
Citation: Minglei Sun, Zhong-Yong Yuan. Valorization strategies for electrodegradation of nitrogenous wastes in sewage[J]. Acta Physico-Chimica Sinica, 2025, 41(9): 100108. doi: 10.1016/j.actphy.2025.100108

电化学降解污水中含氮废弃物的升值策略
English
Valorization strategies for electrodegradation of nitrogenous wastes in sewage

-
Key words:
- Water purification
- / Electrodegradation
- / Zn-based battery
- / Water electrolysis
- / Direct fuel cell
- / C―N coupling
-
-
[1]
N. Gruber, J.N. Galloway, Nature 451 (2008) 293, https://doi.org/10.1038/nature06592. doi: 10.1038/nature06592
-
[2]
N. Lehnert, B.W. Musselman, L.C. Seefeldt, Chem. Soc. Rev. 50 (2021) 3640, https://doi.org/10.1039/D0CS00923G. doi: 10.1039/D0CS00923G
-
[3]
H. Xu, Y.Y. Ma, J. Chen, W.X. Zhang, J.P. Yang, Chem. Soc. Rev. 51 (2022) 2710, https://doi.org/10.1039/D1CS00857A. doi: 10.1039/D1CS00857A
-
[4]
N. Lehnert, H.T. Dong, J.B. Harland, A.P. Hunt, C.J. White, Nat. Rev. Chem. 2 (2018) 278, https://doi.org/10.1038/s41570-018-0041-7. doi: 10.1038/s41570-018-0041-7
-
[5]
J.G. Chen, R.M. Crooks, L.C. Seefeldt, K.L. Bren, R.M. Bullock, M.Y. Darensbourg, P.L. Holland, B. Hoffman, M.J. Janik, A.K. Jones, M.G. Kanatzidis, P. King, K.M. Lancaster, S.V. Lymar, P. Pfromm, W.F. Schneider, R.R. Schrock, Science 360 (2018) eaar6611, https://doi.org/10.1126/science.aar6611. doi: 10.1126/science.aar6611
-
[6]
H.C.J. Godfray, J.R. Beddington, I.R. Crute, L. Haddad, D. Lawrence, J.F. Muir, J. Pretty, S. Robinson, S.M. Thomas, C. Toulmin, Science 327 (2010) 812, https://doi.org/10.1126/science.1185383. doi: 10.1126/science.1185383
-
[7]
S. Mishra, V. Singh, L. Cheng, A. Hussain, B. Ormeci, J. Environ. Chem. Eng. 10 (2022) 107387, https://doi.org/10.1016/j.jece.2022.107387. doi: 10.1016/j.jece.2022.107387
-
[8]
W.H. Guo, K.X. Zhang, Z.B. Liang, R.Q. Zou, Q. Xu, Chem. Soc. Rev. 48 (2019) 5658, https://doi.org/10.1039/C9CS00159J. doi: 10.1039/C9CS00159J
-
[9]
W.P.F. Barber, Water Res. 104 (2016) 53, https://doi.org/10.1016/j.watres.2016.07.069. doi: 10.1016/j.watres.2016.07.069
-
[10]
A. Matei, G. Racoviteanu, IOP Conf. Ser.: Earth Environ. Sci. 664 (2021) 012024, https://doi.org/10.1088/1755-1315/664/1/012024. doi: 10.1088/1755-1315/664/1/012024
-
[11]
Y. Wang, C. Wang, M. Li, Y. Yu, B. Zhang, Chem. Soc. Rev. 50 (2021) 6720, https://doi.org/10.1039/d1cs00116g. doi: 10.1039/d1cs00116g
-
[12]
J. Chatt, J.R. Dilworth, R.L. Richards, Chem. Rev. 78 (1978) 589, https://doi.org/10.1021/cr60316a001. doi: 10.1021/cr60316a001
-
[13]
H.Y. Wang, C.C. Weng, Z.Y. Yuan, J. Energy Chem. 56 (2021) 470, https://doi.org/10.1016/j.jechem.2020.08.030. doi: 10.1016/j.jechem.2020.08.030
-
[14]
H.Y. Wang, J.T. Ren, M.L. Sun, W.W. Tian, Y. Feng, Z.Y. Yuan, Adv. Energy Mater. 14 (2024) 2302515, https://doi.org/10.1002/aenm.202302515. doi: 10.1002/aenm.202302515
-
[15]
R. Lan, S.W. Tao, J.T.S. Irvine, Energy Environ. Sci. 3 (2010) 438, https://doi.org/10.1039/b924786f. doi: 10.1039/b924786f
-
[16]
T.Z. Wang, X.J. Cao, L.F. Jiao, Angew. Chem. Int. Ed. 61 (2022) e202213328, https://doi.org/10.1002/anie.202213328. doi: 10.1002/anie.202213328
-
[17]
X. Zhang, Y.T. Wang, Y.B. Wang, Y.M. Guo, X.Y. Xie, Y.F. Yu, B. Zhang, Chem. Commun. 58 (2022) 2777, https://doi.org/10.1039/D1CC06690K. doi: 10.1039/D1CC06690K
-
[18]
