Citation: Kangjuan Cheng, Chunxiao Liu, Youpeng Wang, Qiu Jiang, Tingting Zheng, Xu Li, Chuan Xia. Design of noble metal catalysts and reactors for the electrosynthesis of hydrogen peroxide[J]. Acta Physico-Chimica Sinica, ;2025, 41(10): 100112. doi: 10.1016/j.actphy.2025.100112 shu

Design of noble metal catalysts and reactors for the electrosynthesis of hydrogen peroxide

  • Corresponding author: Xu Li, xuli@uestc.edu.cn Chuan Xia, chuan.xia@uestc.edu.cn
  • Received Date: 30 March 2025
    Revised Date: 20 May 2025
    Accepted Date: 6 June 2025

    Fund Project: the National Key Research and Development Program of China 2024YFB4105700the National Natural Science Foundation of China 22322201the National Natural Science Foundation of China 52171201the National Natural Science Foundation of China 22278067the National Natural Science Foundation of China 22201272the National Natural Science Foundation of China 22475030the Central Government Funds of Guiding Local Scientific and Technological Development for Sichuan Province 2024ZYD0152the Sichuan Science and Technology Program 2024NSFSC1107the Fundamental Research Funds for the Central Universities ZYGX2022J012the University of Electronic Science and Technology of China for startup funding A1098531023601403

  • Hydrogen peroxide (H2O2) is an eco-friendly oxidant vital for chemical synthesis, water treatment, and disinfection. However, the conventional anthraquinone production method is energy-intensive, generates waste, and requires hazardous transport of concentrated H2O2. Electrochemical H2O2 synthesis via a two-electron oxygen reduction reaction (2e ORR) has emerged as a sustainable alternative, enabling renewable-powered, decentralized production under mild conditions. Noble metal catalysts outperform alternatives in acidic media, demonstrating superior stability and selectivity. Despite these advantages, several technical challenges must be addressed to enable industrial-scale implementation. The primary challenge lies in optimizing catalyst performance to achieve both high activity and selectivity for the 2e pathway while suppressing the competing 4e pathway that produces water. This requires precise control of the catalyst's electronic and surface structures. Additionally, the development of cost-effective reactor systems that can maintain high performance at scale presents another significant hurdle. Current research focuses on improving mass transport, current distribution, and product separation while minimizing energy consumption.This review provides a comprehensive examination of recent progress in the 2e ORR, with particular emphasis on noble metal catalysts and reactor engineering. We begin by discussing the fundamental principles and reaction mechanisms underlying the 2e ORR, emphasizing the role of material design in optimizing catalytic performance. Noble-metal catalysts are categorized into four types, namely, pure metals, alloys, compounds, and single-atom catalysts, with a critical evaluation of their performance based on theoretical and experimental findings. The second part of the review focuses on reactor design strategies for practical applications. We evaluate reactor designs, including H-cells, flow cells, membrane electrode assemblies, and solid-state electrolyte cells, with a focus on their mass transport and scalability characteristics. Particular emphasis is placed on gas diffusion electrodes for improved oxygen accessibility and innovative in situ product separation methods. Finally, we discuss the remaining challenges and future directions, including the need for reduced noble metal loading, improved long-term stability, and system integration with renewable energy sources. The review concludes by highlighting the tremendous potential of electrochemical H2O2 production to transform industrial oxidation processes while contributing to the development of sustainable chemical manufacturing.
  • 加载中
    1. [1]

      S. Yang, A. Verdaguer-Casadevall, L. Arnarson, L. Silvioli, V. Čolić, R. Frydendal, J. Rossmeisl, I. Chorkendorff, I. E. L. Stephens, ACS Catal. 8 (2018) 4064, https://doi.org/10.1021/acscatal.8b00217.  doi: 10.1021/acscatal.8b00217

    2. [2]

      Y. H. Yi, L. Wang, G. Li, H. C. Guo, H. Catal. Sci. Technol. 6 (2016) 1593, https://doi.org/10.1039/C5CY01567G  doi: 10.1039/C5CY01567G

    3. [3]

      Y. H. Tian, D. J. Deng, L. Xu, M. Li, H. Chen, Z. Z. Wu, S. Q. Zhang, Nano-Micro Lett. 15 (2023) 122, https://doi.org/10.1007/s40820-023-01067-9.  doi: 10.1007/s40820-023-01067-9

    4. [4]

      J. M. Campos-Martin, G. Blanco-Brieva, J. L. G. Fierro, Angew. Chem. Int. Ed. 45 (2006) 6962, https://doi.org/10.1002/anie.200503779.  doi: 10.1002/anie.200503779

    5. [5]

      R. J. Lewis, G. J. Hutchings, ChemCatChem 11 (2019) 298, https://doi.org/10.1002/cctc.201801435.  doi: 10.1002/cctc.201801435

    6. [6]

      J. K. Edwards, G. J. Hutchings, Angew. Chem. Int. Ed. 47 (2008) 9192, https://doi.org/10.1002/anie.200802818.  doi: 10.1002/anie.200802818

    7. [7]

      J. K. Edwards, B. Solsona, E. N. N, A. F. Carley, A. A. Herzing, C. J. Kiely, G. J. Hutchings, Science 323 (2009) 1037, https://doi.org/10.1126/science.1168980.  doi: 10.1126/science.1168980

    8. [8]

      J. H. Lunsford, J. Catal. 216 (2003) 455, https://doi.org/10.1016/S0021-9517(02)00070-2.  doi: 10.1016/S0021-9517(02)00070-2

    9. [9]

      D. P. Dissanayake, J. H. Lunsford, J. Catal. 206 (2002) 173, https://doi.org/10.1006/jcat.2001.3501.  doi: 10.1006/jcat.2001.3501

    10. [10]

      R. Burch, P. R. Ellis, Appl. Catal. B Environ. 42 (2003) 203, https://doi.org/10.1016/S0926-3373(02)00232-1.  doi: 10.1016/S0926-3373(02)00232-1

    11. [11]

      Z. L. Jiang, L. Li, F. Qi, Z. B. Wang, Y. T. Liu, F. Li, H. Wang, Z. Y. Bian, M. S. Zhu, J. Kumirska, E. M. A. Siedlecka, ACS Appl. Mater. Inter. 17 (2025) 42, https://doi.org/10.1021/acsami.4c14902.  doi: 10.1021/acsami.4c14902

