电化学降解污水中含氮废弃物的升值策略

孙明磊 袁忠勇

引用本文: 孙明磊, 袁忠勇. 电化学降解污水中含氮废弃物的升值策略[J]. 物理化学学报, 2025, 41(9): 100108. doi: 10.1016/j.actphy.2025.100108 shu
Citation:  Minglei Sun, Zhong-Yong Yuan. Valorization strategies for electrodegradation of nitrogenous wastes in sewage[J]. Acta Physico-Chimica Sinica, 2025, 41(9): 100108. doi: 10.1016/j.actphy.2025.100108 shu

电化学降解污水中含氮废弃物的升值策略

    通讯作者: 袁忠勇, zyyuan@nankai.edu.cn
  • 基金项目:

    国家自然科学基金 22179065

    南开大学材料科学与工程学院博士研究生科研创新基金资助项目 

摘要: 由于工业和生活废水的大量排放,地表水水体中的氮污染已成为全球性的环境问题。新兴的电化学降解技术为高效降解含氮废物,如亲电污染物(硝酸盐和亚硝酸盐)和亲核污染物(尿素、氨氮和肼)提供了有前途的解决方案,同时能在电降解过程中实现增值产出。本文对污水中典型的含氮废弃物电降解过程中的升值策略进行了深入研究,重点阐释了提高价值输出效率的方法:(1) 通过构建锌-亲电性污染物电池实现能量与化学品产出;(2) 通过亲核污染物驱动的混合直接燃料电池实现能量输出;(3) 通过亲核性污染物辅助的电解水装置实现节能纯净氢能的生产;(4) 利用锌-亲核性污染物电池进行储能和制氢;(5) 通过C―N耦合反应产生有价值的化学产品。最后,我们对当前面临的挑战和未来前景进行了深入分析,以加深对先进电化学电池的理解,弥合实验试验与实际应用之间的差距。

English

    1. [1]

      N. Gruber, J.N. Galloway, Nature 451 (2008) 293, https://doi.org/10.1038/nature06592. doi: 10.1038/nature06592

    2. [2]

      N. Lehnert, B.W. Musselman, L.C. Seefeldt, Chem. Soc. Rev. 50 (2021) 3640, https://doi.org/10.1039/D0CS00923G. doi: 10.1039/D0CS00923G

    3. [3]

      H. Xu, Y.Y. Ma, J. Chen, W.X. Zhang, J.P. Yang, Chem. Soc. Rev. 51 (2022) 2710, https://doi.org/10.1039/D1CS00857A. doi: 10.1039/D1CS00857A

    4. [4]

      N. Lehnert, H.T. Dong, J.B. Harland, A.P. Hunt, C.J. White, Nat. Rev. Chem. 2 (2018) 278, https://doi.org/10.1038/s41570-018-0041-7. doi: 10.1038/s41570-018-0041-7

    5. [5]

      J.G. Chen, R.M. Crooks, L.C. Seefeldt, K.L. Bren, R.M. Bullock, M.Y. Darensbourg, P.L. Holland, B. Hoffman, M.J. Janik, A.K. Jones, M.G. Kanatzidis, P. King, K.M. Lancaster, S.V. Lymar, P. Pfromm, W.F. Schneider, R.R. Schrock, Science 360 (2018) eaar6611, https://doi.org/10.1126/science.aar6611. doi: 10.1126/science.aar6611

    6. [6]

      H.C.J. Godfray, J.R. Beddington, I.R. Crute, L. Haddad, D. Lawrence, J.F. Muir, J. Pretty, S. Robinson, S.M. Thomas, C. Toulmin, Science 327 (2010) 812, https://doi.org/10.1126/science.1185383. doi: 10.1126/science.1185383

    7. [7]

      S. Mishra, V. Singh, L. Cheng, A. Hussain, B. Ormeci, J. Environ. Chem. Eng. 10 (2022) 107387, https://doi.org/10.1016/j.jece.2022.107387. doi: 10.1016/j.jece.2022.107387

    8. [8]

      W.H. Guo, K.X. Zhang, Z.B. Liang, R.Q. Zou, Q. Xu, Chem. Soc. Rev. 48 (2019) 5658, https://doi.org/10.1039/C9CS00159J. doi: 10.1039/C9CS00159J

    9. [9]

      W.P.F. Barber, Water Res. 104 (2016) 53, https://doi.org/10.1016/j.watres.2016.07.069. doi: 10.1016/j.watres.2016.07.069

    10. [10]

      A. Matei, G. Racoviteanu, IOP Conf. Ser.: Earth Environ. Sci. 664 (2021) 012024, https://doi.org/10.1088/1755-1315/664/1/012024. doi: 10.1088/1755-1315/664/1/012024

    11. [11]

      Y. Wang, C. Wang, M. Li, Y. Yu, B. Zhang, Chem. Soc. Rev. 50 (2021) 6720, https://doi.org/10.1039/d1cs00116g. doi: 10.1039/d1cs00116g

    12. [12]

      J. Chatt, J.R. Dilworth, R.L. Richards, Chem. Rev. 78 (1978) 589, https://doi.org/10.1021/cr60316a001. doi: 10.1021/cr60316a001

    13. [13]

      H.Y. Wang, C.C. Weng, Z.Y. Yuan, J. Energy Chem. 56 (2021) 470, https://doi.org/10.1016/j.jechem.2020.08.030. doi: 10.1016/j.jechem.2020.08.030

    14. [14]

      H.Y. Wang, J.T. Ren, M.L. Sun, W.W. Tian, Y. Feng, Z.Y. Yuan, Adv. Energy Mater. 14 (2024) 2302515, https://doi.org/10.1002/aenm.202302515. doi: 10.1002/aenm.202302515

    15. [15]

