合理组装不同表面功能化碳点以增强近红外肿瘤光热治疗效果

吴雪 刘钰鹏 王冰哲 李凌云 黎镇坚 王青城 程全胜 刑贵川 曲松楠

引用本文: 吴雪, 刘钰鹏, 王冰哲, 李凌云, 黎镇坚, 王青城, 程全胜, 刑贵川, 曲松楠. 合理组装不同表面功能化碳点以增强近红外肿瘤光热治疗效果[J]. 物理化学学报, 2025, 41(9): 100109. doi: 10.1016/j.actphy.2025.100109 shu
Citation:  Xue Wu, Yupeng Liu, Bingzhe Wang, Lingyun Li, Zhenjian Li, Qingcheng Wang, Quansheng Cheng, Guichuan Xing, Songnan Qu. Rationally assembling different surface functionalized carbon dots for enhanced near-infrared tumor photothermal therapy[J]. Acta Physico-Chimica Sinica, 2025, 41(9): 100109. doi: 10.1016/j.actphy.2025.100109 shu

合理组装不同表面功能化碳点以增强近红外肿瘤光热治疗效果

    通讯作者: 曲松楠, songnanqu@um.edu.mo
  • 基金项目:

    澳门特别行政区科学技术发展基金 0139/2022/A3

    澳门特别行政区科学技术发展基金 0002/2024/TFP

    澳门特别行政区科学技术发展基金 0007/2021/AKP

    澳门大学—何鸿燊博士医疗拓展基金会“扬帆起航·共创未来”2025年度资助 SHMDF-OIRFS/2025/001

    国家自然科学基金 62205384

摘要: 碳点(CDs)因其优异的生物相容性和可调的光学特性,已成为近红外(NIR)介导的肿瘤治疗中极具前景的光热剂。然而,如何精确控制其组装行为以增强NIR吸收和光热转换效率仍不明确。在这项工作中,我们提出了一种因电子供体/受体复合而超组装的碳点(S-d/a-CDs),通过将供电子碳点(d-CDs)与吸电子碳点(a-CDs)整合构建而成。这种复合的超碳点显著增强了S-d/a-CDs的NIR吸收能力。在740 nm激光照射下,S-d/a-CDs实现了65.8%的显著光热转换效率(PTCE)。S-d/a-CDs通过静脉注射表现出可忽略的细胞毒性和有效的肿瘤积累能力,能够在NIR激光照射后完全消除肿瘤。据我们所知,本研究首次利用两种CDs的协同组装进行光物理特性工程,为开发先进的NIR触发光热材料建立了开创性的范式。

English

    1. [1]

      Y. Liu, Z. Huang, X. Wang, Y. Hao, J. Yang, H. Wang, S. Qu, Adv. Funct. Mater. 35 (2025) 2420587, https://doi.org/10.1002/adfm.202420587. doi: 10.1002/adfm.202420587

    2. [2]

      B. Wang, H. Cai, G. Waterhouse, X. Qu, B. Yang, S. Lu, Small Sci. 2 (2022) 2200012, https://doi.org/10.1002/smsc.202200012. doi: 10.1002/smsc.202200012

    3. [3]

      M. Yang, Y. Han, A. Bianco, D. Ji, ACS Nano 18 (2024) 11560, https://doi.org/10.1021/acsnano.4c00820. doi: 10.1021/acsnano.4c00820

    4. [4]

      D. Felsher, Nat. Rev. Cancer 3 (2003) 375, https://doi.org/10.1038/nrc1070. doi: 10.1038/nrc1070

    5. [5]

      H. Tang, X. Xu, Y. Chen, H. Xin, T. Wan, B. Li, H. Pan, D. Li, Y. Ping, Adv. Mater. 33 (2021) 2006003, https://doi.org/10.1002/adma.202006003. doi: 10.1002/adma.202006003

    6. [6]