    12. [12]

      X. J. Shi, S. Back, T. M. Gill, S. Siahrostami, X. L. Zheng, Chem 7 (2021) 38, https://doi.org/10.1016/j.chempr.2020.09.013.  doi: 10.1016/j.chempr.2020.09.013

    13. [13]

      C. A. Martínez-Huitle, M. Panizza, Curr. Opin. Electrochem. 11 (2018) 62, https://doi.org/10.1016/j.coelec.2018.07.010.  doi: 10.1016/j.coelec.2018.07.010

    14. [14]

      E. Jung, H. Shin, W. Hooch Antink, Y. E. Sung, T. Hyeon, ACS Energy Lett. 5 (2020) 1881, https://doi.org/10.1021/acsenergylett.0c00812.  doi: 10.1021/acsenergylett.0c00812

    15. [15]

      Z. J. Chen, S. Yun, L. Wu, J. Q. Zhang, X. D. Shi, W. Wei, Y. W. Liu, R. J. Zheng, N. Han, B. J. Ni, Nano-Micro Lett. 15 (2023) 4, https://doi.org/10.1007/s40820-022-00974-7.  doi: 10.1007/s40820-022-00974-7

    16. [16]

      X. Zhang, Y. Xia, C. Xia, H. T. Wang, Trends Chem. 2 (2020) 942, https://doi.org/10.1016/j.trechm.2020.07.007.  doi: 10.1016/j.trechm.2020.07.007

    17. [17]

      S. C. Perry, S. Mavrikis, L. Wang, C. Ponce De León, Curr. Opin. Electrochem. 30 (2021) 100792, https://doi.org/10.1016/j.coelec.2021.100792.  doi: 10.1016/j.coelec.2021.100792

    18. [18]

      S. Siahrostami, A. Verdaguer-Casadevall, M. Karamad, D. Deiana, P. Malacrida, B. Wickman, M. Escudero-Escribano, E. A. Paoli, R. Frydendal, T. W. Hansen, I. Chorkendorff, I. E. L. Stephens, J. Rossmeisl, Nat. Mater. 12 (2013) 1137, https://doi.org/10.1038/nmat3795.  doi: 10.1038/nmat3795

    19. [19]

      T. Ricciardulli, S. Gorthy, J. S. Adams, C. Thompson, A. M. Karim, M. Neurock, D. W. Flaherty, J. Am. Chem. Soc. 143 (2021) 5445, https://doi.org/10.1021/jacs.1c00539.  doi: 10.1021/jacs.1c00539

    20. [20]

      J. S. Jirkovský, M. Halasa, D. J. Schiffrin, Phys. Chem. Chem. Phys. 12 (2010) 8042, https://doi.org/10.1039/C002416C.  doi: 10.1039/C002416C

    21. [21]

      Y. Y. Jiang, P. J. Ni, C. X. Chen, Y. Z. Lu, P. Yang, B. Kong, A. Fisher, X. Wang, Adv. Energy Mater. 8 (2018) 1801909, https://doi.org/10.1002/aenm.201801909.  doi: 10.1002/aenm.201801909

    22. [22]

      M. J. Gibian, D. L. Elliott, W. R. Hardy, J. Am. Chem. Soc. 91 (1969) 7528, https://doi.org/10.1021/ja01054a062.  doi: 10.1021/ja01054a062

    23. [23]

      J. K. Nørskov, J. Rossmeisl, A. Logadottir, L. Lindqvist, J. R. Kitchin, T. Bligaard, H. J. Jónsson, Phys. Chem. B 108 (2004), 17886, https://doi.org/10.1021/jp047349j.  doi: 10.1021/jp047349j

    24. [24]

      X. Zhang, C. Wang, K. Chen, A. H. Clark, R. Hübner, J. H. Zhan, L. Zhang, A. Eychmüller, B. Cai, Adv. Mater. 35 (2023) 2211512, https://doi.org/10.1002/adma.202211512.  doi: 10.1002/adma.202211512

    25. [25]

      H. Li, P. Wen, D. S. Itanze, Z. D. Hood, S. Adhikari, C. Lu, X. Ma, C. C. Dun, L. Jiang, D. L. Carroll, Y. J. Qiu, S. M. Geyer, Nat. Commun. 11 (2020) 3928, https://doi.org/10.1038/s41467-020-17584-9.  doi: 10.1038/s41467-020-17584-9

    26. [26]

      Z. Yu, S. Y. Lv, Q. Yao, N. Fang, Y. Xu, Q. Shao, C. W. Pao, J. F. Lee, G. L. Li, L. M. Yang, X. Q. Huang, Adv. Mater. 35 (2023) 2208101, https://doi.org/10.1002/adma.202208101.  doi: 10.1002/adma.202208101

    27. [27]

      M. J. Huang, Z. P. Cui, Z. Li, W. C. Sheng, ACS Catal. 14 (2024) 2095, https://doi.org/10.1021/acscatal.3c05362.  doi: 10.1021/acscatal.3c05362

    28. [28]

      E. Pizzutilo, S. J. Freakley, S. Cherevko, S. Venkatesan, G. J. Hutchings, C. H. Liebscher, G. Dehm, K. J. J. Mayrhofer, ACS Catal. 7 (2017) 5699, https://doi.org/10.1021/acscatal.7b01447.  doi: 10.1021/acscatal.7b01447

    29. [29]

      R. A. Shen, W. X. Chen, Q. Peng, S. Q. Lu, L. R. Zheng, X. Cao, Y. Wang, W. Zhu, J. T. Zhang, Z. B. Zhuang, C. Chen, D. S. Wang, Y. D. Li, Chem. 5 (2019) 2099, https://doi.org/10.1016/j.chempr.2019.04.024.  doi: 10.1016/j.chempr.2019.04.024

    30. [30]

      N. Wang, X. H. Zhao, R. Zhang, S. Yu, Z. H. Levell, C. Wang, S. B. Ma, P. C. Zou, L. L. Han, J. Y. Qin, L. Ma, Y. Y. Liu, H. L. Xin, ACS Catal. 12 (2022) 4156, https://doi.org/10.1021/acscatal.1c05633.  doi: 10.1021/acscatal.1c05633

    31. [31]

