202203474. doi: 10.1002/advs.202203474

    35. [35]

      H. Sun, S. Sun, H. Wang, K. Cheng, Y. Zhou, X. Wang, S. Gao, J. Mo, S. Li, H. Lin, et al., Acta Biomater. 194 (2025) 352, https://doi.org/10.1016/j.actbio.2025.01.030. doi: 10.1016/j.actbio.2025.01.030

    36. [36]

      Y. Zhang, Q. Jia, F. Nan, J. Wang, K. Liang, J. Li, X. Xue, H. Ren, W. Liu, J. Ge, et al., Biomaterials 293 (2023) 121953, https://doi.org/10.1016/j.biomaterials.2022.121953. doi: 10.1016/j.biomaterials.2022.121953

    37. [37]

      X. Zhang, L. Li, B. Wang, Z. Cai, B. Zhang, F. Chen, G. Xing, K. Li, S. Qu, Angew. Chem. Int. Ed. 63 (2024) e202410522, https://doi.org/10.1002/anie.202410522. doi: 10.1002/anie.202410522

    38. [38]

      B. Wang, G. I. N. Waterhouse, B. Yang, S. Lu, Acc. Chem. Res. 57 (2024) 2928, https://doi.org/10.1021/acs.accounts.4c00516. doi: 10.1021/acs.accounts.4c00516

    39. [39]

      Q. Cheng, T. Zhang, Q. Wang, X. Wu, L. Li, R. Lin, Y. Zhou, S. Qu, Adv. Mater. 36 (2024) 2408685, https://doi.org/10.1002/adma.202408685. doi: 10.1002/adma.202408685

    40. [40]

      T. Chen, K. Liang, J. Wang, J. Li, X. Xue, Y. Hao, H. Liang, H. Ren, H. Xiao, J. Ge, et al., Nano Lett. 24 (2024) 14709, https://doi.org/10.1021/acs.nanolett.4c03913. doi: 10.1021/acs.nanolett.4c03913

    41. [41]

      J. Yang, B. Ren, X. Yin, L. Xiang, Y. Hua, X. Huang, H. Wang, Z. Mao, W. Chen, J. Deng, Adv. Mater. 36 (2024) 2402720, https://doi.org/10.1002/adma.202402720. doi: 10.1002/adma.202402720

    42. [42]

      Y. J. Li, Y. C. Guo, K. X. Zhang, R. R. Zhu, X. Y. Chen, Z. Z. Zhang, W. J. Yang, Adv. Sci. 11 (2024) 2306580, https://doi.org/10.1002/advs.202306580. doi: 10.1002/advs.202306580

    43. [43]

      J. Xu, X. Zheng, T. -B. Ren, L. Shi, X. Yin, L. Yuan, X. -B. Zhang, Coord. Chem. Rev. 528 (2025) 216379, https://doi.org/10.1016/j.ccr.2024.216379. doi: 10.1016/j.ccr.2024.216379

    44. [44]

      Y. Li, D. Hu, M. Pan, Y. Qu, B. Chu, J. Liao, X. Zhou, Q. Liu, S. Cheng, Y. Chen, et al., Biomaterials 288 (2022) 121700, https://doi.org/10.1016/j.biomaterials.2022.121700. doi: 10.1016/j.biomaterials.2022.121700

    45. [45]

      D. -T. Nguyen, M. -J. Baek, S. M. Lee, D. Kim, S. -Y. Yoo, J. -Y. Lee, D. -D. Kim, Nat. Nanotechnol. 19 (2024) 1723, https://doi.org/10.1038/s41565-024-01757-4. doi: 10.1038/s41565-024-01757-4

    46. [46]

      M. Yu, S. Li, X. Ren, N. Liu, W. Guo, J. Xue, L. Tan, C. Fu, Q. Wu, M. Niu, et al., ACS Nano 18 (2024) 3636, https://doi.org/10.1021/acsnano.3c11433. doi: 10.1021/acsnano.3c11433

    47. [47]

      H. Xia, W. Zhou, D. Li, F. Peng, L. Yu, Y. Sang, H. Liu, A. Hao, J. Qiu, Angew. Chem. Int. Ed. 63 (2024) e202312755, https://doi.org/10.1002/anie.202312755. doi: 10.1002/anie.202312755

    48. [48]

      T. Zhang, X. Yang, X. Ou, M. M. S. Lee, J. Zhang, C. Xu, X. Yu, P. Gong, J. W. Y. Lam, P. Zhang, et al., Adv. Mater. 35 (2023) 2303186, https://doi.org/10.1002/adma.202303186. doi: 10.1002/adma.202303186

    49. [49]

      L. H. Liu, W. X. Qiu, Y. H. Zhang, B. Li, C. Zhang, F. Gao, L. Zhang, X. Z. Zhang, Adv. Funct. Mater. 27 (2017) 1700220, https://doi.org/10.1002/adfm.201700220. doi: 10.1002/adfm.201700220

    50. [50]

      S. J. Hao, Y. X. Zhu, F. G. Wu, J. Control. Release. 357 (2023) 222, https://doi.org/10.1016/j.jconrel.2023.03.038. doi: 10.1016/j.jconrel.2023.03.038

    51. [51]

      K. Minton, Nat. Rev. Mmunol. 20 (2020) 274, https://doi.org/10.1038/s41577-020-0297-2. doi: 10.1038/s41577-020-0297-2

  • 加载中
计量
  • PDF下载量:  1
  • 文章访问数:  13
  • HTML全文浏览量:  1
文章相关
  • 发布日期:  2025-10-15
  • 收稿日期:  2025-04-29
  • 接受日期:  2025-06-08
  • 修回日期:  2025-06-05
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章