      C. Feng, X. Deng X. Ni, W. Li, Acta Phys. -Chim. Sin. 31 (2015) 2349, https://doi.org/10.3866/PKU.WHXB201510281. doi: 10.3866/PKU.WHXB201510281

    7. [7]

      X. Wang, Q. Han, J. Li, R. Yang, G. Diao, C. Wang, Acta Phys. -Chim. Sin 30 (2014) 1363, https://doi.org/10.3866/PKU.WHXB201405063. doi: 10.3866/PKU.WHXB201405063

    8. [8]

      S. Wang, C. Zhang, F. Fang, Y. Fan, J. Yang, J. Zhang, J. Mater. Chem. B 11 (2023) 8315, https://doi.org/10.1039/D3TB00668A. doi: 10.1039/D3TB00668A

    9. [9]

      L. Li, J. Yang, J. Wei, C. Jiang, Z. Liu, B. Yang, B. Zhao, W. Song, Light Sci. Appl. 11 (2022) 286, https://doi.org/10.1038/s41377-022-00968-5. doi: 10.1038/s41377-022-00968-5

    10. [10]

      X. Li, L. Yu, M. He, C. Chen, Z. Yu, S. Jiang, Y. Wang, L. Li, B. Li, G. Wang, A. Shen, J. Fan, BMEMat 1 (2023) e12045, https://doi.org/10.1002/bmm2.12045. doi: 10.1002/bmm2.12045

    11. [11]

      G. Nocito, G. Calabrese, S. Forte, S. Petralia, C. Puglisi, M. Campolo, E. Esposito, S. Conoci, Cancers 13 (2021) 1991, https://doi.org/10.3390/cancers13091991. doi: 10.3390/cancers13091991

    12. [12]

      A. Lv, Q. Chen, C. Zhao, S. Li, S. Sun, J. Dong, Z. Li, H. Lin, Chin. Chem. Lett. 32 (2021) 3653. https://doi.org/10.1016/j.cclet.2021.06.020. doi: 10.1016/j.cclet.2021.06.020

    13. [13]

      C. Li, F. Jiao, L. Dong, J. Hu, X. Ma, Q. Lou, X. Chen, W. Xu, Y. Zhu, J. Zhu, Adv. Mater. (2025) 2502522. https://doi.org/10.1002/adma.202502522. doi: 10.1002/adma.202502522

    14. [14]

      J. Zhu, C. Li, Y. Zhu, J. Hu, Y. Nan, X. Chen, K. Liu, H. Wang, C. Shan, W. Xu, Q. Lou, Nano Lett. 24 (2024) 13307, https://doi.org/10.1021/acs.nanolett.4c03687. doi: 10.1021/acs.nanolett.4c03687

    15. [15]

      T. Zhang, J. Wu, Z. Tang, S. Qu, Mater. Chem. Front. 7 (2023) 2359, https://doi.org/10.1039/D3QM00043E. doi: 10.1039/D3QM00043E

    16. [16]

      Y. Liu, H. Wang, S. Qu, Chin. Chem. Lett. 36 (2025) 110618, https://doi.org/10.1016/j.cclet.2024.110618. doi: 10.1016/j.cclet.2024.110618

    17. [17]

      X. Bao, Y. Yuan, J. Chen, B. Zhang, D. Li, D. Zhou, P. Jing, G. Xu, Y. Wang, K. Holá, D. Shen, C. Wu, L. Song, C. Liu, R. Zboril, S. Qu, Light Sci. Appl. 7 (2018) 91, https://doi.org/10.1038/s41377-018-0090-1. doi: 10.1038/s41377-018-0090-1

    18. [18]

      B. Geng, D. Yang, D. Pan, L. Wang, F. Zheng, W. Shen, C. Zhang, X. Li, Carbon 134 (2018) 153, https://doi.org/10.1016/j.carbon.2018.03.084. doi: 10.1016/j.carbon.2018.03.084

    19. [19]