      E. Y. Jung, H. J. Shin, B. H. Lee, V. Efremov, S. Lee, H. S. Lee, J. H. Kim, W. Hooch Antink, S. Park, K. S. Lee, S. P. Cho, J. S. Y Yoo, Y. E. Sung, T. Hyeon, Nat. Mater. 19 (2020) 436, https://doi.org/10.1038/s41563-019-0571-5.  doi: 10.1038/s41563-019-0571-5

    32. [32]

      H. W. Kim, M. B. Ross, N. Kornienko, L. Zhang, J. H. Guo, P. D. Yang, B. D. McCloskey, Nat. Catal. 1 (2018) 282, https://doi.org/10.1038/s41929-018-0044-2.  doi: 10.1038/s41929-018-0044-2

    33. [33]

      Z. Y. Lu, G. X. Chen, S. Siahrostami, Z. H. Chen, K. Liu, J. Xie, L. Liao, T. Wu, D. C. Lin, Y. Y. Liu, T. F. Jaramillo, J. K. Nørskov, Y. Cui, Nat. Catal. 1 (2018) 156, https://doi.org/10.1038/s41929-017-0017-x.  doi: 10.1038/s41929-017-0017-x

    34. [34]

      S. C. Chen, Z. H. Chen, S. Siahrostami, D. HigginsD. Nordlund, D. Sokaras, T. R. Kim, Y. Z. Liu, X. Z. Yan, E. Nilsson, R. Sinclair, J. K. Nørskov, T. F. Jaramillo, Z. N. Bao, J. Am. Chem. Soc. 140 (2018) 7851, https://doi.org/10.1021/jacs.8b02798.  doi: 10.1021/jacs.8b02798

    35. [35]

      W. Zhou, X. X. Meng, J. H. Gao, A. N. Alshawabkeh, Chemosphere 225 (2019) 588, https://doi.org/10.1016/j.chemosphere.2019.03.042.  doi: 10.1016/j.chemosphere.2019.03.042

    36. [36]

      W. Zhou, L. Xie, J. H. Gao, R. Nazari, H. Q. Zhao, X. Meng, F. Sun, G. Zhao, J. Ma, Chem. Eng. J. 410 (2021) 128368, https://doi.org/10.1016/j.cej.2020.128368.  doi: 10.1016/j.cej.2020.128368

    37. [37]

      Y. Xia, X. H. Zhao, C. Xia, Z. Y. Wu, P. Zhu, J. Y. Kim, X. W. Bai, G. H. Gao, Y. F. Hu, J. Zhong, Y. Y. Liu, H. T. Wang, Nat. Commun. 12 (2021) 4225, https://doi.org/10.1038/s41467-021-24329-9.  doi: 10.1038/s41467-021-24329-9

    38. [38]

      C. Xia, Y. Xia, P. Zhu, L. Fan, H. T. Wang, Science 366 (2019) 226, https://doi.org/10.1126/science.aay1844.  doi: 10.1126/science.aay1844

    39. [39]

      J. J. Jia, Z. X. Li, Y. R. Tian, X. Li, R. Chen, J. C. Liu, J. Liang, Energy Rev. 3 (2024) 100069, https://doi.org/10.1016/j.enrev.2024.100069.  doi: 10.1016/j.enrev.2024.100069

    40. [40]

      H. C. Yang, N. D. Lu, J. T. Zhang, R. Wang, S. H. Tian, M. J. Wang, Z. X. Wang, K. Tao, F. Ma, S. L. Peng, Carbon Energy 5 (2023) e337, https://doi.org/10.1002/cey2.337.  doi: 10.1002/cey2.337

    41. [41]

      S. K. Zhang, Y. G. Feng, A. Elgazzar, Y. Xia, C. Qiu, Z. Adler, C. Sellers, H. T. Wang, Joule 7 (2023) 1887, https://doi.org/10.1016/j.joule.2023.06.022.  doi: 10.1016/j.joule.2023.06.022

    42. [42]

      Y. Song, X. Yang, H. Liu, S. X. Liang, Y. F. Cai, W. Q. Yang, K. X. Zhu, L. Yu, X. J. Cui, D. H. Deng, D. J. Am. Chem. Soc. 146 (2024) 5834, https://doi.org/10.1021/jacs.3c10825.  doi: 10.1021/jacs.3c10825

    43. [43]

      S. Siahrostami, A. Verdaguer-Casdevall, M. Karamad, I. Chorkendorff, I. E. L. Stephens, J. Rossmeisl, ECS Trans. 58 (2013) 53, https://doi.org/10.1149/05802.0053ecst.  doi: 10.1149/05802.0053ecst

    44. [44]

      X. G. Guo, S. R. Lin, J. X. Gu, S. L. Zhang, Z. F. Chen, S. P. Huang, Simultaneously Achieving ACS Catal. 9 (2019) 11042, https://doi.org/10.1021/acscatal.9b02778.  doi: 10.1021/acscatal.9b02778

    45. [45]

      A. Kulkarni, S. Siahrostami, A. Patel, J. K. Nørskov, Chem. Rev. 118 (2018) 2302, https://doi.org/10.1021/acs.chemrev.7b00488.  doi: 10.1021/acs.chemrev.7b00488

    46. [46]

      M. M. Montemore, M. A. Van Spronsen, R. J. Madix, C. M. Friend, Chem. Rev. 118 (2018) 2816, https://doi.org/10.1021/acs.chemrev.7b00217.  doi: 10.1021/acs.chemrev.7b00217

    47. [47]

      Q. Z. Zhang, M. H. Zhou, G. B. Ren, Y. W. Li, Y. C. Li, X. D. Du, Nat. Commun. 11 (2020) 1731, https://doi.org/10.1038/s41467-020-15597-y.  doi: 10.1038/s41467-020-15597-y

    48. [48]

      H. Y. Zou, S. Y. Shu, W. Q. Yang, Y. C. Chu, M. L. Cheng, H. L. Dong, H. Liu, F. Li, J. H. Hu, Z. B. Wang, W. Liu, H. M. Chen, L. L. Duan, Nat. Commun. 15 (2024) 10818, https://doi.org/10.1038/s41467-024-55116-x.  doi: 10.1038/s41467-024-55116-x

    49. [49]

      H. Z. Yang, S. Kumar, S. Z. Zou, J. Energy Chem 688 (2013) 180, https://doi.org/10.1016/j.jelechem.2021.115084.  doi: 10.1016/j.jelechem.2021.115084

