Citation: Ruizhi Duan, Xiaomei Wang, Panwang Zhou, Yang Liu, Can Li. The role of hydroxyl species in the alkaline hydrogen evolution reaction over transition metal surfaces[J]. Acta Physico-Chimica Sinica, ;2025, 41(9): 100111. doi: 10.1016/j.actphy.2025.100111 shu

The role of hydroxyl species in the alkaline hydrogen evolution reaction over transition metal surfaces

  • Corresponding author: Can Li, canli@dicp.ac.cn
  • Received Date: 26 March 2025
    Revised Date: 16 May 2025
    Accepted Date: 2 June 2025

    Fund Project: the Fundamental Research Centre of Artificial Photosynthesis FReCAPthe National Key Research and Development Program of China 2021YFB4000300the National Natural Science Foundation of China 22102065the National Natural Science Foundation of China 22088102the National Natural Science Foundation of China 22372162the Natural Science Foundation of Gansu Province for Youth project, China 24JRRA281

  • Understanding the activity-determining factors governing the alkaline hydrogen evolution reaction (HER) on transition metal catalysts is indispensable for water electrolysis with renewable energy. However, it remains a critical challenge. Although hydroxyl adsorption has been proposed to influence alkaline HER performance, its exact mechanistic role and quantitative correlations remain elusive. Here, we systematically investigate the alkaline HER on ten transition metal surfaces using density functional theory (DFT), revealing that hydroxyl adsorption critically modulates both pathway selection and reaction energy barrier. However, hydroxyl adsorption energy alone cannot fully explain the anomalous activity of certain catalysts, especially Pt. To address this, we introduce a multi-parameter coupled descriptor (ECS) that integrates electron occupancy (E), adsorption configuration (C), and surface crystallographic (S), enabling a qualitative evaluation of catalytic activity. This descriptor successfully elucidates previously unexplained activity trends and demonstrates a good correlation with over 10 experimental datasets, including those involving single-atom alloy (SAA) catalysts, indicating its robustness beyond pure metals. Our findings provide a descriptor based on the key species of hydroxyl for rational catalyst design and screening, and offer a fundamental framework for advancing the development of high-performance alkaline HER catalysts.
  • 加载中
    1. [1]

      S. E. Hosseini, M. A. Wahid, Renew. Sustain. Energy Rev. 57 (2016) 850, https://doi.org/10.1016/j.rser.2015.12.112.  doi: 10.1016/j.rser.2015.12.112

    2. [2]

      M. Chatenet, B. G. Pollet, D. R. Dekel, F. Dionigi, J. Deseure, P. Millet, R. D. Braatz, M. Z. Bazant, M. Eikerling, I. Staffell, P. Balcombe, Y. Shao-Horn, H. Sch fer, Chem. Soc. Rev. 51 (2022) 4583, https://doi.org/10.1039/D0CS01079K.  doi: 10.1039/D0CS01079K

    3. [3]

      R. T. Liu, Z. L. Xu, F. M. Li, F. Y. Chen, J. Y. Yu, Y. Yan, Y. Chen, B. Y. Xia, Chem. Soc. Rev. 52 (2023) 5652, https://doi.org/10.1039/D2CS00681B.  doi: 10.1039/D2CS00681B

    4. [4]

      J. K. N rskov, T. Bligaard, A. Logadottir, J. R. Kitchin, J. G. Chen, S. Pandelov, U. J. Stimming, Electrochem. Soc. 152 (2005) J23, https://doi.org/10.1149/1.1856988.  doi: 10.1149/1.1856988

    5. [5]

      I. T. McCrum, Nat. Catal. 5 (2022) 846, https://doi.org/10.1038/s41929-022-00858-4.  doi: 10.1038/s41929-022-00858-4

    6. [6]

      A. H. Shah, Z. Zhang, Z. Huang, S. Wang, G. Zhong, C. Wan, A. N. Alexandrova, Y. Huang, X. Duan, Nat. Catal. 5 (2022) 923, https://doi.org/10.1038/s41929-022-00851-x.  doi: 10.1038/s41929-022-00851-x

    7. [7]