      R. Lan, S.W. Tao, J.T.S. Irvine, Energy Environ. Sci. 3 (2010) 438, https://doi.org/10.1039/b924786f. doi: 10.1039/b924786f

    16. [16]

      T.Z. Wang, X.J. Cao, L.F. Jiao, Angew. Chem. Int. Ed. 61 (2022) e202213328, https://doi.org/10.1002/anie.202213328. doi: 10.1002/anie.202213328

    17. [17]

      X. Zhang, Y.T. Wang, Y.B. Wang, Y.M. Guo, X.Y. Xie, Y.F. Yu, B. Zhang, Chem. Commun. 58 (2022) 2777, https://doi.org/10.1039/D1CC06690K. doi: 10.1039/D1CC06690K

    18. [18]

      S.S. Liu, M.F. Wang, Q.Y. Cheng, Y.Z. He, J.J. Ni, J. Liu, C.L. Yan, T. Qian, ACS Nano 16 (2022) 17911, https://doi.org/10.1021/acsnano.2c09168. doi: 10.1021/acsnano.2c09168

    19. [19]

      X.Y. Peng, L.B. Zeng, D.S. Wang, Z.B. Liu, Y. Li, Z.J. Li, B. Yang, L.C. Lei, L.M. Dai, Y. Hou, Chem. Soc. Rev. 52 (2023) 2193, https://doi.org/10.1039/D2CS00381C. doi: 10.1039/D2CS00381C

    20. [20]

      Y. Feng, J.T. Ren, M.L. Sun, Z.Y. Yuan, Chem. Sci. 16 (4) (2025) 1528, https://doi.org/10.1039/D4SC05936K. doi: 10.1039/D4SC05936K

    21. [21]

      J.W. Liu, Z.Y. Li, C.D. Lv, X.Y. Tan, C. Lee, X.J. Loh, M.H. Chua, Z.B. Li, H.G. Pan, J. Chen, Q. Zhu, J.W. Xu, Q.Y. Yan, Mater. Today 73 (2024) 208, https://doi.org/10.1016/j.mattod.2024.01.009. doi: 10.1016/j.mattod.2024.01.009

    22. [22]

      Y.Y. Zhang, Q. Yu, X. Wang, W. Guo, Chem. Eng. J. 474 (2023) 145899, https://doi.org/10.1016/j.cej.2023.145899. doi: 10.1016/j.cej.2023.145899

    23. [23]

      M.L. Sun, H.Y. Wang, Y. Feng, J.T. Ren, L. Wang, Z.Y. Yuan, Chem. Soc. Rev. 53 (2024) 11908, https://doi.org/10.1039/D4CS00517A. doi: 10.1039/D4CS00517A

    24. [24]

      Z.J. Yan, Q.H. Yang, C.P. Yang, J. Mater. Chem. A 12 (2024) 24746, https://doi.org/10.1039/D4TA05108D. doi: 10.1039/D4TA05108D

    25. [25]

      F.X. Yan, H.Y. Wang, Y. Feng, H. Wang, Z.Y. Yuan, J. Energy Chem. 98 (2024) 541, https://doi.org/10.1016/j.jechem.2024.06.054. doi: 10.1016/j.jechem.2024.06.054

    26. [26]

      R. Hao, J.T. Ren, X.W. Lv, W. Li, Y.P. Liu, Z.Y. Yuan, J. Energy Chem. 49 (2020) 14, https://doi.org/10.1016/j.jechem.2020.01.007. doi: 10.1016/j.jechem.2020.01.007

    27. [27]

      L. Tang, H. Peng, J. Kang, H. Chen, M. Zhang, Y. Liu, D.H. Kim, Y. Liu, Z. Lin, Chem. Soc. Rev. 53 (2024) 4877, https://doi.org/10.1039/d3cs00295k. doi: 10.1039/d3cs00295k

    28. [28]

      X.W. Lv, Y.P. Liu, W.W. Tian, L.J. Gao, Z.Y. Yuan, J. Energy Chem. 50 (2020) 324, https://doi.org/10.1016/j.jechem.2020.02.055. doi: 10.1016/j.jechem.2020.02.055

    29. [29]

      J. Pan, Y.Y. Xu, H. Yang, Z.H. Dong, H.F. Liu, B.Y. Xia, Adv. Sci. 5 (2018) 1700691, https://doi.org/10.1002/advs.201700691. doi: 10.1002/advs.201700691

    30. [30]

      Y. Guo, R. Zhang, S.C. Zhang, Y.W. Zhao, Q. Yang, Z.D. Huang, B.B. Dong, C.Y. Zhi, Energy Environ. Sci. 14 (2021) 3938, https://doi.org/10.1039/d1ee00806d. doi: 10.1039/d1ee00806d

    31. [31]

      R. Zhang, S.C. Zhang, Y. Guo, C. Li, J.H. Liu, Z.D. Huang, Y.W. Zhao, Y.Y. Li, C.Y. Zhi, Energy Environ. Sci. 15 (2022) 3024, https://doi.org/10.1039/d2ee00686c. doi: 10.1039/d2ee00686c

    32. [32]

      Y. Feng, J.T. Ren, Y.X. Song, W.W. Tian, H.Y. Wang, L. Wang, M.L. Sun, Z.Y. Yuan, CCS Chem. 7 (2024) 1344, https://doi.org/10.31635/ccschem.024.202404299. doi: 10.31635/ccschem.024.202404299

    33. [33]

      S.L. Zhou, Y. Dai, Q. Song, L. Lu, X. Yu, ACS Appl. Mater. Inter. 16 (2024) 20551, https://doi.org/10.1021/acsami.4c01739. doi: 10.1021/acsami.4c01739

    34. [34]