S.S. Liu, M.F. Wang, Q.Y. Cheng, Y.Z. He, J.J. Ni, J. Liu, C.L. Yan, T. Qian, ACS Nano 16 (2022) 17911, https://doi.org/10.1021/acsnano.2c09168. doi: 10.1021/acsnano.2c09168
-
[19]
X.Y. Peng, L.B. Zeng, D.S. Wang, Z.B. Liu, Y. Li, Z.J. Li, B. Yang, L.C. Lei, L.M. Dai, Y. Hou, Chem. Soc. Rev. 52 (2023) 2193, https://doi.org/10.1039/D2CS00381C. doi: 10.1039/D2CS00381C
-
[20]
Y. Feng, J.T. Ren, M.L. Sun, Z.Y. Yuan, Chem. Sci. 16 (4) (2025) 1528, https://doi.org/10.1039/D4SC05936K. doi: 10.1039/D4SC05936K
-
[21]
J.W. Liu, Z.Y. Li, C.D. Lv, X.Y. Tan, C. Lee, X.J. Loh, M.H. Chua, Z.B. Li, H.G. Pan, J. Chen, Q. Zhu, J.W. Xu, Q.Y. Yan, Mater. Today 73 (2024) 208, https://doi.org/10.1016/j.mattod.2024.01.009. doi: 10.1016/j.mattod.2024.01.009
-
[22]
Y.Y. Zhang, Q. Yu, X. Wang, W. Guo, Chem. Eng. J. 474 (2023) 145899, https://doi.org/10.1016/j.cej.2023.145899. doi: 10.1016/j.cej.2023.145899
-
[23]
M.L. Sun, H.Y. Wang, Y. Feng, J.T. Ren, L. Wang, Z.Y. Yuan, Chem. Soc. Rev. 53 (2024) 11908, https://doi.org/10.1039/D4CS00517A. doi: 10.1039/D4CS00517A
-
[24]
Z.J. Yan, Q.H. Yang, C.P. Yang, J. Mater. Chem. A 12 (2024) 24746, https://doi.org/10.1039/D4TA05108D. doi: 10.1039/D4TA05108D
-
[25]
F.X. Yan, H.Y. Wang, Y. Feng, H. Wang, Z.Y. Yuan, J. Energy Chem. 98 (2024) 541, https://doi.org/10.1016/j.jechem.2024.06.054. doi: 10.1016/j.jechem.2024.06.054
-
[26]
R. Hao, J.T. Ren, X.W. Lv, W. Li, Y.P. Liu, Z.Y. Yuan, J. Energy Chem. 49 (2020) 14, https://doi.org/10.1016/j.jechem.2020.01.007. doi: 10.1016/j.jechem.2020.01.007
-
[27]
L. Tang, H. Peng, J. Kang, H. Chen, M. Zhang, Y. Liu, D.H. Kim, Y. Liu, Z. Lin, Chem. Soc. Rev. 53 (2024) 4877, https://doi.org/10.1039/d3cs00295k. doi: 10.1039/d3cs00295k
-
[28]
X.W. Lv, Y.P. Liu, W.W. Tian, L.J. Gao, Z.Y. Yuan, J. Energy Chem. 50 (2020) 324, https://doi.org/10.1016/j.jechem.2020.02.055. doi: 10.1016/j.jechem.2020.02.055
-
[29]
J. Pan, Y.Y. Xu, H. Yang, Z.H. Dong, H.F. Liu, B.Y. Xia, Adv. Sci. 5 (2018) 1700691, https://doi.org/10.1002/advs.201700691. doi: 10.1002/advs.201700691
-
[30]
Y. Guo, R. Zhang, S.C. Zhang, Y.W. Zhao, Q. Yang, Z.D. Huang, B.B. Dong, C.Y. Zhi, Energy Environ. Sci. 14 (2021) 3938, https://doi.org/10.1039/d1ee00806d. doi: 10.1039/d1ee00806d
-
[31]
R. Zhang, S.C. Zhang, Y. Guo, C. Li, J.H. Liu, Z.D. Huang, Y.W. Zhao, Y.Y. Li, C.Y. Zhi, Energy Environ. Sci. 15 (2022) 3024, https://doi.org/10.1039/d2ee00686c. doi: 10.1039/d2ee00686c
-
[32]
Y. Feng, J.T. Ren, Y.X. Song, W.W. Tian, H.Y. Wang, L. Wang, M.L. Sun, Z.Y. Yuan, CCS Chem. 7 (2024) 1344, https://doi.org/10.31635/ccschem.024.202404299. doi: 10.31635/ccschem.024.202404299
-
[33]
S.L. Zhou, Y. Dai, Q. Song, L. Lu, X. Yu, ACS Appl. Mater. Inter. 16 (2024) 20551, https://doi.org/10.1021/acsami.4c01739. doi: 10.1021/acsami.4c01739
-
[34]
C. Peng, M.Y. Wang, S. Li, X.Z. Zeng, J.Y. Wang, W.H. Wang, Z.R. Zhang, M.F. Ye, X.W. Wei, K.L. Wu, K. Zhang, J. Zeng, Angew. Chem. Int. Ed. 63 (2024) e202408771, https://doi.org/10.1002/anie.202408771. doi: 10.1002/anie.202408771
-
[35]
D. De, E.E. Kalu, P.P. Tarjan, J.D. Englehardt, Chem. Eng. Technol. 27 (2004) 56, https://doi.org/10.1002/ceat.200401832. doi: 10.1002/ceat.200401832
-
[36]
W.Q. Yu, J.Y. Yu, M. Huang, Y.J. Wang, Y.J. Wang, J.W. Li, H. Liu, W.J. Zhou, Energy Environ. Sci. 2991‒3001 (2023) 2991, https://doi.org/10.1039/d3ee01301d. doi: 10.1039/d3ee01301d