      M. C. O. Monteiro, A. Goyal, P. Moerland, M. T. M. Koper, ACS Catal. 11(2021) 14328, https://doi.org/10.1021/acscatal.1c04268.  doi: 10.1021/acscatal.1c04268

    8. [8]

      Y. Yang, P. Li, X. Zheng, W. Sun, S. X. Dou, T. Ma, H. Pan, Chem. Soc. Rev. 51 (2022) 9620, https://doi.org/10.1039/D2CS00038E.  doi: 10.1039/D2CS00038E

    9. [9]

      A. Lasia, A. J. Rami, Electroanal. Chem. Interfacial Electrochem. 294 (1990) 123, https://doi.org/10.1016/0022-0728(90)87140-F.  doi: 10.1016/0022-0728(90)87140-F

    10. [10]

      S. A. S. Machado, L. A. Avaca, Electrochim. Acta 39 (1994) 1385, https://doi.org/10.1016/0013-4686(94)E0003-I.  doi: 10.1016/0013-4686(94)E0003-I

    11. [11]

      W. G. Cui, F. Gao, G. Na, X. Wang, Z. Li, Y. Yang, Z. Niu, Y. Qu, D. Wang, H. Pan, Chem. Soc. Rev. 53 (2024) 10253, https://doi.org/10.1039/D4CS00370E.  doi: 10.1039/D4CS00370E

    12. [12]

      N. Govindarajan, A. Xu, K. Chan, Science. 375 (2022) 379, https://doi.org/10.1126/science.abj2421.  doi: 10.1126/science.abj2421

    13. [13]

      C. Chen, H. Jin, P. Wang, X. Sun, M. Jaroniec, Y. Zheng, S. Z. Qiao, Chem. Soc. Rev. 53 (2024) 2022, https://doi.org/10.1039/D3CS00669G.  doi: 10.1039/D3CS00669G

    14. [14]

      V. J. Ovalle, M. M. J. Waegele, Phys. Chem. C 125 (2021) 18567, https://doi.org/10.1021/acs.jpcc.1c05921.  doi: 10.1021/acs.jpcc.1c05921

    15. [15]

      R. Subbaraman, D. Tripkovic, D. Strmcnik, K. C. Chang, M. Uchimura, A. P. Paulikas, V. Stamenkovic, N. M. Markovic, Science 334 (2011) 1256, https://doi.org/10.1126/science.1211934.  doi: 10.1126/science.1211934

    16. [16]

      N. Danilovic, R. Subbaraman, D. Strmcnik, K. Chang, A. P. Paulikas, V. R. Stamenkovic, N. M. Markovic, Angew. Chem. Int. Ed. 51 (2012) 12495, https://doi.org/10.1002/anie.201204842.  doi: 10.1002/anie.201204842

    17. [17]

      Z. Zeng, K. C. Chang, J. Kubal, N. M. Markovic, J. Greeley, Nat. Energy 2 (2017) 17070, https://doi.org/10.1038/nenergy.2017.70.  doi: 10.1038/nenergy.2017.70

    18. [18]

      R. Subbaraman, D. Tripkovic, K. C. Chang, D. Strmcnik, A. P. Paulikas, P. Hirunsit, M. Chan, J. Greeley, V. Stamenkovic, N. M. Markovic, Nat. Mater. 11 (2012) 550, https://doi.org/10.1038/nmat3313.  doi: 10.1038/nmat3313

    19. [19]

      J. Staszak-Jirkovsk , C. D. Malliakas, P. P. Lopes, N. Danilovic, S. S. Kota, K. C. Chang, B. Genorio, D. Strmcnik, V. R. Stamenkovic, M. G. Kanatzidis, N. M. Markovic, Nat. Mater. 15 (2016) 197, https://doi.org/10.1038/nmat4481.  doi: 10.1038/nmat4481

    20. [20]

      I. T. McCrum, M. T. M. Koper, Nat. Energy 5 (2020) 891, https://doi.org/10.1038/s41560-020-00710-8.  doi: 10.1038/s41560-020-00710-8

    21. [21]