      C. Peng, M.Y. Wang, S. Li, X.Z. Zeng, J.Y. Wang, W.H. Wang, Z.R. Zhang, M.F. Ye, X.W. Wei, K.L. Wu, K. Zhang, J. Zeng, Angew. Chem. Int. Ed. 63 (2024) e202408771, https://doi.org/10.1002/anie.202408771. doi: 10.1002/anie.202408771

    35. [35]

      D. De, E.E. Kalu, P.P. Tarjan, J.D. Englehardt, Chem. Eng. Technol. 27 (2004) 56, https://doi.org/10.1002/ceat.200401832. doi: 10.1002/ceat.200401832

    36. [36]

      W.Q. Yu, J.Y. Yu, M. Huang, Y.J. Wang, Y.J. Wang, J.W. Li, H. Liu, W.J. Zhou, Energy Environ. Sci. 2991‒3001 (2023) 2991, https://doi.org/10.1039/d3ee01301d. doi: 10.1039/d3ee01301d

    37. [37]

      F. Gong, S.H. Hong, J.M. Song, C.Z. Liu, S.L. Liu, J.J. Feng, Q.W. Wu, Y.L. Xiong, L. Medic-Pejic, Y. Cheng, Z.Q. Zhang, J. Mater. Chem. A 13 (2025) 3435, https://doi.org/10.1039/d4ta07666d. doi: 10.1039/d4ta07666d

    38. [38]

      S. Chen, G. Qi, R. Yin, Q. Liu, L. Feng, X. Feng, G. Hu, J. Luo, X. Liu, W. Liu, Nanoscale 15 (2023) 19577, https://doi.org/10.1039/d3nr05254k. doi: 10.1039/d3nr05254k

    39. [39]

      Y. Jin, L.P. Sun, Y.C. Wang, L.H. Huo, H. Zhao, Int. J. Hydrog. Energy 71 (2024) 820, https://doi.org/10.1016/j.ijhydene.2024.05.299. doi: 10.1016/j.ijhydene.2024.05.299

    40. [40]

      Y.L. Fu, Y.L. Li, F.Q. Fan, B.B. Chen, X.J. Hou, Y.H. Li, H. Li, Y. Fu, W. Qi, ACS Catal. 15 (2025) 6918, https://doi.org/10.1021/acscatal.4c07320. doi: 10.1021/acscatal.4c07320

    41. [41]

      J.Y. Ding, X.H. Hou, Y. Qiu, S.S. Zhang, Q. Liu, J. Luo, X.J. Liu, Inorg. Chem. Commun. 151 (2023) 110621, https://doi.org/10.1016/j.inoche.2023.110621. doi: 10.1016/j.inoche.2023.110621

    42. [42]

      Y.N. Zheng, Y. Tan, X. Yu, H. Yao, S.J. Hu, J. Hu, Z. Chen, X.H. Guo, Small 20 (2024) 2312136, https://doi.org/10.1002/smll.202312136. doi: 10.1002/smll.202312136

    43. [43]

      Z.J. Cui, P.W. Zhao, H.H. Wang, C.L. Li, W.C. Peng, J.P. Liu, Adv. Funct. Mater. 34 (2024) 2410941, https://doi.org/10.1002/adfm.202410941. doi: 10.1002/adfm.202410941

    44. [44]

      J.F. Liu, S.W. Du, W.J. Fan, Q.L. Li, Q. Yang, L. Luo, J.N. Li, F.X. Zhang, Energy Environ. Sci. 17 (2024) 9093, https://doi.org/10.1039/D4EE03987D. doi: 10.1039/D4EE03987D

    45. [45]

      W.J. Zhu, F. Yao, Q.F. Wu, Q. Jiang, J.X. Wang, Z.C. Wang, H.F. Liang, Energy Environ. Sci. 16 (2023) 2483, https://doi.org/10.1039/d3ee00371j. doi: 10.1039/d3ee00371j

    46. [46]

      Y.L. Liu, J. Zhang, R. Bai, Y. Zhao, Y.T. Zhou, X. Zhao, J. Colloid Interface Sci. 675 (2024) 526, https://doi.org/10.1016/j.jcis.2024.06.213. doi: 10.1016/j.jcis.2024.06.213

    47. [47]

      L.M. Zhou, X.Q. Chen, S.J. Zhu, K. You, Z.J. Wang, R. Fan, J. Li, Y.F. Yuan, X. Wang, J.C. Wang, Y.H. Chen, H.L. Jin, S. Wang, J.J. Lv, Angew. Chem. Int. Ed. 63 (2024) e202401924, https://doi.org/10.1002/anie.202401924. doi: 10.1002/anie.202401924

    48. [48]

      N. Shang, K.L. Wang, M.H. Wei, Y.Y. Zuo, P.F. Zhang, H.W. Wang, Z. Chen, P. Pei, J. Mater. Chem. A 10 (2022) 16369, https://doi.org/10.1039/D2TA04294K. doi: 10.1039/D2TA04294K

    49. [49]

      Y. Feng, L. Chen, Z. Yuan, Inorg. Chem. Front. 10 (2023) 5225, https://doi.org/10.1039/D3QI01113E. doi: 10.1039/D3QI01113E

    50. [50]

      Z. Bi, J. Hu, M. Xu, H. Zhang, Y. Zhou, G. Hu, Angew. Chem. Int. Ed. 63 (2024) e202313434, https://doi.org/10.1002/anie.202313434. doi: 10.1002/anie.202313434

    51. [51]

      W.Q. Yu, Y.J. Wang, H. Tan, M. Huang, J.Y. Yu, L.L. Chen, J.G. Wang, H. Liu, W.J. Zhou, Adv. Energy Mater. 14 (2024) 2402970, https://doi.org/10.1002/aenm.202402970. doi: 10.1002/aenm.202402970