      Y. Liu, J. Lei, G. Wang, Z. Zhang, J. Wu, B. Zhang, H. Zhang, E. Liu, L. Wang, T. Liu, G. Xing, D. Ouyang, C. Deng, Z. Tang, S. Qu, Adv. Sci. 9 (2022) 2202283, https://doi.org/10.1002/advs.202202283. doi: 10.1002/advs.202202283

    20. [20]

      C. Hu, Y. Mu, M. Li, J. Qiu, Acta Phys.-Chim. Sin 35 (2019) 572. https://doi.org/10.3866/PKU.WHXB201806060. doi: 10.3866/PKU.WHXB201806060

    21. [21]

      Q. Wang, T. Zhang, Q. Cheng, B. Wang, Y. Liu, G. Xing, Z. Tang, S. Qu, Adv. Funct. Mater. 34 (2024) 2402976, https://doi.org/10.1002/adfm.202402976. doi: 10.1002/adfm.202402976

    22. [22]

      J. Wu, J. Lei, He. B, C. Deng, Z. Tang, S. Qu, Aggregate 2 (2021) e139, https://doi.org/10.1002/agt2.139. doi: 10.1002/agt2.139

    23. [23]

      W. Zhao, D. Chen, K. Liu, T. Wang, R. Zhou, S. Song, K. Li, L. Sui, Q. Lou, L. Hou, C. Shan, Chem. Eng. J. 452 (2023) 139231, https://doi.org/10.1016/j.cej.2022.139231. doi: 10.1016/j.cej.2022.139231

    24. [24]

      Z. He, Y. Wang, J. An, M. Rong, Q. Liu, L. Niu, Anal. Chem. 96 (2024) 19047, https://doi.org/10.1021/acs.analchem.4c04015. doi: 10.1021/acs.analchem.4c04015

    25. [25]

      Y. Shen, C. Luo, C. Chen, X. Zhang, M. Shi, Z. Gu, R. Su, Y. Wang, L. Li, L. Wang, S. Zhang, F. Huo, W. Zhang, Adv. Mater. 37 (2025) 2407811, https://doi.org/10.1002/adma.202407811. doi: 10.1002/adma.202407811

    26. [26]

      H. Song, M. Wu, Z. Tang, J. Tse, B. Yang, S. Lu, Angew. Chem. Int. Ed. 60 (2021) 7234, https://doi.org/10.1002/anie.202017102. doi: 10.1002/anie.202017102

    27. [27]

      D. Li, D. Han, S. Qu, L. Liu, P. Jing, S. Zhou, W. Ji, X. Wang, T. Zhang, D. Shen, Light-Sci. Appl. 5 (2016) e16120, https://doi.org/10.1038/lsa.2016.120. doi: 10.1038/lsa.2016.120

    28. [28]

      V. Strauss, H. Wang, S. Delacroix, M. Ledendecker, P. Wessig, Chem. Sci. 11 (2020) 8256, https://doi.org/10.1039/D0SC01605E. doi: 10.1039/D0SC01605E

    29. [29]

      C. Ji, F. Zeng, W. Xu, M. Zhu, H. Yu, H. Yang, Z. Peng, Adv. Mater. 37 (2025) 2414450, https://doi.org/10.1002/adma.202414450. doi: 10.1002/adma.202414450

    30. [30]

      Y. Ru, G. Waterhouse, S. Lu, Aggregate 3 (2022) e296, https://doi.org/10.1002/agt2.296. doi: 10.1002/agt2.296

    31. [31]

      N. Hazra, S. Paul, S. Hazra, A. Banerjee, ChemistrySelect 8 (2023) e202301260, https://doi.org/10.1002/slct.202301260. doi: 10.1002/slct.202301260

    32. [32]

      B. Tian, S. Liu, L. Feng, S. Liu, S. Gai, Y. Dai, L. Xie, B. Liu, P. Yang, Y. Zhao, Adv. Funct. Mater. 31 (2021) 2100549, https://doi.org/10.1002/adfm.202100549. doi: 10.1002/adfm.202100549