      X. Chen, I. T. McCrum, K. A. Schwarz, M. J. Janik, M. T. M. Koper, Angew. Chem. Int. Ed. 56 (2017) 15025, https://doi.org/10.1002/anie.201709455.  doi: 10.1002/anie.201709455

    22. [22]

      M. J. Janik, I. T. McCrum, M. T. M. Koper, J. Catal. 367 (2018) 332, https://doi.org/10.1016/j.jcat.2018.09.031.  doi: 10.1016/j.jcat.2018.09.031

    23. [23]

      I. Ledezma-Yanez, W. D. Z. Wallace, P. Sebastián-Pascual, V. Climent, J. M. Feliu, M. T. M. Koper, Nat. Energy 2 (2017) 17031, https://doi.org/10.1038/nenergy.2017.31.  doi: 10.1038/nenergy.2017.31

    24. [24]

      C. Wan, Z. Zhang, J. Dong, M. Xu, H. Pu, D. Baumann, Z. Lin, S. Wang, J. Huang, A. H. Shah, X. Pan, T. Hu, A. N. Alexandrova, Y. Huang, X. Duan, Nat. Mater. 22 (2023) 1022, https://doi.org/10.1038/s41563-023-01584-3.  doi: 10.1038/s41563-023-01584-3

    25. [25]

      A. H. Shah, Z. Zhang, C. Wan, S. Wang, A. Zhang, L. Wang, A. N. Alexandrova, Y. Huang, X. Duan, J. Am. Chem. Soc. 146 (2024) 9623, https://doi.org/10.1021/jacs.3c12934.  doi: 10.1021/jacs.3c12934

    26. [26]

      X. Wang, G. Long, B. Liu, Z. Li, W. Gao, P. Zhang, H. Zhang, X. Zhou, R. Duan, W. Hu, C. Li, Angew. Chem. Int. Ed. 135 (2023) e202301562, https://doi.org/10.1002/ange.202301562.  doi: 10.1002/ange.202301562

    27. [27]

      G. Kresse, J. Furthmüller, Phys. Rev. B. 54 (1996) 11169, https://doi.org/10.1103/PhysRevB.54.11169.  doi: 10.1103/PhysRevB.54.11169

    28. [28]

      G. Kresse, J. Furthmüller, Comput. Mater. Sci. 6 (1996) 15, https://doi.org/10.1016/0927-0256(96)00008-0.  doi: 10.1016/0927-0256(96)00008-0

    29. [29]

      P. E. Bl chl, Phys. Rev. B. 50 (1994) 17953, https://doi.org/10.1103/physrevb.50.17953.  doi: 10.1103/PhysRevB.50.17953

    30. [30]

      G. Kresse, D. Joubert, Phys. Rev. B 59 (1999) 1758, https://doi.org/10.1103/PhysRevB.59.1758.

    31. [31]

      S. Grimme, J. Antony, S. Ehrlich, H. Krieg, J. Chem. Phys. 132 (2010) 154104, https://doi.org/10.1063/1.3382344.  doi: 10.1063/1.3382344

    32. [32]

      G. Henkelman, B. P. Uberuaga, H. Jónsson, J. Chem. Phys. 113 (2000) 9901, https://doi.org/10.1063/1.1329672.  doi: 10.1063/1.1329672

    33. [33]

      K. Mathew, R. Sundararaman, K. Letchworth-Weaver, T. A. Arias, R. G. Hennig, J. Chem. Phys. 140 (2014) 084106, https://doi.org/10.1063/1.4865107.  doi: 10.1063/1.4865107

    34. [34]

      R. Dronskowski, P. E. Bloechl, J. Phys. Chem. 97 (1993) 8617, https://doi.org/10.1021/j100135a014.  doi: 10.1021/j100135a014

    35. [35]

      S. Maintz, V. L. Deringer, A. L. Tchougréeff, R. Dronskowski, J. Comput. Chem. 37 (2016) 1030, https://doi.org/10.1002/jcc.24300.  doi: 10.1002/jcc.24300

    36. [36]

      W. Sheng, M. Myint, J. G. Chen, Y. Yan, Energy Environ. Sci. 6 (2013) 1509, https://doi.org/10.1039/c3ee00045a.  doi: 10.1039/c3ee00045a