    52. [52]

      R. Zhang, C. Li, H.L. Cui, Y.B. Wang, S.C. Zhang, P. Li, Y. Hou, Y. Guo, G.J. Liang, Z.D. Huang, C. Peng, C.Y. Zhi, Nat. Commun. 14 (2023) 8036, https://doi.org/10.1038/s41467-023-43897-6. doi: 10.1038/s41467-023-43897-6

    53. [53]

      P.H. van Langevelde, I. Katsounaros, M.T.M. Koper, Joule 5 (2021) 290, https://doi.org/10.1016/j.joule.2020.12.025. doi: 10.1016/j.joule.2020.12.025

    54. [54]

      I. Katsounaros, M. Dortsiou, G. Kyriacou, J. Hazard. Mater. 171 (2009) 323, https://doi.org/10.1016/j.jhazmat.2009.06.005. doi: 10.1016/j.jhazmat.2009.06.005

    55. [55]

      R. Chauhan, V.C. Srivastava, Chem. Eng. J. 386 (2020) 122065, https://doi.org/10.1016/j.cej.2019.122065. doi: 10.1016/j.cej.2019.122065

    56. [56]

      L.H. Su, K. Li, H.B. Zhang, M.H. Fan, D.W. Ying, T.H. Sun, Y.L. Wang, J.P. Jia, Water Res. 120 (2017) 1, https://doi.org/10.1016/j.watres.2017.04.069. doi: 10.1016/j.watres.2017.04.069

    57. [57]

      Y.Y. Wei, J.J. Huang, H. Chen, S.J. Zheng, R.W. Huang, X.Y. Dong, L.K. Li, A. Cao, J.M. Cai, S.Q. Zang, Adv. Mater. 36 (2024) 2404774, https://doi.org/10.1002/adma.202404774. doi: 10.1002/adma.202404774

    58. [58]

      R. Huo, M. Li, W.B. Zheng, P.W. Ming, B. Li, C.M. Zhang, Z.L. Li, Energy Convers. Manag. 317 (2024) 118819, https://doi.org/10.1016/j.enconman.2024.118819. doi: 10.1016/j.enconman.2024.118819

    59. [59]

      Y. Wang, D.F. Ruiz Diaz, K.S. Chen, Z. Wang, X.C. Adroher, Mater. Today 32 (2020) 178, https://doi.org/10.1016/j.mattod.2019.06.005. doi: 10.1016/j.mattod.2019.06.005

    60. [60]

      S.J. Yao, S.K. Wolfson, B.K. Ahn, C.C. Liu, Nature 241 (1973) 471, https://doi.org/10.1038/241471a0. doi: 10.1038/241471a0

    61. [61]

      C. Hong, D. Park, Y. Gu, S. Park, D. Lim, D. Seo, J. Han, K. Park, Int. J. Hydrog. Energy 87 (2024) 1367, https://doi.org/10.1016/j.ijhydene.2024.09.128. doi: 10.1016/j.ijhydene.2024.09.128

    62. [62]

      S. Suzuki, H. Muroyama, T. Matsui, K. Eguchi, J. Power Sources 208 (2012) 257, https://doi.org/10.1016/j.jpowsour.2012.02.043. doi: 10.1016/j.jpowsour.2012.02.043

    63. [63]

      D.K. Bora, A. Faik, Curr. Opin. Green Sustain. Chem. 48 (2024) 100944, https://doi.org/10.1016/j.cogsc.2024.100944. doi: 10.1016/j.cogsc.2024.100944

    64. [64]

      T. Sakamoto, K. Asazawa, U. Martinez, B. Halevi, T. Suzuki, S. Arai, D. Matsumura, Y. Nishihata, P. Atanassov, H. Tanaka, J. Power Sources 234 (2013) 252, https://doi.org/10.1016/j.jpowsour.2013.01.181. doi: 10.1016/j.jpowsour.2013.01.181

    65. [65]

      S. Behera, C. Chauhan, B. Mondal, Small 20 (2024) 2311946, https://doi.org/10.1002/smll.202311946. doi: 10.1002/smll.202311946

    66. [66]

      T.Y. Burshtein, Y. Yasman, L. Muñoz-Moene, J.H. Zagal, D. Eisenberg, ACS Catal. 14 (2024) 2264, https://doi.org/10.1021/acscatal.3c05657. doi: 10.1021/acscatal.3c05657

    67. [67]

      A.S. Meke, I. Dincer, Int. J. Hydrog. Energy 88 (2024) 1123, https://doi.org/10.1016/j.ijhydene.2024.09.240. doi: 10.1016/j.ijhydene.2024.09.240

    68. [68]

      I. Amin, S.A. Bhat, M.M. Bhat, F.A. Sofi, A.Y. Bhat, P.P. Ingole, R. Mondal, M.O. Thotiyl, M.A. Bhat, New J. Chem. 47 (2023) 22146, https://doi.org/10.1039/D3NJ04229D. doi: 10.1039/D3NJ04229D

    69. [69]

      K. Yang, L.J. Hao, Y.W. Hou, J. Zhang, J.H. Yang, Int. J. Hydrog. Energy 51 (2024) 966, https://doi.org/10.1016/j.ijhydene.2023.10.279. doi: 10.1016/j.ijhydene.2023.10.279

    70. [70]

      J.A. Herron, P. Ferrin, M. Mavrikakis, J. Phys. Chem. C 119 (2015) 14692, https://doi.org/10.1021/jp512981f. doi: 10.1021/jp512981f

    71. [71]

      Y.J. Shih, Y.H. Huang, C.P. Huang, Electrochim. Acta 263 (2018) 261, https://doi.org/10.1016/j.electacta.2018.01.045. doi: 10.1016/j.electacta.2018.01.045