-
[37]
F. Gong, S.H. Hong, J.M. Song, C.Z. Liu, S.L. Liu, J.J. Feng, Q.W. Wu, Y.L. Xiong, L. Medic-Pejic, Y. Cheng, Z.Q. Zhang, J. Mater. Chem. A 13 (2025) 3435, https://doi.org/10.1039/d4ta07666d. doi: 10.1039/d4ta07666d
-
[38]
S. Chen, G. Qi, R. Yin, Q. Liu, L. Feng, X. Feng, G. Hu, J. Luo, X. Liu, W. Liu, Nanoscale 15 (2023) 19577, https://doi.org/10.1039/d3nr05254k. doi: 10.1039/d3nr05254k
-
[39]
Y. Jin, L.P. Sun, Y.C. Wang, L.H. Huo, H. Zhao, Int. J. Hydrog. Energy 71 (2024) 820, https://doi.org/10.1016/j.ijhydene.2024.05.299. doi: 10.1016/j.ijhydene.2024.05.299
-
[40]
Y.L. Fu, Y.L. Li, F.Q. Fan, B.B. Chen, X.J. Hou, Y.H. Li, H. Li, Y. Fu, W. Qi, ACS Catal. 15 (2025) 6918, https://doi.org/10.1021/acscatal.4c07320. doi: 10.1021/acscatal.4c07320
-
[41]
J.Y. Ding, X.H. Hou, Y. Qiu, S.S. Zhang, Q. Liu, J. Luo, X.J. Liu, Inorg. Chem. Commun. 151 (2023) 110621, https://doi.org/10.1016/j.inoche.2023.110621. doi: 10.1016/j.inoche.2023.110621
-
[42]
Y.N. Zheng, Y. Tan, X. Yu, H. Yao, S.J. Hu, J. Hu, Z. Chen, X.H. Guo, Small 20 (2024) 2312136, https://doi.org/10.1002/smll.202312136. doi: 10.1002/smll.202312136
-
[43]
Z.J. Cui, P.W. Zhao, H.H. Wang, C.L. Li, W.C. Peng, J.P. Liu, Adv. Funct. Mater. 34 (2024) 2410941, https://doi.org/10.1002/adfm.202410941. doi: 10.1002/adfm.202410941
-
[44]
J.F. Liu, S.W. Du, W.J. Fan, Q.L. Li, Q. Yang, L. Luo, J.N. Li, F.X. Zhang, Energy Environ. Sci. 17 (2024) 9093, https://doi.org/10.1039/D4EE03987D. doi: 10.1039/D4EE03987D
-
[45]
W.J. Zhu, F. Yao, Q.F. Wu, Q. Jiang, J.X. Wang, Z.C. Wang, H.F. Liang, Energy Environ. Sci. 16 (2023) 2483, https://doi.org/10.1039/d3ee00371j. doi: 10.1039/d3ee00371j
-
[46]
Y.L. Liu, J. Zhang, R. Bai, Y. Zhao, Y.T. Zhou, X. Zhao, J. Colloid Interface Sci. 675 (2024) 526, https://doi.org/10.1016/j.jcis.2024.06.213. doi: 10.1016/j.jcis.2024.06.213
-
[47]
L.M. Zhou, X.Q. Chen, S.J. Zhu, K. You, Z.J. Wang, R. Fan, J. Li, Y.F. Yuan, X. Wang, J.C. Wang, Y.H. Chen, H.L. Jin, S. Wang, J.J. Lv, Angew. Chem. Int. Ed. 63 (2024) e202401924, https://doi.org/10.1002/anie.202401924. doi: 10.1002/anie.202401924
-
[48]
N. Shang, K.L. Wang, M.H. Wei, Y.Y. Zuo, P.F. Zhang, H.W. Wang, Z. Chen, P. Pei, J. Mater. Chem. A 10 (2022) 16369, https://doi.org/10.1039/D2TA04294K. doi: 10.1039/D2TA04294K
-
[49]
Y. Feng, L. Chen, Z. Yuan, Inorg. Chem. Front. 10 (2023) 5225, https://doi.org/10.1039/D3QI01113E. doi: 10.1039/D3QI01113E
-
[50]
Z. Bi, J. Hu, M. Xu, H. Zhang, Y. Zhou, G. Hu, Angew. Chem. Int. Ed. 63 (2024) e202313434, https://doi.org/10.1002/anie.202313434. doi: 10.1002/anie.202313434
-
[51]
W.Q. Yu, Y.J. Wang, H. Tan, M. Huang, J.Y. Yu, L.L. Chen, J.G. Wang, H. Liu, W.J. Zhou, Adv. Energy Mater. 14 (2024) 2402970, https://doi.org/10.1002/aenm.202402970. doi: 10.1002/aenm.202402970
-
[52]
R. Zhang, C. Li, H.L. Cui, Y.B. Wang, S.C. Zhang, P. Li, Y. Hou, Y. Guo, G.J. Liang, Z.D. Huang, C. Peng, C.Y. Zhi, Nat. Commun. 14 (2023) 8036, https://doi.org/10.1038/s41467-023-43897-6. doi: 10.1038/s41467-023-43897-6
-
[53]
P.H. van Langevelde, I. Katsounaros, M.T.M. Koper, Joule 5 (2021) 290, https://doi.org/10.1016/j.joule.2020.12.025. doi: 10.1016/j.joule.2020.12.025
-
[54]
I. Katsounaros, M. Dortsiou, G. Kyriacou, J. Hazard. Mater. 171 (2009) 323, https://doi.org/10.1016/j.jhazmat.2009.06.005. doi: 10.1016/j.jhazmat.2009.06.005
