羟基物种在过渡金属表面碱性析氢反应中的作用

段睿智 王小梅 周潘旺 刘扬 李灿

引用本文: 段睿智, 王小梅, 周潘旺, 刘扬, 李灿. 羟基物种在过渡金属表面碱性析氢反应中的作用[J]. 物理化学学报, 2025, 41(9): 100111. doi: 10.1016/j.actphy.2025.100111 shu
Citation:  Ruizhi Duan, Xiaomei Wang, Panwang Zhou, Yang Liu, Can Li. The role of hydroxyl species in the alkaline hydrogen evolution reaction over transition metal surfaces[J]. Acta Physico-Chimica Sinica, 2025, 41(9): 100111. doi: 10.1016/j.actphy.2025.100111 shu

羟基物种在过渡金属表面碱性析氢反应中的作用

    通讯作者: 李灿, canli@dicp.ac.cn
  • 基金项目:

    人工光合作用基础研究中心 FReCAP

    国家重点研发计划 2021YFB4000300

    国家自然科学基金 22102065

    国家自然科学基金 22088102

    国家自然科学基金 22372162

    甘肃省自然科学青年基金 24JRRA281

摘要: 理解过渡金属催化剂上碱性析氢反应(HER)的活性决定因素对于利用可再生能源进行水电解至关重要。然而,这一问题仍然存在重大挑战。尽管已有研究提出羟基吸附会影响碱性HER性能,但其具体的作用机制和定量关系仍不明确。在此,我们利用密度泛函理论(DFT)计算系统地研究了十种过渡金属表面上的碱性HER过程,揭示了羟基吸附在路径选择和调控反应能垒中的关键作用。然而,仅凭羟基吸附能无法完全解释某些催化剂(尤其是Pt)的异常活性。为了解决这一问题,我们引入了一个多参数耦合描述符(ECS),该描述符整合了电子占据情况(E)、羟基吸附构型(C)和催化剂表面晶体学特征(S),从而实现对碱性氢析出催化活性的定性评估。该描述符成功解释了过渡金属催化剂表面的活性趋势,并与包括单原子合金(SAA)催化剂在内的超过10种实验数据对比中表现出良好的关联性,表明其普适性和应用于更广泛的催化体系的潜力。我们的研究突破传统单参数描述符的局限性,构建了一种基于羟基关键物种的碱性氢析出反应活性描述符,并为推动高性能碱性HER催化剂的开发提供了基础框架。

English

    1. [1]

      S. E. Hosseini, M. A. Wahid, Renew. Sustain. Energy Rev. 57 (2016) 850, https://doi.org/10.1016/j.rser.2015.12.112. doi: 10.1016/j.rser.2015.12.112

    2. [2]

      M. Chatenet, B. G. Pollet, D. R. Dekel, F. Dionigi, J. Deseure, P. Millet, R. D. Braatz, M. Z. Bazant, M. Eikerling, I. Staffell, P. Balcombe, Y. Shao-Horn, H. Sch fer, Chem. Soc. Rev. 51 (2022) 4583, https://doi.org/10.1039/D0CS01079K. doi: 10.1039/D0CS01079K

    3. [3]

      R. T. Liu, Z. L. Xu, F. M. Li, F. Y. Chen, J. Y. Yu, Y. Yan, Y. Chen, B. Y. Xia, Chem. Soc. Rev. 52 (2023) 5652, https://doi.org/10.1039/D2CS00681B. doi: 10.1039/D2CS00681B

    4. [4]

      J. K. N rskov, T. Bligaard, A. Logadottir, J. R. Kitchin, J. G. Chen, S. Pandelov, U. J. Stimming, Electrochem. Soc. 152 (2005) J23, https://doi.org/10.1149/1.1856988. doi: 10.1149/1.1856988

    5. [5]

      I. T. McCrum, Nat. Catal. 5 (2022) 846, https://doi.org/10.1038/s41929-022-00858-4. doi: 10.1038/s41929-022-00858-4

    6. [6]

      A. H. Shah, Z. Zhang, Z. Huang, S. Wang, G. Zhong, C. Wan, A. N. Alexandrova, Y. Huang, X. Duan, Nat. Catal. 5 (2022) 923, https://doi.org/10.1038/s41929-022-00851-x. doi: 10.1038/s41929-022-00851-x

    7. [7]

      M. C. O. Monteiro, A. Goyal, P. Moerland, M. T. M. Koper, ACS Catal. 11(2021) 14328, https://doi.org/10.1021/acscatal.1c04268. doi: 10.1021/acscatal.1c04268