    50. [50]

      Y. L. Wang, S. Gurses, N. Felvey, A. Boubnov, S. S. Mao, C. X. Kronawitter, ACS Catal. 9 (2019) 8453, https://doi.org/10.1021/acscatal.9b01758.  doi: 10.1021/acscatal.9b01758

    51. [51]

      Q. W. Chang, P. Zhang, A. H. B. Mostaghimi, X. R. Zhao, S. R. Denny, J. H. Lee, H. P. Gao, Y. Zhang, H. L. Xin, S. Siahrostami, J. G. Chen, Z. Chen, Nat. Commun. 11 (2020) 2178, https://doi.org/10.1038/s41467-020-15843-3.  doi: 10.1038/s41467-020-15843-3

    52. [52]

      J. M. Zhang, J. Ma, T. S. Choksi, D. J. Zhou, S. H. Han, Y. F. Liao, H. B. Yang, D. Liu, Z. P. Zeng, W. Liu, X. M. Sun, X.; T. Y. Zhang, B. Liu, J. Am. Chem. Soc. 144 (2022) 2255, https://doi.org/10.1021/jacs.1c12157.  doi: 10.1021/jacs.1c12157

    53. [53]

      C. Y. Yang, S. X. Bai, Z. Y. Yu, Y. G. Feng, B. L. Huang, Q. Y. Lu, T. Wu, M. Z. Sun, T. Zhu, C. Cheng, L. Zhang, Q. Shao, X. Q. Huang, Nano Energy 89 (2021) 106480, https://doi.org/10.1016/j.nanoen.2021.106480.  doi: 10.1016/j.nanoen.2021.106480

    54. [54]

      Y. Lee, J. Koh, H. Ahn, H. Jang, Y. J. Sa, Appl. Surf. Sci. 647 (2024) 158976, https://doi.org/10.1016/j.apsusc.2023.158976.  doi: 10.1016/j.apsusc.2023.158976

    55. [55]

      R. D. Ross, K. Lee, G. J. Quintana Cintrón, K. L. Xu, H. Y. Sheng, J. R. Schmidt, S. Jin, J. Am. Chem. Soc. 146 (2024), 15718, https://doi.org/10.1021/jacs.4c00875.  doi: 10.1021/jacs.4c00875

    56. [56]

      J. J. Zhao, C. H. Fu, K. Ye, Z. Liang, F. L. Jiang, S. Y. Shen, X. R. Zhao, L. Ma, Z. Shadike, X. M. Wang, J. L. Zhang, K. Jiang, Nat. Commun. 13 (2022) 685, https://doi.org/10.1038/s41467-022-28346-0.  doi: 10.1038/s41467-022-28346-0

    57. [57]

      E. A. Moges, C. Y. Chang, W. H. Huang, F. T. Angerasa, K. Lakshmanan, T. M. Hagos, H. G. Edao, W. B. Dilebo, C. W. Pao, M. C. Tsai, W. N. Su, B. J. Hwang, J. Am. Chem. Soc. 146 (2024) 419, https://doi.org/10.1021/jacs.3c09644.  doi: 10.1021/jacs.3c09644

    58. [58]

      B. X. Ni, P. Shen, G. Zhang, J. J. Zhao, H. H. Ding, Y. F. Ye, Z. Y. Yue, H. Yang, H. Wei, K. Jiang, J. Am. Chem. Soc. 146 (2024) 11181, https://doi.org/10.1021/jacs.3c14186.  doi: 10.1021/jacs.3c14186

    59. [59]

      Y. Zhang, Z. H. Lyu, Z. T. Chen, S. Q. Zhu, Y. F. Shi, R. H. Chen, M. H. Xie, Y. Yao, M. F. Chi, M. F. Shao, Y. N. Xia, Angew. Chem. Int. Ed. 60 (2021) 19643, https://doi.org/10.1002/anie.202105137.  doi: 10.1002/anie.202105137

    60. [60]

      Z. P. Deng, A. H. B. Mostaghimi, M. Gong, N. Chen, S. Siahrostami, X. L. Wang, J. Am. Chem. Soc. 146 (2024) 2816, https://doi.org/10.1021/jacs.3c13259.  doi: 10.1021/jacs.3c13259

    61. [61]

      J. Y. Zhang, C. Xia, H. F. Wang, C. Tang, J. Energy Chem. 67 (2022) 432, https://doi.org/10.1016/j.jechem.2021.10.013.  doi: 10.1016/j.jechem.2021.10.013

    62. [62]

      L. Y. Jing, W. Y. Wang, Q. Tian, Y. Kong, X. S. Ye, H. P. Yang, Q. Hu, C. X. He, Angew. Chem. Int. Ed. 63 (2024) e202403023, https://doi.org/10.1002/anie.202403023.  doi: 10.1002/anie.202403023

    63. [63]

      Y. L. He, Y. Z. Wei, Z. M. Wang, T. Xia, F. Rao, Z. F. Song, R. B. Yu, Adv. Func. t Mater. 34 (2024) 2314654, https://doi.org/10.1002/adfm.202314654.  doi: 10.1002/adfm.202314654

    64. [64]

      M. S. Kronka, G. V. Fortunato, L. Mira, A. J. Dos Santos, M. R. V. Lanza, Chem. Eng. J. 452 (2023) 139598, https://doi.org/10.1016/j.cej.2022.135318.  doi: 10.1016/j.cej.2022.135318

    65. [65]

      A. P. Reyes-Cruzaley, R. M. Félix-Navarro, B. Trujillo-Navarrete, C. Silva-Carrillo, J. R. Zapata-Fernández, J. M. Romo-Herrera, O. E. Contreras, E. A. Reynoso-Soto, Electrochim. Acta 296 (2019) 575, https://doi.org/10.1016/j.electacta.2018.11.023.  doi: 10.1016/j.electacta.2018.11.023

    66. [66]

      X. Sheng, S. Kang, B. X. Li, F. J. Xue, W. Q. Lu, Electrochim. Acta 472 (2023) 143420, https://doi.org/10.1016/j.electacta.2023.143420.  doi: 10.1016/j.electacta.2023.143420

    67. [67]