    33. [33]

      K. Mintz, M. Bartoli, M. Rovere, Y. Zhou, S. Hettiarachchi, S. Paudyal, J. Chen, J. Domena, P. Liyanage, R. Sampson, D. Khadka, R. Pandey, S. Huang, C. Chusuei, A. Tagliaferro, R. Leblanc, Carbon 173 (2021) 433, https://doi.org/10.1016/j.carbon.2020.11.017. doi: 10.1016/j.carbon.2020.11.017

    34. [34]

      Y. Xian, K. Li, Adv. Mater. 34 (2022) 2201031, https://doi.org/10.1002/adma.202201031. doi: 10.1002/adma.202201031

    35. [35]

      Y. Liu, D. Cheng, B. Wang, J. Yang, Y. Hao, J. Tan, Q. Li, S. Qu, Adv. Mater. 36 (2024) 2403775, https://doi.org/10.1002/adma.202403775. doi: 10.1002/adma.202403775

    36. [36]

      C. Ji, F. Zeng, W. Xu, M. Zhu, H. Yu, H. Yang, Z. Peng, Adv. Mater. 37 (2025) 2414450, https://doi.org/10.1002/adma.202414450. doi: 10.1002/adma.202414450

    37. [37]

      L. Ai, Z. Song, M. Nie, J. Yu, F. Liu, H. Song, B. Zhang, G. Waterhouse, S. Lu, Angew. Chem. Int. Ed. 62 (2023) e202217822, https://doi.org/10.1002/anie.202217822. doi: 10.1002/anie.202217822

    38. [38]

      H.Zhang, Y. Liu, S. Qu, Responsive Mater. 2 (2024) e20240012. https://doi.org/10.1002/rpm.20240012. doi: 10.1002/rpm.20240012

    39. [39]

      Y. Zhang, L. Wang, Y. Hu, L. Sui, L. Cheng, S. Lu, Small 19 (2023) 2207983, https://doi.org/10.1002/smll.202207983. doi: 10.1002/smll.202207983

    40. [40]

      S. Deshmukh, A. Deore, S. Mondal, ACS Appl. Nano Mater. 4 (2021) 7587, https://doi.org/10.1021/acsanm.1c01880.

    41. [41]

      B. Zhang, B. Wang, E. Ushakova, B. He, G. Xing, Z. Tang, A. Rogach, S. Qu, Small 19 (2023) 2204158, https://doi.org/10.1002/smll.202204158. doi: 10.1002/smll.202204158

    42. [42]

      Q. Zhang, F. Wang, R. Wang, J. Liu, Y. Ma, X. Qin, X. Zhong, Adv. Sci. 10 (2023) 2207566, https://doi.org/10.1002/advs.202207566. doi: 10.1002/advs.202207566

    43. [43]

      S. Lu, G. Xiao, L. Sui, T. Feng, X. Yong, S. Zhu, B. Li, Z. Liu, B. Zou, M. Jin, J. Tse, H. Yan, B. Yang, Angew. Chem. Int. Ed. 56 (2017) 6187, https://doi.org/10.1002/anie.201700757. doi: 10.1002/anie.201700757

    44. [44]

      N. Li, J. Wei, X. Ran, J. Li, L. Shen, F. Zhang, Q. Dai, W. Wang, K. Li, X. Wan, Angew. Chem. Int. Ed. (2025) e202503036, https://doi.org/10.1002/anie.202503036. doi: 10.1002/anie.202503036

    45. [45]

      Z. Shi, H. Bai, J. Wu, X. Miao, J. Gao, X. Xu, Y. Liu, J. Jiang, J. Yang, J. Zhang, T. Shao, B. Peng, H. Ma, D. Zhu, G. Chen, W. Hu, L. Li, W. Huang, Research (Wash D C) 6 (2023) 0169, https://doi.org/10.34133/research.0169. doi: 10.34133/research.0169

    46. [46]