    8. [8]

      Y. Yang, P. Li, X. Zheng, W. Sun, S. X. Dou, T. Ma, H. Pan, Chem. Soc. Rev. 51 (2022) 9620, https://doi.org/10.1039/D2CS00038E. doi: 10.1039/D2CS00038E

    9. [9]

      A. Lasia, A. J. Rami, Electroanal. Chem. Interfacial Electrochem. 294 (1990) 123, https://doi.org/10.1016/0022-0728(90)87140-F. doi: 10.1016/0022-0728(90)87140-F

    10. [10]

      S. A. S. Machado, L. A. Avaca, Electrochim. Acta 39 (1994) 1385, https://doi.org/10.1016/0013-4686(94)E0003-I. doi: 10.1016/0013-4686(94)E0003-I

    11. [11]

      W. G. Cui, F. Gao, G. Na, X. Wang, Z. Li, Y. Yang, Z. Niu, Y. Qu, D. Wang, H. Pan, Chem. Soc. Rev. 53 (2024) 10253, https://doi.org/10.1039/D4CS00370E. doi: 10.1039/D4CS00370E

    12. [12]

      N. Govindarajan, A. Xu, K. Chan, Science. 375 (2022) 379, https://doi.org/10.1126/science.abj2421. doi: 10.1126/science.abj2421

    13. [13]

      C. Chen, H. Jin, P. Wang, X. Sun, M. Jaroniec, Y. Zheng, S. Z. Qiao, Chem. Soc. Rev. 53 (2024) 2022, https://doi.org/10.1039/D3CS00669G. doi: 10.1039/D3CS00669G

    14. [14]

      V. J. Ovalle, M. M. J. Waegele, Phys. Chem. C 125 (2021) 18567, https://doi.org/10.1021/acs.jpcc.1c05921. doi: 10.1021/acs.jpcc.1c05921

    15. [15]

      R. Subbaraman, D. Tripkovic, D. Strmcnik, K. C. Chang, M. Uchimura, A. P. Paulikas, V. Stamenkovic, N. M. Markovic, Science 334 (2011) 1256, https://doi.org/10.1126/science.1211934. doi: 10.1126/science.1211934

    16. [16]

      N. Danilovic, R. Subbaraman, D. Strmcnik, K. Chang, A. P. Paulikas, V. R. Stamenkovic, N. M. Markovic, Angew. Chem. Int. Ed. 51 (2012) 12495, https://doi.org/10.1002/anie.201204842. doi: 10.1002/anie.201204842

    17. [17]

      Z. Zeng, K. C. Chang, J. Kubal, N. M. Markovic, J. Greeley, Nat. Energy 2 (2017) 17070, https://doi.org/10.1038/nenergy.2017.70. doi: 10.1038/nenergy.2017.70

    18. [18]

      R. Subbaraman, D. Tripkovic, K. C. Chang, D. Strmcnik, A. P. Paulikas, P. Hirunsit, M. Chan, J. Greeley, V. Stamenkovic, N. M. Markovic, Nat. Mater. 11 (2012) 550, https://doi.org/10.1038/nmat3313. doi: 10.1038/nmat3313

    19. [19]

      J. Staszak-Jirkovsk , C. D. Malliakas, P. P. Lopes, N. Danilovic, S. S. Kota, K. C. Chang, B. Genorio, D. Strmcnik, V. R. Stamenkovic, M. G. Kanatzidis, N. M. Markovic, Nat. Mater. 15 (2016) 197, https://doi.org/10.1038/nmat4481. doi: 10.1038/nmat4481

    20. [20]

      I. T. McCrum, M. T. M. Koper, Nat. Energy 5 (2020) 891, https://doi.org/10.1038/s41560-020-00710-8. doi: 10.1038/s41560-020-00710-8

    21. [21]

      X. Chen, I. T. McCrum, K. A. Schwarz, M. J. Janik, M. T. M. Koper, Angew. Chem. Int. Ed. 56 (2017) 15025, https://doi.org/10.1002/anie.201709455. doi: 10.1002/anie.201709455

    22. [22]

      M. J. Janik, I. T. McCrum, M. T. M. Koper, J. Catal. 367 (2018) 332, https://doi.org/10.1016/j.jcat.2018.09.031. doi: 10.1016/j.jcat.2018.09.031

    23. [23]