    72. [72]

      D.N. Stephens, M.T. Mock, Eur. J. Inorg. Chem. 27 (2024) e202400039, https://doi.org/10.1002/ejic.202400039. doi: 10.1002/ejic.202400039

    73. [73]

      V. Rosca, M.T.M. Koper, Electrochim. Acta 53 (2008) 5199, https://doi.org/10.1016/j.electacta.2008.02.054. doi: 10.1016/j.electacta.2008.02.054

    74. [74]

      L. Zhang, W.X. Niu, W.Y. Gao, L.M. Qi, J.M. Zhao, M. Xu, G.B. Xu, Electrochem. Commun. 37 (2013) 57, https://doi.org/10.1016/j.elecom.2013.10.006. doi: 10.1016/j.elecom.2013.10.006

    75. [75]

      D.S. Hall, D.J. Lockwood, C. Bock, B.R. MacDougall, Proc. Math. Phys. Eng. Sci. 471 (2015) 20140792, https://doi.org/10.1098/rspa.2014.0792. doi: 10.1098/rspa.2014.0792

    76. [76]

      C.J. Huang, H.M. Xu, T.Y. Shuai, Q.N. Zhan, Z.J. Zhang, G.R. Li, Small 19 (2023) e2301130, https://doi.org/10.1002/smll.202301130. doi: 10.1002/smll.202301130

    77. [77]

      V. Vedharathinam, G.G. Botte, J. Phys. Chem. C 118 (2014) 21806, https://doi.org/10.1021/jp5052529. doi: 10.1021/jp5052529

    78. [78]

      S. Barik, G.P. Kharabe, P.P. Samal, R.R. Urkude, S. Kumar, A. Yoyakki, C.P. Vinod, S. Krishnamurty, S. Kurungot, Small 20 (2024) 2406589, https://doi.org/10.1002/smll.202406589. doi: 10.1002/smll.202406589

    79. [79]

      L.Y. Gao, H.R. Sun, H. Sun, Y.S. Wang, Y.Z. Li, Y. Lu, D.J. Zhou, X.M. Sun, W. Liu, Appl. Catal. B 358 (2024) 124287, https://doi.org/10.1016/j.apcatb.2024.124287. doi: 10.1016/j.apcatb.2024.124287

    80. [80]

      P. Basumatary, D. Konwar, Y.S. Yoon, Electrochim. Acta 261 (2018) 78, https://doi.org/10.1016/j.electacta.2017.12.123. doi: 10.1016/j.electacta.2017.12.123

    81. [81]

      E.T. Sayed, T. Eisa, H.O. Mohamed, M.A. Abdelkareem, A. Allagui, H. Alawadhi, K.J. Chae, J. Power Sources 417 (2019) 159, https://doi.org/10.1016/j.jpowsour.2018.12.024. doi: 10.1016/j.jpowsour.2018.12.024

    82. [82]

      G. Feng, Y. Kuang, P. Li, N. Han, M. Sun, G. Zhang, X. Sun, Adv. Sci. 4 (2017) 1600179, https://doi.org/10.1002/advs.201600179. doi: 10.1002/advs.201600179

    83. [83]

      F. Guo, D.X. Cao, M.M. Du, K. Ye, G.L. Wang, W.P. Zhang, Y.Y. Gao, K. Cheng, J. Power Sources 307 (2016) 697, https://doi.org/10.1016/j.jpowsour.2016.01.042. doi: 10.1016/j.jpowsour.2016.01.042

    84. [84]

      H.M. Zhang, W.Y. Chen, H.L. Wang, X. Tong, Y.F. Wang, X. Yang, Z.C. Wu, Z.M. Liu, Int. J. Hydrog. Energy 47 (2022) 16080, https://doi.org/10.1016/j.ijhydene.2022.03.139. doi: 10.1016/j.ijhydene.2022.03.139

    85. [85]

      Y.M.T.A. Putri, T.W. Chamberlain, V. Degirmenci, J. Gunlazuardi, Y.K. Krisnandi, R.I. Walton, T.A. Ivandini, ACS Appl. Energy Mater. 6 (2023) 2497, https://doi.org/10.1021/acsaem.2c03938. doi: 10.1021/acsaem.2c03938

    86. [86]

      X. Yin, K. Zhu, K. Ye, J. Yan, D. Cao, D. Zhang, J. Yao, G. Wang, J. Colloid Interf. Sci. 654 (2024) 36, https://doi.org/10.1016/j.jcis.2023.10.011. doi: 10.1016/j.jcis.2023.10.011

    87. [87]

      Y.J. Cao, Y. Guo, Z.J. Hu, F.K. Gui, Y.K. Lei, J. Ni, C.M. Zhang, Q.F. Xiao, Energy Fuels 38 (2024) 14645, https://doi.org/10.1021/acs.energyfuels.4c02183. doi: 10.1021/acs.energyfuels.4c02183

    88. [88]

      X. Li, H.M. Zheng, Y.J. Liao, K.M. Huang, Y.B. Ye, H.R. Xin, H.P. Luo, G.L. Liu, ACS Sustain. Chem. Eng. 12 (2024) 3621, https://doi.org/10.1021/acssuschemeng.3c06691. doi: 10.1021/acssuschemeng.3c06691

    89. [89]

      S. Nangan, Y. Ding, A.Z. Alhakemy, Y. Liu, Z. Wen, Appl. Catal. B 286 (2021) 119892, https://doi.org/10.1016/j.apcatb.2021.119892. doi: 10.1016/j.apcatb.2021.119892

    90. [90]

      W. Xu, H.M. Zhang, G. Li, Z.C. Wu, J. Electroanal. Chem. 764 (2016) 38, https://doi.org/10.1016/j.jelechem.2016.01.013. doi: 10.1016/j.jelechem.2016.01.013