      M. M. Jin, W. Liu, J. Q. Sun, X. Z. Wang, S. S. Zhang, J. Luo, X. J. Liu, Nano Res. 15 (2022) 5842, https://doi.org/10.1007/s12274-022-4208-7.  doi: 10.1007/s12274-022-4208-7

    68. [68]

      A. Verdaguer-Casadevall, D. Deiana, M. Karamad, S. Siahrostami, P. Malacrida, T. W. Hansen, J. Rossmeisl, I. Chorkendorff, I. E. L. Stephens, Nano Lett. 14 (2014) 1603, https://doi.org/10.1021/nl500037x.  doi: 10.1021/nl500037x

    69. [69]

      J. W. Du, S. H. Jiang, R. Y. Zhang, P. Wang, C. Ma, R. J. Zhao, C. H. Cui, Y. N. Zhang, Y. J. Kang, ACS Catal. 13 (2023) 6887, https://doi.org/10.1021/acscatal.3c00449.  doi: 10.1021/acscatal.3c00449

    70. [70]

      B. Cai, A. Eychmüller, Adv. Mater. 31 (2019) 1804881, https://doi.org/10.1002/adma.201804881.  doi: 10.1002/adma.201804881

    71. [71]

      N. Zion, D. A. Cullen, P. Zelenay, L. Elbaz, Angew. Chem. Int. Ed. 59 (2020) 2483, https://doi.org/10.1002/anie.201913521.  doi: 10.1002/anie.201913521

    72. [72]

      N. Zion, J. C. Douglin, D. A. Cullen, P. Zelenay, D. R. Dekel, L. Elbaz, L. Adv. Funct. Mater. 31 (2021) 2100963, https://doi.org/10.1002/adfm.202100963.  doi: 10.1002/adfm.202100963

    73. [73]

      Y. Y. Liang, T. Ma, Y. Z. Xiong, L. Z. Qiu, H. Yu, F. Liang, F. Nanoscale 13 (2021) 9960, https://doi.org/10.1039/D1NR00841B.  doi: 10.1039/D1NR00841B

    74. [74]

      Y. Sha, T. H. Yu, B. V. Merinov, W. Goddard, W. A. ACS Catal. 4 (2014) 1189, https://doi.org/10.1021/cs4009623.  doi: 10.1021/cs4009623

    75. [75]

      J. S. Jirkovský, I. Panas, E. Ahlberg, M. Halasa, S. Romani, D. J. Schiffrin, J. Am. Chem. Soc. 133 (2011) 19432, https://doi.org/10.1021/ja206477z.  doi: 10.1021/ja206477z

    76. [76]

      Z. K. Zheng, Y. H. Ng, D. W. Wang, R. Amal, Adv. Mater. 28 (2016) 9949, https://doi.org/10.1002/adma.201603662.  doi: 10.1002/adma.201603662

    77. [77]

      X. Zhao, H. Yang, J. Xu, T. Cheng, Y. G. Li, ACS Materials Lett. 3 (2021) 996, https://doi.org/10.1021/acsmaterialslett.1c00263.  doi: 10.1021/acsmaterialslett.1c00263

    78. [78]

      M. Song, M. Chen, C. Zhang, J. J. Zhang, W. Liu, X. H. Huang, J. W. Li, G. Feng, D. L. Wang, ACS Appl. Mater. Inter. 15 (2023) 31375, https://doi.org/10.1021/acsami.3c02793.  doi: 10.1021/acsami.3c02793

    79. [79]

      H. J. Wang, X. Mu, Q. Q. Mao, K. Deng, H. J. Yu, Y. Xu, Z. Q. Wang, L. Wang, L. ACS Appl. Nano Mater. 7 (2024) 881, https://doi.org/10.1021/acsanm.3c04938.  doi: 10.1021/acsanm.3c04938

    80. [80]

      H. J. Yu, T. Q. Zhou, Z. Q. Wang, Y. X. Xu, X. N. Li, L. Wang, H. T. Wang, Angew. Chem. Int. Ed. 60 (2021) 12027, https://doi.org/10.1002/anie.202101019.  doi: 10.1002/anie.202101019

    81. [81]

      J. C. Fan, Z. P. Feng, Y. J. Mu, X. Ge, D. W. Wang, L. Zhang, X. Zhao, W. Zhang, D. J. Singh, J. Y. Ma, L. R. Zheng, W. T. Zheng, X. Q. Cui, J. Am. Chem. Soc. 145 (2023) 5710, https://doi.org/10.1021/jacs.2c11692.  doi: 10.1021/jacs.2c11692

    82. [82]

      M. H. Xie, S. S. Tang, Z. Li, M. Y. Wang, Z. Y. Jin, P. P. Li, X. Zhan, H. Zhou, G. H. Yu, J. Am. Chem. Soc. 145 (2023) 13957, https://doi.org/10.1021/jacs.3c03432.  doi: 10.1021/jacs.3c03432

    83. [83]

      Q. Q. Mao, X. Mu, W. X. Wang, K. Deng, H. J. Yu, Z. Q. Wang, Y. Xu, L. Wang, H. J. Wang, Nat. Commun. 14 (2023) 5679, https://doi.org/10.1038/s41467-023-41423-2.  doi: 10.1038/s41467-023-41423-2

    84. [84]

      K. Dong, Z. Q. Xu, X. He, D. L. Zhao, H. J. Chen, J. Liang, Y. S. Luo, S. J. Sun, D. D. Zheng, Q. Liu, A. A. Alshehri, Z. S. Feng, Y. Wang, X. P. Sun, Chem. Commun. 58 (2022) 10683, https://doi.org/10.1039/D2CC04503F.  doi: 10.1039/D2CC04503F

    85. [85]

      B. Yan, D. Krishnamurthy, C. H. Hendon, S. Deshpande, Y. Surendranath, V. Viswanathan, V. Joule 1 (2017) 600, https://doi.org/10.1016/j.joule.2017.08.020.  doi: 10.1016/j.joule.2017.08.020

    86. [86]

      L. L. Han, H. Cheng, W. Liu, H. Q. Li, P. F. Ou, R. Q. Lin, H. T. Wang, C. W. Pao, A. R. Head, C. H. Wang, X. Tong, C. J. Sun, W. F. Pong, J. Luo, J. C. Zheng, H. L. Xin, Nat. Mater. 21 (2022) 681, https://doi.org/10.1038/s41563-022-01252-y.  doi: 10.1038/s41563-022-01252-y