-
[55]
R. Chauhan, V.C. Srivastava, Chem. Eng. J. 386 (2020) 122065, https://doi.org/10.1016/j.cej.2019.122065. doi: 10.1016/j.cej.2019.122065
-
[56]
L.H. Su, K. Li, H.B. Zhang, M.H. Fan, D.W. Ying, T.H. Sun, Y.L. Wang, J.P. Jia, Water Res. 120 (2017) 1, https://doi.org/10.1016/j.watres.2017.04.069. doi: 10.1016/j.watres.2017.04.069
-
[57]
Y.Y. Wei, J.J. Huang, H. Chen, S.J. Zheng, R.W. Huang, X.Y. Dong, L.K. Li, A. Cao, J.M. Cai, S.Q. Zang, Adv. Mater. 36 (2024) 2404774, https://doi.org/10.1002/adma.202404774. doi: 10.1002/adma.202404774
-
[58]
R. Huo, M. Li, W.B. Zheng, P.W. Ming, B. Li, C.M. Zhang, Z.L. Li, Energy Convers. Manag. 317 (2024) 118819, https://doi.org/10.1016/j.enconman.2024.118819. doi: 10.1016/j.enconman.2024.118819
-
[59]
Y. Wang, D.F. Ruiz Diaz, K.S. Chen, Z. Wang, X.C. Adroher, Mater. Today 32 (2020) 178, https://doi.org/10.1016/j.mattod.2019.06.005. doi: 10.1016/j.mattod.2019.06.005
-
[60]
S.J. Yao, S.K. Wolfson, B.K. Ahn, C.C. Liu, Nature 241 (1973) 471, https://doi.org/10.1038/241471a0. doi: 10.1038/241471a0
-
[61]
C. Hong, D. Park, Y. Gu, S. Park, D. Lim, D. Seo, J. Han, K. Park, Int. J. Hydrog. Energy 87 (2024) 1367, https://doi.org/10.1016/j.ijhydene.2024.09.128. doi: 10.1016/j.ijhydene.2024.09.128
-
[62]
S. Suzuki, H. Muroyama, T. Matsui, K. Eguchi, J. Power Sources 208 (2012) 257, https://doi.org/10.1016/j.jpowsour.2012.02.043. doi: 10.1016/j.jpowsour.2012.02.043
-
[63]
D.K. Bora, A. Faik, Curr. Opin. Green Sustain. Chem. 48 (2024) 100944, https://doi.org/10.1016/j.cogsc.2024.100944. doi: 10.1016/j.cogsc.2024.100944
-
[64]
T. Sakamoto, K. Asazawa, U. Martinez, B. Halevi, T. Suzuki, S. Arai, D. Matsumura, Y. Nishihata, P. Atanassov, H. Tanaka, J. Power Sources 234 (2013) 252, https://doi.org/10.1016/j.jpowsour.2013.01.181. doi: 10.1016/j.jpowsour.2013.01.181
-
[65]
S. Behera, C. Chauhan, B. Mondal, Small 20 (2024) 2311946, https://doi.org/10.1002/smll.202311946. doi: 10.1002/smll.202311946
-
[66]
T.Y. Burshtein, Y. Yasman, L. Muñoz-Moene, J.H. Zagal, D. Eisenberg, ACS Catal. 14 (2024) 2264, https://doi.org/10.1021/acscatal.3c05657. doi: 10.1021/acscatal.3c05657
-
[67]
A.S. Meke, I. Dincer, Int. J. Hydrog. Energy 88 (2024) 1123, https://doi.org/10.1016/j.ijhydene.2024.09.240. doi: 10.1016/j.ijhydene.2024.09.240
-
[68]
I. Amin, S.A. Bhat, M.M. Bhat, F.A. Sofi, A.Y. Bhat, P.P. Ingole, R. Mondal, M.O. Thotiyl, M.A. Bhat, New J. Chem. 47 (2023) 22146, https://doi.org/10.1039/D3NJ04229D. doi: 10.1039/D3NJ04229D
-
[69]
K. Yang, L.J. Hao, Y.W. Hou, J. Zhang, J.H. Yang, Int. J. Hydrog. Energy 51 (2024) 966, https://doi.org/10.1016/j.ijhydene.2023.10.279. doi: 10.1016/j.ijhydene.2023.10.279
-
[70]
J.A. Herron, P. Ferrin, M. Mavrikakis, J. Phys. Chem. C 119 (2015) 14692, https://doi.org/10.1021/jp512981f. doi: 10.1021/jp512981f
-
[71]
Y.J. Shih, Y.H. Huang, C.P. Huang, Electrochim. Acta 263 (2018) 261, https://doi.org/10.1016/j.electacta.2018.01.045. doi: 10.1016/j.electacta.2018.01.045
-
[72]
D.N. Stephens, M.T. Mock, Eur. J. Inorg. Chem. 27 (2024) e202400039, https://doi.org/10.1002/ejic.202400039. doi: 10.1002/ejic.202400039
-
[73]
V. Rosca, M.T.M. Koper, Electrochim. Acta 53 (2008) 5199, https://doi.org/10.1016/j.electacta.2008.02.054. doi: 10.1016/j.electacta.2008.02.054