    91. [91]

      W. Zhu, X. Zhang, F. Yao, R. Huang, Y. Chen, C. Chen, J. Fei, Y. Chen, Z. Wang, H. Liang, Angew. Chem. Int. Ed. 62 (2023) e202300390, https://doi.org/10.1002/anie.202300390. doi: 10.1002/anie.202300390

    92. [92]

      Z.J. Chen, X.G. Duan, W. Wei, S.B. Wang, B.J. Ni, Nano Energy 78 (2020) 105270, https://doi.org/doi.org/10.1016/j.nanoen.2020.105270. doi: 10.1016/j.nanoen.2020.105270

    93. [93]

      H.Y. Wang, J.T. Ren, L. Wang, M.L. Sun, H.M. Yang, X.W. Lv, Z.Y. Yuan, J. Energy Chem. 75 (2022) 66, https://doi.org/10.1016/j.jechem.2022.08.019. doi: 10.1016/j.jechem.2022.08.019

    94. [94]

      H.M. Yang, H.Y. Wang, S.X. Zhai, J.T. Ren, Z.Y. Yuan, Chem. Eng. J. 489 (2024) 151236, https://doi.org/10.1016/j.cej.2024.151236. doi: 10.1016/j.cej.2024.151236

    95. [95]

      F. Sun, J. Qin, Z. Wang, M. Yu, X. Wu, X. Sun, J. Qiu, Nat. Commun. 12 (2021) 4182, https://doi.org/10.1038/s41467-021-24529-3. doi: 10.1038/s41467-021-24529-3

    96. [96]

      H.Y. Wang, L. Wang, J.T. Ren, W. Tian, M.L. Sun, Y. Feng, Z.Y. Yuan, ACS Nano 17 (2023) 10965, https://doi.org/10.1021/acsnano.3c03095. doi: 10.1021/acsnano.3c03095

    97. [97]

      X.W. Lv, W.W. Tian, Z.Y. Yuan, Electro. Energy Rev. 6 (2023) 23, https://doi.org/10.1007/s41918-022-00159-1. doi: 10.1007/s41918-022-00159-1

    98. [98]

      C. Tang, R. Zhang, W. Lu, Z. Wang, D. Liu, S. Hao, G. Du, A.M. Asiri, X. Sun, Angew. Chem. Int. Ed. 56 (2017) 842, https://doi.org/10.1002/anie.201608899. doi: 10.1002/anie.201608899

    99. [99]

      X.Y. Zhang, G. Ma, L.L. Shui, G.F. Zhou, X. Wang, J. Energy Chem. 72 (2022) 88, https://doi.org/10.1016/j.jechem.2022.04.045. doi: 10.1016/j.jechem.2022.04.045

    100. [100]

      H.Y. Wang, M.L. Sun, J.T. Ren, Z.Y. Yuan, Adv. Energy Mater. 13 (2022) 2203568, https://doi.org/10.1002/aenm.202203568. doi: 10.1002/aenm.202203568

    101. [101]

      L. Chen, J.T. Ren, Z.Y. Yuan, Adv. Energy Mater. 13 (2023) 2203720, https://doi.org/10.1002/aenm.202203720. doi: 10.1002/aenm.202203720

    102. [102]

      H.M. Yang, H.Y. Wang, M.L. Sun, Z.Y. Yuan, Chem. Eng. J. 475 (2023) 146134, https://doi.org/10.1016/j.cej.2023.146134. doi: 10.1016/j.cej.2023.146134

    103. [103]

      R.Q. Xu, R.B. Sun, H.Q. Xu, G. Xie, J.J. Ge, J. Mater. Chem. A 12 (2024) 26316, https://doi.org/10.1039/D4TA03382E. doi: 10.1039/D4TA03382E

    104. [104]

      H.Y. Wang, F.X. Yan, H. Wang, S.X. Zhai, J.T. Ren, L. Wang, M.L. Sun, Z.Y. Yuan, Adv. Energy Mater. 14 (2024) 2402611, https://doi.org/10.1002/aenm.202402611. doi: 10.1002/aenm.202402611

    105. [105]

      X.L. Sun, J. Liu, Y.M. Du, Y.R. Liu, W.N. Wang, D.H. Chen, R.Y. Zhang, L. Wang, ACS Catal. 14 (2024) 17421, https://doi.org/10.1021/acscatal.4c05825. doi: 10.1021/acscatal.4c05825

    106. [106]

      S. Ajmal, A. Rasheed, W.X. Sheng, G. Dastgeer, Q.A.T. Nguyen, P.H. Wang, P. Chen, S.J. Liu, V.Q. Bui, M.Z. Zhu, P. Li, D.S. Wang, Adv. Mater. 37 (2024) 2412173, https://doi.org/10.1002/adma.202412173. doi: 10.1002/adma.202412173

    107. [107]

      Z.J. Zhao, H. Zhao, X.Q. Du, X.S. Zhang, Int. J. Hydrog. Energy 88 (2024) 313, https://doi.org/10.1016/j.ijhydene.2024.09.193. doi: 10.1016/j.ijhydene.2024.09.193

    108. [108]

      S.Y. Tang, Z.P. Zhang, Q.J. Lv, X.Q. Pan, J.L. Dong, L.Y. Liu, Y.Y. Wan, J. Han, F.Z. Song, ACS Appl. Mater. Inter. 16 (2024) 66008, https://doi.org/10.1021/acsami.4c11228. doi: 10.1021/acsami.4c11228

    109. [109]

      Q.H. Quan, X.L. Li, C. Song, Q.S. Jia, H.S. Lu, X.J. Cui, G.B. Liu, X. Chen, L.H. Jiang, Chem. Eng. J. 488 (2024) 150897, https://doi.org/10.1016/j.cej.2024.150897. doi: 10.1016/j.cej.2024.150897