    37. [37]

      J. K. N rskov, J. Rossmeisl, A. Logadottir, L. Lindqvist, J. R. Kitchin, T. Bligaard, H. Jónsson, J. Phys. Chem. B 108 (2004) 17886, https://doi.org/10.1021/jp047349j.  doi: 10.1021/jp047349j

    38. [38]

      X. An, T. Yao, Y. Liu, G. Long, A. Wang, Z. Feng, M. Dupuis, C. Li, J. Phys. Chem. Lett. 14 (2023) 8121, https://doi.org/10.1021/acs.jpclett.3c02142.  doi: 10.1021/acs.jpclett.3c02142

    39. [39]

      S. Ghoshal, A. Ghosh, P. Roy, B. Ball, A. Pramanik, P. Sarkar, ACS Catal. 12 (2022) 15541, https://doi.org/10.1021/acscatal.2c04527.

    40. [40]

      J. Wang, S. Xin, Y. Xiao, Z. Zhang, Z. Li, W. Zhang, C. Li, R. Bao, J. Peng, J. Yi, S. Chou, Angew. Chem. Int. Ed. 61 (2022) e202202518, https://doi.org/10.1002/anie.202202518.  doi: 10.1002/anie.202202518

    41. [41]

      M. T. M. Koper, R. A. Van Santen, J. Electroanal. Chem. 472 (1999) 126, https://doi.org/10.1016/S0022-0728(99)00291-0.  doi: 10.1016/S0022-0728(99)00291-0

    42. [42]

      I. C. Man, H. Su, F. Calle-Vallejo, H. A. Hansen, J. I. Martínez, N. G. Inoglu, J. Kitchin, T. F. Jaramillo, J. K. N rskov, J. Rossmeisl, ChemCatChem. 3 (2011) 1159, https://doi.org/10.1002/cctc.201000397.  doi: 10.1002/cctc.201000397

    43. [43]

      A. Michaelides, Z. P. Liu, C. J. Zhang, A. Alavi, D A. King, P. Hu, J. Am. Chem. Soc. 125 (2003) 3704, https://doi.org/10.1021/ja027366r.  doi: 10.1021/ja027366r

    44. [44]

      S. Wang, V. Petzold, V. Tripkovic, J. Kleis, J. G. Howalt, E. Skúlason, E. M. Fernández, B. Hvolb k, G. Jones, A. Toftelund, H. Falsig, M. Bj rketun, F. Studt, F. Abild-Pedersen, J. Rossmeisl, J. K. N rskov, T. Bligaard, Phys. Chem. Chem. Phys. 13 (2011) 20760, https://doi.org/10.1039/c1cp20547a.  doi: 10.1039/c1cp20547a

    45. [45]

      S. Wang, V. Vorotnikov, J. E. Sutton, D G. Vlachos, ACS Catal. 4 (2014) 604, https://doi.org/10.1021/cs400942u.  doi: 10.1021/cs400942u

    46. [46]

      S. J. Kurdziel, J. L. Lansford, D. G. Vlachos, J. Phys. Chem. C 125 (2021) 19780, https://doi.org/10.1021/acs.jpcc.1c05425.  doi: 10.1021/acs.jpcc.1c05425

    47. [47]

      S. A. Akhade, R. M. Nidzyn, G. Rostamikia, M. J. Janik, Catal. Today 312 (2018) 82, https://doi.org/10.1016/j.cattod.2018.03.048.  doi: 10.1016/j.cattod.2018.03.048

    48. [48]

      Z. Han, S. Zhao, J. Xiao, X. Zhong, J. Sheng, W. Lv, Q. Zhang, G. Zhou, H. Cheng, Adv. Mater. 33 (2021) 2105947, https://doi.org/10.1002/adma.202105947.  doi: 10.1002/adma.202105947

    49. [49]

      X. Lin, X. Du, S. Wu, S. Zhen, W. Liu, C. Pei, P. Zhang, Z. J. Zhao, J. Gong, Nat. Commun. 15 (2024) 8169, https://doi.org/10.1038/s41467-024-52519-8.  doi: 10.1038/s41467-024-52519-8