-
[74]
L. Zhang, W.X. Niu, W.Y. Gao, L.M. Qi, J.M. Zhao, M. Xu, G.B. Xu, Electrochem. Commun. 37 (2013) 57, https://doi.org/10.1016/j.elecom.2013.10.006. doi: 10.1016/j.elecom.2013.10.006
-
[75]
D.S. Hall, D.J. Lockwood, C. Bock, B.R. MacDougall, Proc. Math. Phys. Eng. Sci. 471 (2015) 20140792, https://doi.org/10.1098/rspa.2014.0792. doi: 10.1098/rspa.2014.0792
-
[76]
C.J. Huang, H.M. Xu, T.Y. Shuai, Q.N. Zhan, Z.J. Zhang, G.R. Li, Small 19 (2023) e2301130, https://doi.org/10.1002/smll.202301130. doi: 10.1002/smll.202301130
-
[77]
V. Vedharathinam, G.G. Botte, J. Phys. Chem. C 118 (2014) 21806, https://doi.org/10.1021/jp5052529. doi: 10.1021/jp5052529
-
[78]
S. Barik, G.P. Kharabe, P.P. Samal, R.R. Urkude, S. Kumar, A. Yoyakki, C.P. Vinod, S. Krishnamurty, S. Kurungot, Small 20 (2024) 2406589, https://doi.org/10.1002/smll.202406589. doi: 10.1002/smll.202406589
-
[79]
L.Y. Gao, H.R. Sun, H. Sun, Y.S. Wang, Y.Z. Li, Y. Lu, D.J. Zhou, X.M. Sun, W. Liu, Appl. Catal. B 358 (2024) 124287, https://doi.org/10.1016/j.apcatb.2024.124287. doi: 10.1016/j.apcatb.2024.124287
-
[80]
P. Basumatary, D. Konwar, Y.S. Yoon, Electrochim. Acta 261 (2018) 78, https://doi.org/10.1016/j.electacta.2017.12.123. doi: 10.1016/j.electacta.2017.12.123
-
[81]
E.T. Sayed, T. Eisa, H.O. Mohamed, M.A. Abdelkareem, A. Allagui, H. Alawadhi, K.J. Chae, J. Power Sources 417 (2019) 159, https://doi.org/10.1016/j.jpowsour.2018.12.024. doi: 10.1016/j.jpowsour.2018.12.024
-
[82]
G. Feng, Y. Kuang, P. Li, N. Han, M. Sun, G. Zhang, X. Sun, Adv. Sci. 4 (2017) 1600179, https://doi.org/10.1002/advs.201600179. doi: 10.1002/advs.201600179
-
[83]
F. Guo, D.X. Cao, M.M. Du, K. Ye, G.L. Wang, W.P. Zhang, Y.Y. Gao, K. Cheng, J. Power Sources 307 (2016) 697, https://doi.org/10.1016/j.jpowsour.2016.01.042. doi: 10.1016/j.jpowsour.2016.01.042
-
[84]
H.M. Zhang, W.Y. Chen, H.L. Wang, X. Tong, Y.F. Wang, X. Yang, Z.C. Wu, Z.M. Liu, Int. J. Hydrog. Energy 47 (2022) 16080, https://doi.org/10.1016/j.ijhydene.2022.03.139. doi: 10.1016/j.ijhydene.2022.03.139
-
[85]
Y.M.T.A. Putri, T.W. Chamberlain, V. Degirmenci, J. Gunlazuardi, Y.K. Krisnandi, R.I. Walton, T.A. Ivandini, ACS Appl. Energy Mater. 6 (2023) 2497, https://doi.org/10.1021/acsaem.2c03938. doi: 10.1021/acsaem.2c03938
-
[86]
X. Yin, K. Zhu, K. Ye, J. Yan, D. Cao, D. Zhang, J. Yao, G. Wang, J. Colloid Interf. Sci. 654 (2024) 36, https://doi.org/10.1016/j.jcis.2023.10.011. doi: 10.1016/j.jcis.2023.10.011
-
[87]
Y.J. Cao, Y. Guo, Z.J. Hu, F.K. Gui, Y.K. Lei, J. Ni, C.M. Zhang, Q.F. Xiao, Energy Fuels 38 (2024) 14645, https://doi.org/10.1021/acs.energyfuels.4c02183. doi: 10.1021/acs.energyfuels.4c02183
-
[88]
X. Li, H.M. Zheng, Y.J. Liao, K.M. Huang, Y.B. Ye, H.R. Xin, H.P. Luo, G.L. Liu, ACS Sustain. Chem. Eng. 12 (2024) 3621, https://doi.org/10.1021/acssuschemeng.3c06691. doi: 10.1021/acssuschemeng.3c06691
-
[89]
S. Nangan, Y. Ding, A.Z. Alhakemy, Y. Liu, Z. Wen, Appl. Catal. B 286 (2021) 119892, https://doi.org/10.1016/j.apcatb.2021.119892. doi: 10.1016/j.apcatb.2021.119892
-
[90]
W. Xu, H.M. Zhang, G. Li, Z.C. Wu, J. Electroanal. Chem. 764 (2016) 38, https://doi.org/10.1016/j.jelechem.2016.01.013. doi: 10.1016/j.jelechem.2016.01.013
-
[91]