    110. [110]

      Y.X. Qin, Y.Y. Wang, G.Q. Jin, X.L. Tong, N.J. Yang, Adv. Energy Mater. 14 (2024) 2402429, https://doi.org/10.1002/aenm.202402429. doi: 10.1002/aenm.202402429

    111. [111]

      Y.P. Huang, X. Zhang, L.F. Li, M. Humayun, H.M. Zhang, X.F. Xu, S.P. Anthony, Z.H. Chen, J.R. Zeng, D.V. Shtansky, K.F. Huo, H.S. Song, C.D. Wang, W.J. Zhang, Adv. Funct. Mater. (2024) 2401011, https://doi.org/10.1002/adfm.202401011. doi: 10.1002/adfm.202401011

    112. [112]

      Y.F. Yang, X.Y. Li, G.L. Liu, H.X. Liu, Y.H. Shi, C.M. Ye, Z. Fang, M.X. Ye, J.F. Shen, Adv. Mater. 36 (2024) 2307979, https://doi.org/10.1002/adma.202307979. doi: 10.1002/adma.202307979

    113. [113]

      M.X. Du, Y.J. Ji, Y.Y. Li, S.X. Liu, J.Q. Yan, Adv. Funct. Mater. 34 (2024) 2402776, https://doi.org/10.1002/adfm.202402776. doi: 10.1002/adfm.202402776

    114. [114]

      Z.G. Yuan, X. Sun, B. Gao, Z.g. Fan, P.x. Yang, Z.B. Feng, Chem. Eng. J. 499 (2024) 156647, https://doi.org/10.1016/j.cej.2024.156647. doi: 10.1016/j.cej.2024.156647

    115. [115]

      N. Vadivel, A.P. Murthy, Small 20 (2024) 2407845, https://doi.org/10.1002/smll.202407845. doi: 10.1002/smll.202407845

    116. [116]

      Y. Tong, P.Z. Chen, Inorg. Chem. Front. 11 (2024) 6218, https://doi.org/10.1039/D4QI01789G. doi: 10.1039/D4QI01789G

    117. [117]

      G. Feng, Y. Pan, D. Su, D.G. Xia, Adv. Mater. 36 (2024) 2309715, https://doi.org/10.1002/adma.202309715. doi: 10.1002/adma.202309715

    118. [118]

      Z.K. Shi, Y. Zhang, W. Guo, Z.H. Niu, Y. Chen, J.L. Huang, Adv. Funct. Mater. (2024) 2414935, https://doi.org/10.1002/adfm.202414935. doi: 10.1002/adfm.202414935

    119. [119]

      M.A. Ahsan, T. He, J.C. Noveron, K. Reuter, A.R. Puente-Santiago, R. Luque, Chem. Soc. Rev. 51 (2022) 812, https://doi.org/10.1039/D1CS00498K. doi: 10.1039/D1CS00498K

    120. [120]

      Y. Feng, J.T. Ren, H.Y. Wang, L. Wang, Z.Y. Yuan, Inorg. Chem. Front. 10 (2023) 4510, https://doi.org/10.1039/D3QI00795B. doi: 10.1039/D3QI00795B

    121. [121]

      J.T. Ren, Y.D. Ying, Y.P. Liu, W. Li, Z.Y. Yuan, J. Energy Chem. 71 (2022) 619, https://doi.org/10.1016/j.jechem.2022.03.048. doi: 10.1016/j.jechem.2022.03.048

    122. [122]

      H.Y. Wang, S.X. Zhai, H. Wang, F.X. Yan, J.T. Ren, L. Wang, M.L. Sun, Z.Y. Yuan, ACS Nano 18 (2024) 19682, https://doi.org/10.1021/acsnano.4c04831. doi: 10.1021/acsnano.4c04831

    123. [123]

      W.X. Wang, J.J. Zhang, J.S. Rong, L.L. Chen, S.Q. Cui, J. Colloid Interface Sci. 680 (2025) 214, https://doi.org/10.1016/j.jcis.2024.11.098. doi: 10.1016/j.jcis.2024.11.098

    124. [124]

      H.Y. Wang, L. Wang, J.T. Ren, W.W. Tian, M.L. Sun, Z.Y. Yuan, Nanomicro Lett. 15 (2023) 155, https://doi.org/10.1007/s40820-023-01128-z. doi: 10.1007/s40820-023-01128-z

    125. [125]

      F.X. Yan, H.Y. Wang, L. Wang, H. Wang, Z.Y. Yuan, Inorg. Chem. Front. 11 (2024) 6376, https://doi.org/10.1039/D4QI01740D. doi: 10.1039/D4QI01740D

    126. [126]

      J.Q. Xu, M.X. Zhong, S. Yan, X.J. Chen, W.M. Li, M.J. Xu, C. Wang, X.F. Lu, J. Colloid Interface Sci. 679 (2025) 171, https://doi.org/10.1016/j.jcis.2024.09.227. doi: 10.1016/j.jcis.2024.09.227

    127. [127]

      Y.Y. Feng, Q.M. Shi, J. Lin, E. Chai, X. Zhang, Z.L. Liu, L. Jiao, Y.B. Wang, Adv. Mater. 34 (2022) 2207747, https://doi.org/10.1002/adma.202207747. doi: 10.1002/adma.202207747

    128. [128]

      C.J. Moon, V. Maheskumar, A. Min, A. Kumar, S. Lee, R.A. Senthil, M. Ubaidullah, M.Y. Choi, Small (2024) 2408569, https://doi.org/10.1002/smll.202408569. doi: 10.1002/smll.202408569

    129. [129]