      P. Changenet, T. Gustavsson, I. Lampre, Chem. Educ. 97 (2020) 4482, https://doi.org/10.1021/acs.jchemed.0c01056. doi: 10.1021/acs.jchemed.0c01056

    47. [47]

      Z. Yan, W. Wang, L. Du, J. Zhu, D. Phillips, J. Xu, Appl. Catal. B-Environ. 275 (2020) 119151, https://doi.org/10.1016/j.apcatb.2020.119151. doi: 10.1016/j.apcatb.2020.119151

    48. [48]

      Y. Zhao, W. Jiang, S. Zhuo, B. Wu, P. Luo, W. Chen, M. Zheng, J. Hu, K. Zhang, Z. Wang, L. Liao, M. Zhuo, Sci. Adv. 9 (2023) eadh8917, https://doi.org/10.1126/sciadv.adh8917. doi: 10.1126/sciadv.adh8917

    49. [49]

      J. Dai, L. Fang, X. Wang, J. Hua, Y. Tu, S. Li, K. He, L. Hang, Y. Xu, J. Fang, L. Wang, J. Wang, P. Ma, G. Jiang, Angew. Chem. Int. Ed. 64 (2025) e202417871, https://doi.org/10.1002/anie.202417871. doi: 10.1002/anie.202417871

    50. [50]

      Y. Fu, J. Chi, Y. Wu, J. Li, M. Tan, C. Li, H. Du, D. Hao, H. Zhu, Q. Wang, Q. Li, Appl. Surf. Sci. 692 (2025) 162711. https://doi.org/10.1016/j.apsusc.2025.162711. doi: 10.1016/j.apsusc.2025.162711

    51. [51]

      Q. Li, Q. Zhou, Y. Wu, Y. Shi, Y. Liu, H. Deng, S. Chen, Z. Li, E. Wang, H. Zhu, Q. Wang, J. Environ. Sci. 155 (2025) 111, https://doi.org/10.1016/j.jes.2024.12.014. doi: 10.1016/j.jes.2024.12.014

    52. [52]

      I. Srivastava, J. Khamo, S. Pandit, P. Fathi, X. Huang, A. Cao, R. Haasch, S. Nie, K. Zhang, D. Pan, Adv. Funct. Mater. 29 (2019) 1902466, https://doi.org/10.1002/adfm.201902466. doi: 10.1002/adfm.201902466

    53. [53]

      Y. Liu, B. Wang, Y. Zhang, J. Guo, X. Wu, D. Ouyang, S. Chen, Y. Chen, S. Wang, G. Xing, Z, Tang, S. Qu, Adv. Funct. Mater. 34 (2024) 2401353, https://doi.org/10.1002/adfm.202401353. doi: 10.1002/adfm.202401353

    54. [54]

      X. Peng, R. Wang, T. Wang, W. Yang, H. Wang, W. Gu, L. Ye, ACS Appl. Mater. Interfaces 10 (2018) 1084, https://doi.org/10.1021/acsami.7b14972. doi: 10.1021/acsami.7b14972

    55. [55]

      Y. Li, G. Bai, S. Zeng, J. Hao, ACS Appl. Mater. Interfaces 11 (2019) 4737, https://doi.org/10.1021/acsami.8b14877. doi: 10.1021/acsami.8b14877

    56. [56]

      J. Shao, H. Xie, H. Huang, Z. Li, Z. Sun, Y. Xu, Q. Xiao, X. Yu, Y. Zhao, H. Zhang, H. Wang, P. Chu, Nat. Commun. 7 (2016) 12967, https://doi.org/10.1038/ncomms12967. doi: 10.1038/ncomms12967

  • 加载中
计量
  • PDF下载量:  1
  • 文章访问数:  26
  • HTML全文浏览量:  4
文章相关
  • 发布日期:  2025-09-15
  • 收稿日期:  2025-04-29
  • 接受日期:  2025-05-29
  • 修回日期:  2025-05-23
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章