    50. [50]

      C. H. Chen, D. Wu, Z. Li, R. Zhang, C. G. Kuai, X. R. Zhao, C. K. Dong, S. Z. Qiao, H. Liu, X. W. Du, Adv. Energy Mater. 9 (2019) 1803913, https://doi.org/10.1002/aenm.201803913.  doi: 10.1002/aenm.201803913

    51. [51]

      J. Mao, C. T. He, J. Pei, W. Chen, D. He, Y. He, Z. Zhuang, C. Chen, Q. Peng, D. Wang, Y. Li, Nat. Commun. 9 (2018) 4958, https://doi.org/10.1038/s41467-018-07288-6.  doi: 10.1038/s41467-018-07288-6

    52. [52]

      R. Wan, M. Luo, J. Wen, S. Liu, X. Kang, Y. Tian, J. Energy Chem. 69 (2022) 44, https://doi.org/10.1016/j.jechem.2021.12.045.  doi: 10.1016/j.jechem.2021.12.045

  • 加载中
    1. [1]

      Lu ZhuoranLi ShengkaiLu YuxuanWang ShuangyinZou Yuqin . Cleavage of C―C Bonds for Biomass Upgrading on Transition Metal Electrocatalysts. Acta Physico-Chimica Sinica, 2024, 40(4): 2306003-0. doi: 10.3866/PKU.WHXB202306003

    2. [2]

      Ye WangRuixiang GeXiang LiuJing LiHaohong Duan . An Anion Leaching Strategy towards Metal Oxyhydroxides Synthesis for Electrocatalytic Oxidation of Glycerol. Acta Physico-Chimica Sinica, 2024, 40(7): 2307019-0. doi: 10.3866/PKU.WHXB202307019

    3. [3]

      Xuejie WangGuoqing CuiCongkai WangYang YangGuiyuan JiangChunming Xu . Research Progress on Carbon-based Catalysts for Catalytic Dehydrogenation of Liquid Organic Hydrogen Carriers. Acta Physico-Chimica Sinica, 2025, 41(5): 100044-0. doi: 10.1016/j.actphy.2024.100044

    4. [4]

      Tao WangQin DongCunpu LiZidong Wei . Sulfur Cathode Electrocatalysis in Lithium-Sulfur Batteries: A Comprehensive Understanding. Acta Physico-Chimica Sinica, 2024, 40(2): 2303061-0. doi: 10.3866/PKU.WHXB202303061

    5. [5]

      Tongtong Zhao Yan Wang Shiyue Qin Liang Xu Zhenhua Li . New Experiment Development: Upgrading and Regeneration of Discarded PET Plastic through Electrocatalysis. University Chemistry, 2024, 39(3): 308-315. doi: 10.3866/PKU.DXHX202309003

    6. [6]

      Jiajie Li Xiaocong Ma Jufang Zheng Qiang Wan Xiaoshun Zhou Yahao Wang . Recent Advances in In-Situ Raman Spectroscopy for Investigating Electrocatalytic Organic Reaction Mechanisms. University Chemistry, 2025, 40(4): 261-276. doi: 10.12461/PKU.DXHX202406117

    7. [7]

      Jianchun Wang Ruyu Xie . The Fantastical Dance of Miss Electron: Contra-Thermodynamic Electrocatalytic Reactions. University Chemistry, 2025, 40(4): 331-339. doi: 10.12461/PKU.DXHX202406082

    8. [8]

      Xueting CaoShuangshuang ChaMing Gong . Interfacial Electrical Double Layer in Electrocatalytic Reactions: Fundamentals, Characterizations and Applications. Acta Physico-Chimica Sinica, 2025, 41(5): 100041-0. doi: 10.1016/j.actphy.2024.100041

    9. [9]

      Xinyi ZhangKai RenYanning LiuZhenyi GuZhixiong HuangShuohang ZhengXiaotong WangJinzhi GuoIgor V. ZatovskyJunming CaoXinglong Wu . Progress on Entropy Production Engineering for Electrochemical Catalysis. Acta Physico-Chimica Sinica, 2024, 40(7): 2307057-0. doi: 10.3866/PKU.WHXB202307057