W. Zhu, X. Zhang, F. Yao, R. Huang, Y. Chen, C. Chen, J. Fei, Y. Chen, Z. Wang, H. Liang, Angew. Chem. Int. Ed. 62 (2023) e202300390, https://doi.org/10.1002/anie.202300390. doi: 10.1002/anie.202300390
-
[92]
Z.J. Chen, X.G. Duan, W. Wei, S.B. Wang, B.J. Ni, Nano Energy 78 (2020) 105270, https://doi.org/doi.org/10.1016/j.nanoen.2020.105270. doi: 10.1016/j.nanoen.2020.105270
-
[93]
H.Y. Wang, J.T. Ren, L. Wang, M.L. Sun, H.M. Yang, X.W. Lv, Z.Y. Yuan, J. Energy Chem. 75 (2022) 66, https://doi.org/10.1016/j.jechem.2022.08.019. doi: 10.1016/j.jechem.2022.08.019
-
[94]
H.M. Yang, H.Y. Wang, S.X. Zhai, J.T. Ren, Z.Y. Yuan, Chem. Eng. J. 489 (2024) 151236, https://doi.org/10.1016/j.cej.2024.151236. doi: 10.1016/j.cej.2024.151236
-
[95]
F. Sun, J. Qin, Z. Wang, M. Yu, X. Wu, X. Sun, J. Qiu, Nat. Commun. 12 (2021) 4182, https://doi.org/10.1038/s41467-021-24529-3. doi: 10.1038/s41467-021-24529-3
-
[96]
H.Y. Wang, L. Wang, J.T. Ren, W. Tian, M.L. Sun, Y. Feng, Z.Y. Yuan, ACS Nano 17 (2023) 10965, https://doi.org/10.1021/acsnano.3c03095. doi: 10.1021/acsnano.3c03095
-
[97]
X.W. Lv, W.W. Tian, Z.Y. Yuan, Electro. Energy Rev. 6 (2023) 23, https://doi.org/10.1007/s41918-022-00159-1. doi: 10.1007/s41918-022-00159-1
-
[98]
C. Tang, R. Zhang, W. Lu, Z. Wang, D. Liu, S. Hao, G. Du, A.M. Asiri, X. Sun, Angew. Chem. Int. Ed. 56 (2017) 842, https://doi.org/10.1002/anie.201608899. doi: 10.1002/anie.201608899
-
[99]
X.Y. Zhang, G. Ma, L.L. Shui, G.F. Zhou, X. Wang, J. Energy Chem. 72 (2022) 88, https://doi.org/10.1016/j.jechem.2022.04.045. doi: 10.1016/j.jechem.2022.04.045
-
[100]
H.Y. Wang, M.L. Sun, J.T. Ren, Z.Y. Yuan, Adv. Energy Mater. 13 (2022) 2203568, https://doi.org/10.1002/aenm.202203568. doi: 10.1002/aenm.202203568
-
[101]
L. Chen, J.T. Ren, Z.Y. Yuan, Adv. Energy Mater. 13 (2023) 2203720, https://doi.org/10.1002/aenm.202203720. doi: 10.1002/aenm.202203720
-
[102]
H.M. Yang, H.Y. Wang, M.L. Sun, Z.Y. Yuan, Chem. Eng. J. 475 (2023) 146134, https://doi.org/10.1016/j.cej.2023.146134. doi: 10.1016/j.cej.2023.146134
-
[103]
R.Q. Xu, R.B. Sun, H.Q. Xu, G. Xie, J.J. Ge, J. Mater. Chem. A 12 (2024) 26316, https://doi.org/10.1039/D4TA03382E. doi: 10.1039/D4TA03382E
-
[104]
H.Y. Wang, F.X. Yan, H. Wang, S.X. Zhai, J.T. Ren, L. Wang, M.L. Sun, Z.Y. Yuan, Adv. Energy Mater. 14 (2024) 2402611, https://doi.org/10.1002/aenm.202402611. doi: 10.1002/aenm.202402611
-
[105]
X.L. Sun, J. Liu, Y.M. Du, Y.R. Liu, W.N. Wang, D.H. Chen, R.Y. Zhang, L. Wang, ACS Catal. 14 (2024) 17421, https://doi.org/10.1021/acscatal.4c05825. doi: 10.1021/acscatal.4c05825
-
[106]
S. Ajmal, A. Rasheed, W.X. Sheng, G. Dastgeer, Q.A.T. Nguyen, P.H. Wang, P. Chen, S.J. Liu, V.Q. Bui, M.Z. Zhu, P. Li, D.S. Wang, Adv. Mater. 37 (2024) 2412173, https://doi.org/10.1002/adma.202412173. doi: 10.1002/adma.202412173
-
[107]
Z.J. Zhao, H. Zhao, X.Q. Du, X.S. Zhang, Int. J. Hydrog. Energy 88 (2024) 313, https://doi.org/10.1016/j.ijhydene.2024.09.193. doi: 10.1016/j.ijhydene.2024.09.193
-
[108]
S.Y. Tang, Z.P. Zhang, Q.J. Lv, X.Q. Pan, J.L. Dong, L.Y. Liu, Y.Y. Wan, J. Han, F.Z. Song, ACS Appl. Mater. Inter. 16 (2024) 66008, https://doi.org/10.1021/acsami.4c11228. doi: 10.1021/acsami.4c11228
-
[109]
Q.H. Quan, X.L. Li, C. Song, Q.S. Jia, H.S. Lu, X.J. Cui, G.B. Liu, X. Chen, L.H. Jiang, Chem. Eng. J. 488 (2024) 150897, https://doi.org/10.1016/j.cej.2024.150897. doi: 10.1016/j.cej.2024.150897