      I. Ledezma-Yanez, W. D. Z. Wallace, P. Sebastián-Pascual, V. Climent, J. M. Feliu, M. T. M. Koper, Nat. Energy 2 (2017) 17031, https://doi.org/10.1038/nenergy.2017.31. doi: 10.1038/nenergy.2017.31

    24. [24]

      C. Wan, Z. Zhang, J. Dong, M. Xu, H. Pu, D. Baumann, Z. Lin, S. Wang, J. Huang, A. H. Shah, X. Pan, T. Hu, A. N. Alexandrova, Y. Huang, X. Duan, Nat. Mater. 22 (2023) 1022, https://doi.org/10.1038/s41563-023-01584-3. doi: 10.1038/s41563-023-01584-3

    25. [25]

      A. H. Shah, Z. Zhang, C. Wan, S. Wang, A. Zhang, L. Wang, A. N. Alexandrova, Y. Huang, X. Duan, J. Am. Chem. Soc. 146 (2024) 9623, https://doi.org/10.1021/jacs.3c12934. doi: 10.1021/jacs.3c12934

    26. [26]

      X. Wang, G. Long, B. Liu, Z. Li, W. Gao, P. Zhang, H. Zhang, X. Zhou, R. Duan, W. Hu, C. Li, Angew. Chem. Int. Ed. 135 (2023) e202301562, https://doi.org/10.1002/ange.202301562. doi: 10.1002/ange.202301562

    27. [27]

      G. Kresse, J. Furthmüller, Phys. Rev. B. 54 (1996) 11169, https://doi.org/10.1103/PhysRevB.54.11169. doi: 10.1103/PhysRevB.54.11169

    28. [28]

      G. Kresse, J. Furthmüller, Comput. Mater. Sci. 6 (1996) 15, https://doi.org/10.1016/0927-0256(96)00008-0. doi: 10.1016/0927-0256(96)00008-0

    29. [29]

      P. E. Bl chl, Phys. Rev. B. 50 (1994) 17953, https://doi.org/10.1103/physrevb.50.17953. doi: 10.1103/PhysRevB.50.17953

    30. [30]

      G. Kresse, D. Joubert, Phys. Rev. B 59 (1999) 1758, https://doi.org/10.1103/PhysRevB.59.1758.

    31. [31]

      S. Grimme, J. Antony, S. Ehrlich, H. Krieg, J. Chem. Phys. 132 (2010) 154104, https://doi.org/10.1063/1.3382344. doi: 10.1063/1.3382344

    32. [32]

      G. Henkelman, B. P. Uberuaga, H. Jónsson, J. Chem. Phys. 113 (2000) 9901, https://doi.org/10.1063/1.1329672. doi: 10.1063/1.1329672

    33. [33]

      K. Mathew, R. Sundararaman, K. Letchworth-Weaver, T. A. Arias, R. G. Hennig, J. Chem. Phys. 140 (2014) 084106, https://doi.org/10.1063/1.4865107. doi: 10.1063/1.4865107

    34. [34]

      R. Dronskowski, P. E. Bloechl, J. Phys. Chem. 97 (1993) 8617, https://doi.org/10.1021/j100135a014. doi: 10.1021/j100135a014

    35. [35]

      S. Maintz, V. L. Deringer, A. L. Tchougréeff, R. Dronskowski, J. Comput. Chem. 37 (2016) 1030, https://doi.org/10.1002/jcc.24300. doi: 10.1002/jcc.24300

    36. [36]

      W. Sheng, M. Myint, J. G. Chen, Y. Yan, Energy Environ. Sci. 6 (2013) 1509, https://doi.org/10.1039/c3ee00045a. doi: 10.1039/c3ee00045a

    37. [37]

      J. K. N rskov, J. Rossmeisl, A. Logadottir, L. Lindqvist, J. R. Kitchin, T. Bligaard, H. Jónsson, J. Phys. Chem. B 108 (2004) 17886, https://doi.org/10.1021/jp047349j. doi: 10.1021/jp047349j

    38. [38]

      X. An, T. Yao, Y. Liu, G. Long, A. Wang, Z. Feng, M. Dupuis, C. Li, J. Phys. Chem. Lett. 14 (2023) 8121, https://doi.org/10.1021/acs.jpclett.3c02142. doi: 10.1021/acs.jpclett.3c02142

    39. [39]

      S. Ghoshal, A. Ghosh, P. Roy, B. Ball, A. Pramanik, P. Sarkar, ACS Catal. 12 (2022) 15541, https://doi.org/10.1021/acscatal.2c04527.