    10. [10]

      Anqun LAIQiaoyu WUQingqing LIANGQiyong LIGuowen DONGYongjie DINGJia′nan CHENQing YANZhonghua PANWangchuan XIAO . Electrocatalytic water oxidation properties of Nd-Co polynuclear complexes. Chinese Journal of Inorganic Chemistry, 2025, 41(12): 2527-2535. doi: 10.11862/CJIC.20250151

    11. [11]

      Fangfang WANGJiaqi CHENWeiyin SUN . CuBi@Cu-MOF composite catalysts for electrocatalytic CO2 reduction to HCOOH. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 97-104. doi: 10.11862/CJIC.20240350

    12. [12]

      Hailian Cheng Shuaiqiang Jia Chunjun Chen Haihong Wu Buxing Han . Electrocatalytic CO2 Conversion: A Key to Unlocking a Low-Carbon Future. University Chemistry, 2026, 41(2): 1-13. doi: 10.12461/PKU.DXHX202502023

    13. [13]

      Xinlong XUChunxue JINGYuzhen CHEN . Bimetallic MOF-74 and derivatives: Fabrication and efficient electrocatalytic biomass conversion. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1545-1554. doi: 10.11862/CJIC.20250046

    14. [14]

      Jinyi Sun Lin Ma Yanjie Xi Jing Wang . Preparation and Electrocatalytic Nitrogen Reduction Performance Study of Vanadium Nitride@Nitrogen-Doped Carbon Composite Nanomaterials: A Recommended Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(4): 184-191. doi: 10.3866/PKU.DXHX202310094

    15. [15]

      Xiting Zhou Zhipeng Han Xinlei Zhang Shixuan Zhu Cheng Che Liang Xu Zhenyu Sun Leiduan Hao Zhiyu Yang . Dual Modulation via Ag-Doped CuO Catalyst and Iodide-Containing Electrolyte for Enhanced Electrocatalytic CO2 Reduction to Multi-Carbon Products: A Comprehensive Chemistry Experiment. University Chemistry, 2025, 40(7): 336-344. doi: 10.12461/PKU.DXHX202412070

    16. [16]

      Yan KongWei WeiLekai XuChen Chen . Electrochemical Synthesis of Organonitrogen Compounds from N-integrated CO2 Reduction Reaction. Acta Physico-Chimica Sinica, 2024, 40(8): 2307049-0. doi: 10.3866/PKU.WHXB202307049

    17. [17]

      Dingwen CHENSiheng YANGHaiyan FUHua CHENXueli ZHENGWeichao XUEJiaqi XURuixiang LI . NiOOH-mediated synthesis of gold nanoaggregates for electrocatalytic performance for selective oxidation of glycerol to glycolate. Chinese Journal of Inorganic Chemistry, 2025, 41(11): 2317-2326. doi: 10.11862/CJIC.20250053

    18. [18]

      Yucai Zhang Jun Jiang . Electrochemical Carbon Dioxide Reduction to Ethylene. University Chemistry, 2026, 41(2): 190-196. doi: 10.12461/PKU.DXHX202503006

    19. [19]

      Wentao XuXuyan MoYang ZhouZuxian WengKunling MoYanhua WuXinlin JiangDan LiTangqi LanHuan WenFuqin ZhengYoujun FanWei Chen . Bimetal Leaching Induced Reconstruction of Water Oxidation Electrocatalyst for Enhanced Activity and Stability. Acta Physico-Chimica Sinica, 2024, 40(8): 2308003-0. doi: 10.3866/PKU.WHXB202308003

    20. [20]

      Qing LiGuangxun ZhangYuxia XuYangyang SunHuan Pang . P-Regulated Hierarchical Structure Ni2P Assemblies toward Efficient Electrochemical Urea Oxidation. Acta Physico-Chimica Sinica, 2024, 40(9): 2308045-0. doi: 10.3866/PKU.WHXB202308045

Metrics
  • PDF Downloads(3)
  • Abstract views(1524)
  • HTML views(167)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return