    87. [87]

      M. Ledendecker, E. Pizzutilo, G. Malta, G. V. Fortunato, K. J. J. Mayrhofer, G. J. Hutchings, S. J. Freakley, ACS Catal. 10 (2020) 5928, https://doi.org/10.1021/acscatal.0c01305.  doi: 10.1021/acscatal.0c01305

    88. [88]

      S. Yang, J. Kim, Y. J. Tak, A. Soon, H. Lee, H. Angew. Chem. Int. Ed. 55 (2016) 2058, https://doi.org/10.1002/anie.201509241.  doi: 10.1002/anie.201509241

    89. [89]

      S. Yang, Y. J. Tak, J. Kim, A. Soon, H. Lee, ACS Catal. 7 (2017) 1301, https://doi.org/10.1021/acscatal.6b02899.  doi: 10.1021/acscatal.6b02899

    90. [90]

      D. Q. He, L. J. Zhong, S. Y. Gan, J. X. Xie, W. Wang, Z. B. Liu, W. Guo, X. Yang, L. Niu, Electrochim. Acta 371 (2021) 137721, https://doi.org/10.1016/j.electacta.2021.137721.  doi: 10.1016/j.electacta.2021.137721

    91. [91]

      L. J. Zhong, D. Q. He, J. X. Xie, J. Zhong, Z. H. Kang, X. Yang, P. Y. Liu, Z. H. Sun, A. Mahmood, D. D. Wang, S. Y. Gan, Y. Bao, L. Niu, Chem. Eng. J. 435 (2022) 135105, https://doi.org/10.1016/j.cej.2022.135105.  doi: 10.1016/j.cej.2022.135105

    92. [92]

      J. B. Xi, S. Yang, L. Silvioli, S. F. Cao, P. Liu, Q. Y Chen, Y. Y. Zhao, H. Y. Sun, J. N. Hansen, J. P. B. Haraldsted, J. Kibsgaard, J. Rossmeisl, S. Bals, S. Wang, I. Chorkendorff, J. Catal. 393 (2021) 313, https://doi.org/10.1016/j.jcat.2020.11.020.  doi: 10.1016/j.jcat.2020.11.020

    93. [93]

      A. A. Zhang, Y. Liu, J. F. Wu, J. P. Zhu, S. S. Cheng, Y. Wang, Y. H. Hao, S. H. Zeng, Chem. Eng. J. 454 (2023) 140317, https://doi.org/10.1016/j.cej.2022.140317.  doi: 10.1016/j.cej.2022.140317

    94. [94]

      H. Y. Zou, L. J. Arachchige, H. Dai, H. Liu, F. F. Jiao, W. Hu, F. Li, S. T. Wei, C. H. Sun, L. L. Duan, Chem. Catal. 3 (2023) 100583, https://doi.org/10.1016/j.checat.2023.100583.  doi: 10.1016/j.checat.2023.100583

    95. [95]

      Y. C. Wen, T. Zhang, J. Y. Wang, Z. L. Pan, T. F. Wang, H. Yamashita, X. F. Qian, Y. X. Zhao, Angew. Chem. Int. Ed. 134 (2022) e202205972, https://doi.org/10.1002/ange.202205972.  doi: 10.1002/ange.202205972

    96. [96]

      C. X. Liu, Y. Ji, T. T. Zheng, C. Xia, C. JASC Au 5 (2025) 521, https://doi.org/10.1021/jacsau.4c01183.  doi: 10.1021/jacsau.4c01183

    97. [97]

      Y. F. Bu, Y. B. Wang, G. F. Han, Y. X. Zhao, X. L. Ge, F. Li, Z. H. Zhang, Q. Zhong, J. Baek, Adv. Mater. 33 (2021) 2103266, https://doi.org/10.1002/adma.202103266.  doi: 10.1002/adma.202103266

    98. [98]

      I. Yamanaka, T. Murayama, Angew. Chem. Int. Ed. 47 (2008) 1900, https://doi.org/10.1002/anie.200704431.  doi: 10.1002/anie.200704431

    99. [99]

      G. B. Chen, P. F. Shao, X. X. Niu, L. Z. Wu, T. R. Zhang, CCS Chem 7 (2025) 1, https://doi.org/10.31635/ccschem.025.202405369.  doi: 10.31635/ccschem.025.202405369

    100. [100]

      Y. H. Wu, Y. Y. Zhao, Q. X. Yuan, H. Sun, A. Wang, K. Sun, G. I. N. Waterhouse, Z. Y. Wang, J. J. Wu, J. C. Jiang, M. M. Fan, Nat. Commun. 15 (2024) 10843, https://doi.org/10.1038/s41467-024-55071-7.  doi: 10.1038/s41467-024-55071-7

    101. [101]

      Y. N. Sun, K. Fan, J. Z. Li, L. Wang, Y. S. Yang, Z. H. Li, M. F. Shao, X. Duan, Nat. Commun. 15 (2024) 6098 https://doi.org/10.1038/s41467-024-50446-2.  doi: 10.1038/s41467-024-50446-2

    102. [102]

      H. J. Shen, N. X. Qiu, L. Yang, X. Y. Guo, K. Zhang, T. J. Thomas, S. Y. Du, Q. F. Zheng, J. P. Attfield, Y. Zhu, M. H. Yang, Small 18 (2022) 2200730, https://doi.org/10.1002/smll.202200730.  doi: 10.1002/smll.202200730

    103. [103]

      K. Enomoto, T. Okazaki, K. Beppu, F. Amano, Mater. Today Catal. 8 (2025) 100088, https://doi.org/10.1016/j.mtcata.2025.100088.  doi: 10.1016/j.mtcata.2025.100088

    104. [104]

      J. W. Zhang, H. L. Ma, J. Ma, M. X. Hu, Q. H. Li, S. Chen, T. S. Ning, C. X. Ge, C. X. Liu, L. Xiao, L. Zhuang, Y. X. Zhang, L. W. Chen, Acta Phys. Chim. Sin. 39 (2023) 2111037, https://doi.org/10.3866/PKU.WHXB202111037.  doi: 10.3866/PKU.WHXB202111037

    105. [105]