    40. [40]

      J. Wang, S. Xin, Y. Xiao, Z. Zhang, Z. Li, W. Zhang, C. Li, R. Bao, J. Peng, J. Yi, S. Chou, Angew. Chem. Int. Ed. 61 (2022) e202202518, https://doi.org/10.1002/anie.202202518. doi: 10.1002/anie.202202518

    41. [41]

      M. T. M. Koper, R. A. Van Santen, J. Electroanal. Chem. 472 (1999) 126, https://doi.org/10.1016/S0022-0728(99)00291-0. doi: 10.1016/S0022-0728(99)00291-0

    42. [42]

      I. C. Man, H. Su, F. Calle-Vallejo, H. A. Hansen, J. I. Martínez, N. G. Inoglu, J. Kitchin, T. F. Jaramillo, J. K. N rskov, J. Rossmeisl, ChemCatChem. 3 (2011) 1159, https://doi.org/10.1002/cctc.201000397. doi: 10.1002/cctc.201000397

    43. [43]

      A. Michaelides, Z. P. Liu, C. J. Zhang, A. Alavi, D A. King, P. Hu, J. Am. Chem. Soc. 125 (2003) 3704, https://doi.org/10.1021/ja027366r. doi: 10.1021/ja027366r

    44. [44]

      S. Wang, V. Petzold, V. Tripkovic, J. Kleis, J. G. Howalt, E. Skúlason, E. M. Fernández, B. Hvolb k, G. Jones, A. Toftelund, H. Falsig, M. Bj rketun, F. Studt, F. Abild-Pedersen, J. Rossmeisl, J. K. N rskov, T. Bligaard, Phys. Chem. Chem. Phys. 13 (2011) 20760, https://doi.org/10.1039/c1cp20547a. doi: 10.1039/c1cp20547a

    45. [45]

      S. Wang, V. Vorotnikov, J. E. Sutton, D G. Vlachos, ACS Catal. 4 (2014) 604, https://doi.org/10.1021/cs400942u. doi: 10.1021/cs400942u

    46. [46]

      S. J. Kurdziel, J. L. Lansford, D. G. Vlachos, J. Phys. Chem. C 125 (2021) 19780, https://doi.org/10.1021/acs.jpcc.1c05425. doi: 10.1021/acs.jpcc.1c05425

    47. [47]

      S. A. Akhade, R. M. Nidzyn, G. Rostamikia, M. J. Janik, Catal. Today 312 (2018) 82, https://doi.org/10.1016/j.cattod.2018.03.048. doi: 10.1016/j.cattod.2018.03.048

    48. [48]

      Z. Han, S. Zhao, J. Xiao, X. Zhong, J. Sheng, W. Lv, Q. Zhang, G. Zhou, H. Cheng, Adv. Mater. 33 (2021) 2105947, https://doi.org/10.1002/adma.202105947. doi: 10.1002/adma.202105947

    49. [49]

      X. Lin, X. Du, S. Wu, S. Zhen, W. Liu, C. Pei, P. Zhang, Z. J. Zhao, J. Gong, Nat. Commun. 15 (2024) 8169, https://doi.org/10.1038/s41467-024-52519-8. doi: 10.1038/s41467-024-52519-8

    50. [50]

      C. H. Chen, D. Wu, Z. Li, R. Zhang, C. G. Kuai, X. R. Zhao, C. K. Dong, S. Z. Qiao, H. Liu, X. W. Du, Adv. Energy Mater. 9 (2019) 1803913, https://doi.org/10.1002/aenm.201803913. doi: 10.1002/aenm.201803913

    51. [51]

      J. Mao, C. T. He, J. Pei, W. Chen, D. He, Y. He, Z. Zhuang, C. Chen, Q. Peng, D. Wang, Y. Li, Nat. Commun. 9 (2018) 4958, https://doi.org/10.1038/s41467-018-07288-6. doi: 10.1038/s41467-018-07288-6

    52. [52]

      R. Wan, M. Luo, J. Wen, S. Liu, X. Kang, Y. Tian, J. Energy Chem. 69 (2022) 44, https://doi.org/10.1016/j.jechem.2021.12.045. doi: 10.1016/j.jechem.2021.12.045

  • 加载中
计量
  • PDF下载量:  0
  • 文章访问数:  23
  • HTML全文浏览量:  3
文章相关
  • 发布日期:  2025-09-15
  • 收稿日期:  2025-03-26
  • 接受日期:  2025-06-02
  • 修回日期:  2025-05-16
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章