-
[110]
Y.X. Qin, Y.Y. Wang, G.Q. Jin, X.L. Tong, N.J. Yang, Adv. Energy Mater. 14 (2024) 2402429, https://doi.org/10.1002/aenm.202402429. doi: 10.1002/aenm.202402429
-
[111]
Y.P. Huang, X. Zhang, L.F. Li, M. Humayun, H.M. Zhang, X.F. Xu, S.P. Anthony, Z.H. Chen, J.R. Zeng, D.V. Shtansky, K.F. Huo, H.S. Song, C.D. Wang, W.J. Zhang, Adv. Funct. Mater. (2024) 2401011, https://doi.org/10.1002/adfm.202401011. doi: 10.1002/adfm.202401011
-
[112]
Y.F. Yang, X.Y. Li, G.L. Liu, H.X. Liu, Y.H. Shi, C.M. Ye, Z. Fang, M.X. Ye, J.F. Shen, Adv. Mater. 36 (2024) 2307979, https://doi.org/10.1002/adma.202307979. doi: 10.1002/adma.202307979
-
[113]
M.X. Du, Y.J. Ji, Y.Y. Li, S.X. Liu, J.Q. Yan, Adv. Funct. Mater. 34 (2024) 2402776, https://doi.org/10.1002/adfm.202402776. doi: 10.1002/adfm.202402776
-
[114]
Z.G. Yuan, X. Sun, B. Gao, Z.g. Fan, P.x. Yang, Z.B. Feng, Chem. Eng. J. 499 (2024) 156647, https://doi.org/10.1016/j.cej.2024.156647. doi: 10.1016/j.cej.2024.156647
-
[115]
N. Vadivel, A.P. Murthy, Small 20 (2024) 2407845, https://doi.org/10.1002/smll.202407845. doi: 10.1002/smll.202407845
-
[116]
Y. Tong, P.Z. Chen, Inorg. Chem. Front. 11 (2024) 6218, https://doi.org/10.1039/D4QI01789G. doi: 10.1039/D4QI01789G
-
[117]
G. Feng, Y. Pan, D. Su, D.G. Xia, Adv. Mater. 36 (2024) 2309715, https://doi.org/10.1002/adma.202309715. doi: 10.1002/adma.202309715
-
[118]
Z.K. Shi, Y. Zhang, W. Guo, Z.H. Niu, Y. Chen, J.L. Huang, Adv. Funct. Mater. (2024) 2414935, https://doi.org/10.1002/adfm.202414935. doi: 10.1002/adfm.202414935
-
[119]
M.A. Ahsan, T. He, J.C. Noveron, K. Reuter, A.R. Puente-Santiago, R. Luque, Chem. Soc. Rev. 51 (2022) 812, https://doi.org/10.1039/D1CS00498K. doi: 10.1039/D1CS00498K
-
[120]
Y. Feng, J.T. Ren, H.Y. Wang, L. Wang, Z.Y. Yuan, Inorg. Chem. Front. 10 (2023) 4510, https://doi.org/10.1039/D3QI00795B. doi: 10.1039/D3QI00795B
-
[121]
J.T. Ren, Y.D. Ying, Y.P. Liu, W. Li, Z.Y. Yuan, J. Energy Chem. 71 (2022) 619, https://doi.org/10.1016/j.jechem.2022.03.048. doi: 10.1016/j.jechem.2022.03.048
-
[122]
H.Y. Wang, S.X. Zhai, H. Wang, F.X. Yan, J.T. Ren, L. Wang, M.L. Sun, Z.Y. Yuan, ACS Nano 18 (2024) 19682, https://doi.org/10.1021/acsnano.4c04831. doi: 10.1021/acsnano.4c04831
-
[123]
W.X. Wang, J.J. Zhang, J.S. Rong, L.L. Chen, S.Q. Cui, J. Colloid Interface Sci. 680 (2025) 214, https://doi.org/10.1016/j.jcis.2024.11.098. doi: 10.1016/j.jcis.2024.11.098
-
[124]
H.Y. Wang, L. Wang, J.T. Ren, W.W. Tian, M.L. Sun, Z.Y. Yuan, Nanomicro Lett. 15 (2023) 155, https://doi.org/10.1007/s40820-023-01128-z. doi: 10.1007/s40820-023-01128-z
-
[125]
F.X. Yan, H.Y. Wang, L. Wang, H. Wang, Z.Y. Yuan, Inorg. Chem. Front. 11 (2024) 6376, https://doi.org/10.1039/D4QI01740D. doi: 10.1039/D4QI01740D
-
[126]
J.Q. Xu, M.X. Zhong, S. Yan, X.J. Chen, W.M. Li, M.J. Xu, C. Wang, X.F. Lu, J. Colloid Interface Sci. 679 (2025) 171, https://doi.org/10.1016/j.jcis.2024.09.227. doi: 10.1016/j.jcis.2024.09.227
-
[127]
Y.Y. Feng, Q.M. Shi, J. Lin, E. Chai, X. Zhang, Z.L. Liu, L. Jiao, Y.B. Wang, Adv. Mater. 34 (2022) 2207747, https://doi.org/10.1002/adma.202207747. doi: 10.1002/adma.202207747
-
[128]
C.J. Moon, V. Maheskumar, A. Min, A. Kumar, S. Lee, R.A. Senthil, M. Ubaidullah, M.Y. Choi, Small (2024) 2408569, https://doi.org/10.1002/smll.202408569. doi: 10.1002/smll.202408569