      Z. M. Liu, K. L. Li, L. Liu, H. Song, Y. Zhang, M. Tebyetekerwa, X. W. Zhang, K, Wang, L. L. Xu, J. Wang, Appl. Catal. B Environ. 357 (2024) 124311, https://doi.org/10.1016/j.apcatb.2024.124311.  doi: 10.1016/j.apcatb.2024.124311

    106. [106]

      H. Shin, S. B. Lee, Y. E. Sung, Curr. Opin. Electrochem. 38 (2023) 101224, https://doi.org/10.1016/j.coelec.2023.101224.  doi: 10.1016/j.coelec.2023.101224

    107. [107]

      Z. W. Liu, Z. W. Wang, D. D. Lv, H. Y. Yang, Z. H. Kang, S. Ghosh, P. W. Menezes, Z. L. Chen, Adv. Mater. 37 (2025) 2311997, https://doi.org/10.1002/adma.202311997.  doi: 10.1002/adma.202311997

    108. [108]

      Y. D. Long, J. G. Lin, F. H. Ye, W. Liu, D. Wang, Q. Q. Cheng, R. Paul, D. J. Cheng, B. G. Mao, R. Q. Yan, L. J. Zhao, D. Liu, F. Liu, C. G. Hu, Adv. Mater. 35 (2023) 2303905, https://doi.org/10.1002/adma.202303905.  doi: 10.1002/adma.202303905

    109. [109]

      B. Sabri Rawah, M. Albloushi, W. Z. Li, Chem. Eng. J. 466 (2023) 143282.https://doi.org/10.1016/j.cej.2023.143282.  doi: 10.1016/j.cej.2023.143282

    110. [110]

      S. Y. Jia, H. M. Yu, J. C. Na, Z. C. Liu, K. Q. Lv, Z. W. Ren, S. C. Sun, Z. G. Shao, ACS Appl. Mater. Inter. 16 (2024) 23099, https://doi.org/10.1021/acsami.4c00042.  doi: 10.1021/acsami.4c00042

    111. [111]

      E. Z. Zhao, Y. X. Zhang, J. H. Zhan, G. S. Xia, G. Yu, Y. J. Wang, Nat. Commun. 16 (2025) 3212, https://doi.org/10.1038/s41467-025-58385-2.  doi: 10.1038/s41467-025-58385-2

    112. [112]

      D. D. Li, Y. J. Guo, Y. B. Sun, L. Bai, J. W. Shi, G. Chen, J. B. Shi, Y. J. Liu, C. H. Jin, Z. Y. Yue, J. B. Bai, K. Y. Leng, J. Xu, Y. T. Qu, Chem. Eng. J. 494 (2024) 153211, https://doi.org/10.1016/j.cej.2024.153211.  doi: 10.1016/j.cej.2024.153211

    113. [113]

      Y. Xia, P. Zhu, Y. L. Yang, C. Qiu, H. T. Wang, ACS Catal. 15 (2025) 4560, https://doi.org/10.1021/acscatal.4c07033.  doi: 10.1021/acscatal.4c07033

    114. [114]

      S. J. Lin, J. Wang, J. X. Chen, P. Lin, H. B. Wang, J. H. Huang, Z. H. Wen, Angew Chem. Int. Ed. (2025) e202502144, https://doi.org/10.1002/anie.202502144.  doi: 10.1002/anie.202502144

    115. [115]

      L. L. Cui, B. Chen, L. S. Zhang, C. He, C. Shu, H. Y. Kang, J. Qiu, W. H. Jing, K. (Ken) Ostrikov, Z. H. Zhang, Energy Environ. Sci. 17 (2024) 655, https://doi.org/10.1039/D3EE03223J.  doi: 10.1039/D3EE03223J

    116. [116]

      J. F. Pérez, J. Llanos, C. Sáez, C. López, P. Cañizares, M. A. Rodrigo, Electrochim. Acta 246 (2017) 466, https://doi.org/10.1016/j.electacta.2017.06.085.  doi: 10.1016/j.electacta.2017.06.085

    117. [117]

      H. Pourrahmani, A. Yavarinasab, M. Siavashi, M. Matian, J. Van Herle, Energy Rev. 1 (2022) 100002, https://doi.org/10.1016/j.enrev.2022.100002.  doi: 10.1016/j.enrev.2022.100002

    118. [118]

      W. H. Shi, H. W. Liu, J. W. Zhang, S. Y. Shen, Y. H. Wang, Y. Q. Guo, K. H. Yue, Z. H. Liang, H. Zhang, L. Zhang, F. T. Tan, Z. Q. Liang, Y. J. Liu, Y. Q. Su, D. Su, Y. H. Huang, B. Y. Xia, Y. Y. Yao, Nat. Synth. (2025) 1, https://doi.org/10.1038/s44160-025-00758-y.  doi: 10.1038/s44160-025-00758-y

    119. [119]

      Y. H. Luo, X. H. Du, L. L. Wu, Y. J. Wang, J. D. Li, L. Ricardez-Sandoval, J. Phys. Chem. C 127 (2023) 20372, https://doi.org/10.1021/acs.jpcc.3c05753.  doi: 10.1021/acs.jpcc.3c05753

    120. [120]

      L. Xie, W. Zhou, Y. M. Huang, Z. B. Qu, L. H. Li, C. W. Yang, Y. N. Ding, J. F. Li, X. X. Meng, F. Sun, J. H. Gao, G. B. Zhao, Y. K. Qin, Mater. Horiz. 11 (2024) 1719, https://doi.org/10.1039/D3MH02115G.  doi: 10.1039/D3MH02115G

    121. [121]

      R. F. Wei, D. F. Li, X. L. Yin, X. L. Wang, C. Li, Acta Phys. Chim. Sin. 39 (2023) 2207035, https://doi.org/10.3866/PKU.WHXB202207035.  doi: 10.3866/PKU.WHXB202207035

  • 加载中
    1. [1]

      Xiaofeng ZhuBingbing XiaoJiaxin SuShuai WangQingran ZhangJun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-0. doi: 10.3866/PKU.WHXB202407005

    2. [2]

      Zhaoyu WenNa HanYanguang Li . Recent Progress towards the Production of H2O2 by Electrochemical Two-Electron Oxygen Reduction Reaction. Acta Physico-Chimica Sinica, 2024, 40(2): 2304001-0. doi: 10.3866/PKU.WHXB202304001