      G.Q. Ma, L.C. Miao, Y. Dong, W.T. Yuan, X.Y. Nie, S.L. Di, Y.Y. Wang, L.B. Wang, N. Zhang, Energy Stor. Mater. 47 (2022) 203, https://doi.org/10.1016/j.ensm.2022.02.019. doi: 10.1016/j.ensm.2022.02.019

    130. [130]

      P. Thakur, K. Alam, A. Roy, C. Downing, V. Nicolosi, P. Sen, T.N. Narayanan, ACS Appl. Mater. Inter. 13 (2021) 33112, https://doi.org/10.1021/acsami.1c08300. doi: 10.1021/acsami.1c08300

    131. [131]

      F.Y. Chen, A. Elgazzar, S. Pecaut, C. Qiu, Y.G. Feng, S. Ashokkumar, Z. Yu, C. Sellers, S.Y. Hao, P. Zhu, H.T. Wang, Nat. Catal. 7 (2024) 1032, https://doi.org/10.1038/s41929-024-01200-w. doi: 10.1038/s41929-024-01200-w

    132. [132]

      M. Shibata, K. Yoshida, N. Furuya, J. Electroanal. Chem. 442 (1998) 67, https://doi.org/10.1016/S0022-0728(97)00504-4. doi: 10.1016/S0022-0728(97)00504-4

    133. [133]

      M. Shibata, K. Yoshida, N. Furuya, J. Electrochem. Soc. 145 (1998) 2348, https://doi.org/10.1149/1.1838641. doi: 10.1149/1.1838641

    134. [134]

      X.R. Zhu, M. Ge, X.L. Yuan, Y.J. Wang, Y.F. Tang, Appl. Catal. B 363 (2025) 124826, https://doi.org/10.1016/j.apcatb.2024.124826. doi: 10.1016/j.apcatb.2024.124826

    135. [135]

      Y. Zhong, H.L. Xiong, J.X. Low, R. Long, Y.J. Xiong, eScience 3 (2023) 100086, https://doi.org/10.1016/j.esci.2022.11.002. doi: 10.1016/j.esci.2022.11.002

    136. [136]

      Z.X. Tao, C.L. Rooney, Y.Y. Liang, H.L. Wang, J. Am. Chem. Soc. 143 (2021) 19630, https://doi.org/10.1021/jacs.1c10714. doi: 10.1021/jacs.1c10714

    137. [137]

      M. Jouny, J.J. Lv, T. Cheng, B.H. Ko, J.J. Zhu, W.A. Goddard, F. Jiao, Nat. Chem. 11 (2019) 846, https://doi.org/10.1038/s41557-019-0312-z. doi: 10.1038/s41557-019-0312-z

    138. [138]

      Z.X. Tao, Y.S. Wu, Z.S. Wu, B. Shang, C. Rooney, H.L. Wang, J. Energy Chem. 65 (2022) 367, https://doi.org/10.1016/j.jechem.2021.06.007. doi: 10.1016/j.jechem.2021.06.007

    139. [139]

      Y.S. Wu, Z. Jiang, Z.C. Lin, Y.Y. Liang, H.L. Wang, Nat. Sustain. 4 (2021) 725, https://doi.org/10.1038/s41893-021-00705-7. doi: 10.1038/s41893-021-00705-7

    140. [140]

      M. Shibata, K. Yoshida, N. Furuya, J. Electroanal. Chem. 387 (1995) 143, https://doi.org/10.1016/0022-0728(95)03992-P. doi: 10.1016/0022-0728(95)03992-P

    141. [141]

      N.N. Meng, Y.M. Huang, Y. Liu, Y.F. Yu, B. Zhang, Cell Rep. Phys. Sci. 2 (2021) 100378, https://doi.org/10.1016/j.xcrp.2021.100378. doi: 10.1016/j.xcrp.2021.100378

    142. [142]

      P. Guo, X.D. Wang, Y.F. Wang, Y.W. Luo, K. Chu, Chem. Commun. 60 (2024) 14649, https://doi.org/10.1039/D4CC05002A. doi: 10.1039/D4CC05002A

    143. [143]

      C. Chen, X.R. Zhu, X.J. Wen, Y.Y. Zhou, L. Zhou, H. Li, L. Tao, Q.L. Li, S.Q. Du, T.T. Liu, D.F. Yan, C. Xie, Y.Q. Zou, Y.Y. Wang, R. Chen, J. Huo, Y.F. Li, J. Cheng, H. Su, X. Zhao, W.R. Cheng, Q.H. Liu, H.Z. Lin, J. Luo, J. Chen, M.D. Dong, K. Cheng, C.G. Li, S.Y. Wang, Nat. Chem. 12 (2020) 717, https://doi.org/10.1038/s41557-020-0481-9. doi: 10.1038/s41557-020-0481-9

    144. [144]

      H. Wang, Y. Jiang, S.J. Li, F.L. Gou, X.R. Liu, Y.M. Jiang, W. Luo, W. Shen, R.X. He, M. Li, Appl. Catal. B 318 (2022) 121819, https://doi.org/10.1016/j.apcatb.2022.121819. doi: 10.1016/j.apcatb.2022.121819

    145. [145]

      Y. Feng, X.W. Lv, H.Y. Wang, H. Wang, F.X. Yan, L. Wang, H.Y. Wang, J.T. Ren, Z.Y. Yuan, Adv. Funct. Mater. 35 (2025) 2425687, https://doi.org/10.1002/adfm.202425687. doi: 10.1002/adfm.202425687

  • 加载中
计量
  • PDF下载量:  0
  • 文章访问数:  33
  • HTML全文浏览量:  8
文章相关
  • 发布日期:  2025-09-15
  • 收稿日期:  2025-02-12
  • 接受日期:  2025-05-28
  • 修回日期:  2025-04-27
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章