-
[129]
G.Q. Ma, L.C. Miao, Y. Dong, W.T. Yuan, X.Y. Nie, S.L. Di, Y.Y. Wang, L.B. Wang, N. Zhang, Energy Stor. Mater. 47 (2022) 203, https://doi.org/10.1016/j.ensm.2022.02.019. doi: 10.1016/j.ensm.2022.02.019
-
[130]
P. Thakur, K. Alam, A. Roy, C. Downing, V. Nicolosi, P. Sen, T.N. Narayanan, ACS Appl. Mater. Inter. 13 (2021) 33112, https://doi.org/10.1021/acsami.1c08300. doi: 10.1021/acsami.1c08300
-
[131]
F.Y. Chen, A. Elgazzar, S. Pecaut, C. Qiu, Y.G. Feng, S. Ashokkumar, Z. Yu, C. Sellers, S.Y. Hao, P. Zhu, H.T. Wang, Nat. Catal. 7 (2024) 1032, https://doi.org/10.1038/s41929-024-01200-w. doi: 10.1038/s41929-024-01200-w
-
[132]
M. Shibata, K. Yoshida, N. Furuya, J. Electroanal. Chem. 442 (1998) 67, https://doi.org/10.1016/S0022-0728(97)00504-4. doi: 10.1016/S0022-0728(97)00504-4
-
[133]
M. Shibata, K. Yoshida, N. Furuya, J. Electrochem. Soc. 145 (1998) 2348, https://doi.org/10.1149/1.1838641. doi: 10.1149/1.1838641
-
[134]
X.R. Zhu, M. Ge, X.L. Yuan, Y.J. Wang, Y.F. Tang, Appl. Catal. B 363 (2025) 124826, https://doi.org/10.1016/j.apcatb.2024.124826. doi: 10.1016/j.apcatb.2024.124826
-
[135]
Y. Zhong, H.L. Xiong, J.X. Low, R. Long, Y.J. Xiong, eScience 3 (2023) 100086, https://doi.org/10.1016/j.esci.2022.11.002. doi: 10.1016/j.esci.2022.11.002
-
[136]
Z.X. Tao, C.L. Rooney, Y.Y. Liang, H.L. Wang, J. Am. Chem. Soc. 143 (2021) 19630, https://doi.org/10.1021/jacs.1c10714. doi: 10.1021/jacs.1c10714
-
[137]
M. Jouny, J.J. Lv, T. Cheng, B.H. Ko, J.J. Zhu, W.A. Goddard, F. Jiao, Nat. Chem. 11 (2019) 846, https://doi.org/10.1038/s41557-019-0312-z. doi: 10.1038/s41557-019-0312-z
-
[138]
Z.X. Tao, Y.S. Wu, Z.S. Wu, B. Shang, C. Rooney, H.L. Wang, J. Energy Chem. 65 (2022) 367, https://doi.org/10.1016/j.jechem.2021.06.007. doi: 10.1016/j.jechem.2021.06.007
-
[139]
Y.S. Wu, Z. Jiang, Z.C. Lin, Y.Y. Liang, H.L. Wang, Nat. Sustain. 4 (2021) 725, https://doi.org/10.1038/s41893-021-00705-7. doi: 10.1038/s41893-021-00705-7
-
[140]
M. Shibata, K. Yoshida, N. Furuya, J. Electroanal. Chem. 387 (1995) 143, https://doi.org/10.1016/0022-0728(95)03992-P. doi: 10.1016/0022-0728(95)03992-P
-
[141]
N.N. Meng, Y.M. Huang, Y. Liu, Y.F. Yu, B. Zhang, Cell Rep. Phys. Sci. 2 (2021) 100378, https://doi.org/10.1016/j.xcrp.2021.100378. doi: 10.1016/j.xcrp.2021.100378
-
[142]
P. Guo, X.D. Wang, Y.F. Wang, Y.W. Luo, K. Chu, Chem. Commun. 60 (2024) 14649, https://doi.org/10.1039/D4CC05002A. doi: 10.1039/D4CC05002A
-
[143]
C. Chen, X.R. Zhu, X.J. Wen, Y.Y. Zhou, L. Zhou, H. Li, L. Tao, Q.L. Li, S.Q. Du, T.T. Liu, D.F. Yan, C. Xie, Y.Q. Zou, Y.Y. Wang, R. Chen, J. Huo, Y.F. Li, J. Cheng, H. Su, X. Zhao, W.R. Cheng, Q.H. Liu, H.Z. Lin, J. Luo, J. Chen, M.D. Dong, K. Cheng, C.G. Li, S.Y. Wang, Nat. Chem. 12 (2020) 717, https://doi.org/10.1038/s41557-020-0481-9. doi: 10.1038/s41557-020-0481-9
-
[144]
H. Wang, Y. Jiang, S.J. Li, F.L. Gou, X.R. Liu, Y.M. Jiang, W. Luo, W. Shen, R.X. He, M. Li, Appl. Catal. B 318 (2022) 121819, https://doi.org/10.1016/j.apcatb.2022.121819. doi: 10.1016/j.apcatb.2022.121819
-
[145]
Y. Feng, X.W. Lv, H.Y. Wang, H. Wang, F.X. Yan, L. Wang, H.Y. Wang, J.T. Ren, Z.Y. Yuan, Adv. Funct. Mater. 35 (2025) 2425687, https://doi.org/10.1002/adfm.202425687. doi: 10.1002/adfm.202425687
-
[1]
-

计量
- PDF下载量: 0
- 文章访问数: 33
- HTML全文浏览量: 8