    3. [3]

      Yu Dai Xueting Sun Haoyu Wu Naizhu Li Guoe Cheng Xiaojin Zhang Fan Xia . Determination of the Michaelis Constant for Gold Nanozyme-Catalyzed Decomposition of Hydrogen Peroxide. University Chemistry, 2025, 40(5): 351-356. doi: 10.12461/PKU.DXHX202407052

    4. [4]

      Liu LinZemin SunHuatian ChenLian ZhaoMingyue SunYitao YangZhensheng LiaoXinyu WuXinxin LiCheng Tang . Recent Advances in Electrocatalytic Two-Electron Water Oxidation for Green H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(4): 2305019-0. doi: 10.3866/PKU.WHXB202305019

    5. [5]

      Zhuoya WANGLe HEZhiquan LINYingxi WANGLing LI . Multifunctional nanozyme Prussian blue modified copper peroxide: Synthesis and photothermal enhanced catalytic therapy of self-provided hydrogen peroxide. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2445-2454. doi: 10.11862/CJIC.20240194

    6. [6]

      Lutian ZhaoYangge GuoLiuxuan LuoXiaohui YanShuiyun ShenJunliang Zhang . Electrochemical Synthesis for Metallic Nanocrystal Electrocatalysts: Principle, Application and Challenge. Acta Physico-Chimica Sinica, 2024, 40(7): 2306029-0. doi: 10.3866/PKU.WHXB202306029

    7. [7]

      Tao Jiang Yuting Wang Lüjin Gao Yi Zou Bowen Zhu Li Chen Xianzeng Li . Experimental Design for the Preparation of Composite Solid Electrolytes for Application in All-Solid-State Batteries: Exploration of Comprehensive Chemistry Laboratory Teaching. University Chemistry, 2024, 39(2): 371-378. doi: 10.3866/PKU.DXHX202308057

    8. [8]

      Yuchen ZhouHuanmin LiuHongxing LiXinyu SongYonghua TangPeng Zhou . Designing thermodynamically stable noble metal single-atom photocatalysts for highly efficient non-oxidative conversion of ethanol into high-purity hydrogen and value-added acetaldehyde. Acta Physico-Chimica Sinica, 2025, 41(6): 100067-0. doi: 10.1016/j.actphy.2025.100067

    9. [9]

      Jingping LiSuding YanJiaxi WuQiang ChengKai Wang . Improving hydrogen peroxide photosynthesis over inorganic/organic S-scheme photocatalyst with LiFePO4. Acta Physico-Chimica Sinica, 2025, 41(9): 100104-0. doi: 10.1016/j.actphy.2025.100104

    10. [10]

      Lin′an CAODengyue MAGang XU . Research advances in electrically conductive metal-organic frameworks-based electrochemical sensors. Chinese Journal of Inorganic Chemistry, 2025, 41(10): 1953-1972. doi: 10.11862/CJIC.20250160

    11. [11]

      Caixia Lin Zhaojiang Shi Yi Yu Jianfeng Yan Keyin Ye Yaofeng Yuan . Ideological and Political Design for the Electrochemical Synthesis of Benzoxathiazine Dioxide Experiment. University Chemistry, 2024, 39(2): 61-66. doi: 10.3866/PKU.DXHX202309005

    12. [12]

      Ke LiChuang LiuJingping LiGuohong WangKai Wang . Architecting Inorganic/Organic S-Scheme Heterojunction of Bi4Ti3O12 Coupling with g-C3N4 for Photocatalytic H2O2 Production from Pure Water. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-0. doi: 10.3866/PKU.WHXB202403009

    13. [13]

      Lina GuoRuizhe LiChuang SunXiaoli LuoYiqiu ShiHong YuanShuxin OuyangTierui Zhang . Effect of Interlayer Anions in Layered Double Hydroxides on the Photothermocatalytic CO2 Methanation of Derived Ni-Al2O3 Catalysts. Acta Physico-Chimica Sinica, 2025, 41(1): 100002-0. doi: 10.3866/PKU.WHXB202309002

    14. [14]

      Shiqian WEIXinyu TIANHong LIUMaoxia CHENFan TANGQiang FANWeifeng FANYu HU . Oxygen reduction reaction/oxygen evolution reaction catalytic performances of different active sites on nitrogen-doped graphene loaded with iron single atoms. Chinese Journal of Inorganic Chemistry, 2025, 41(9): 1776-1788. doi: 10.11862/CJIC.20250102

    15. [15]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    16. [16]

      Zelong LIANGShijia QINPengfei GUOHang XUBin ZHAO . Synthesis and electrocatalytic CO2 reduction performance of metal-organic framework catalysts loaded with silver particles. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 165-173. doi: 10.11862/CJIC.20240409

    17. [17]

      Changsheng AnTao Liu . Decoding SEI chemistry at the lithium-metal potential. Acta Physico-Chimica Sinica, 2025, 41(9): 100101-0. doi: 10.1016/j.actphy.2025.100101

    18. [18]

      Wang WangYucheng LiuShengli Chen . Use of NiFe Layered Double Hydroxide as Electrocatalyst in Oxygen Evolution Reaction: Catalytic Mechanisms, Electrode Design, and Durability. Acta Physico-Chimica Sinica, 2024, 40(2): 2303059-0. doi: 10.3866/PKU.WHXB202303059

    19. [19]

      Jiapei Zou Junyang Zhang Xuming Wu Cong Wei Simin Fang Yuxi Wang . A Comprehensive Experiment Based on Electrocatalytic Nitrate Reduction into Ammonia: Synthesis, Characterization, Performance Exploration, and Applicable Design of Copper-based Catalysts. University Chemistry, 2024, 39(6): 373-382. doi: 10.3866/PKU.DXHX202312081

    20. [20]

      Wentao XuXuyan MoYang ZhouZuxian WengKunling MoYanhua WuXinlin JiangDan LiTangqi LanHuan WenFuqin ZhengYoujun FanWei Chen . Bimetal Leaching Induced Reconstruction of Water Oxidation Electrocatalyst for Enhanced Activity and Stability. Acta Physico-Chimica Sinica, 2024, 40(8): 2308003-0. doi: 10.3866/PKU.WHXB202308003

Metrics
  • PDF Downloads(0)
  • Abstract views(9)
  • HTML views(1)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return