Valorization strategies for electrodegradation of nitrogenous wastes in sewage
- Corresponding author: Zhong-Yong Yuan, zyyuan@nankai.edu.cn
Citation:
Minglei Sun, Zhong-Yong Yuan. Valorization strategies for electrodegradation of nitrogenous wastes in sewage[J]. Acta Physico-Chimica Sinica,
;2025, 41(9): 100108.
doi:
10.1016/j.actphy.2025.100108
N. Gruber, J.N. Galloway, Nature 451 (2008) 293, https://doi.org/10.1038/nature06592.
doi: 10.1038/nature06592
N. Lehnert, B.W. Musselman, L.C. Seefeldt, Chem. Soc. Rev. 50 (2021) 3640, https://doi.org/10.1039/D0CS00923G.
doi: 10.1039/D0CS00923G
H. Xu, Y.Y. Ma, J. Chen, W.X. Zhang, J.P. Yang, Chem. Soc. Rev. 51 (2022) 2710, https://doi.org/10.1039/D1CS00857A.
doi: 10.1039/D1CS00857A
N. Lehnert, H.T. Dong, J.B. Harland, A.P. Hunt, C.J. White, Nat. Rev. Chem. 2 (2018) 278, https://doi.org/10.1038/s41570-018-0041-7.
doi: 10.1038/s41570-018-0041-7
J.G. Chen, R.M. Crooks, L.C. Seefeldt, K.L. Bren, R.M. Bullock, M.Y. Darensbourg, P.L. Holland, B. Hoffman, M.J. Janik, A.K. Jones, M.G. Kanatzidis, P. King, K.M. Lancaster, S.V. Lymar, P. Pfromm, W.F. Schneider, R.R. Schrock, Science 360 (2018) eaar6611, https://doi.org/10.1126/science.aar6611.
doi: 10.1126/science.aar6611
H.C.J. Godfray, J.R. Beddington, I.R. Crute, L. Haddad, D. Lawrence, J.F. Muir, J. Pretty, S. Robinson, S.M. Thomas, C. Toulmin, Science 327 (2010) 812, https://doi.org/10.1126/science.1185383.
doi: 10.1126/science.1185383
S. Mishra, V. Singh, L. Cheng, A. Hussain, B. Ormeci, J. Environ. Chem. Eng. 10 (2022) 107387, https://doi.org/10.1016/j.jece.2022.107387.
doi: 10.1016/j.jece.2022.107387
W.H. Guo, K.X. Zhang, Z.B. Liang, R.Q. Zou, Q. Xu, Chem. Soc. Rev. 48 (2019) 5658, https://doi.org/10.1039/C9CS00159J.
doi: 10.1039/C9CS00159J
W.P.F. Barber, Water Res. 104 (2016) 53, https://doi.org/10.1016/j.watres.2016.07.069.
doi: 10.1016/j.watres.2016.07.069
A. Matei, G. Racoviteanu, IOP Conf. Ser.: Earth Environ. Sci. 664 (2021) 012024, https://doi.org/10.1088/1755-1315/664/1/012024.
doi: 10.1088/1755-1315/664/1/012024
Y. Wang, C. Wang, M. Li, Y. Yu, B. Zhang, Chem. Soc. Rev. 50 (2021) 6720, https://doi.org/10.1039/d1cs00116g.
doi: 10.1039/d1cs00116g
J. Chatt, J.R. Dilworth, R.L. Richards, Chem. Rev. 78 (1978) 589, https://doi.org/10.1021/cr60316a001.
doi: 10.1021/cr60316a001
H.Y. Wang, C.C. Weng, Z.Y. Yuan, J. Energy Chem. 56 (2021) 470, https://doi.org/10.1016/j.jechem.2020.08.030.
doi: 10.1016/j.jechem.2020.08.030
H.Y. Wang, J.T. Ren, M.L. Sun, W.W. Tian, Y. Feng, Z.Y. Yuan, Adv. Energy Mater. 14 (2024) 2302515, https://doi.org/10.1002/aenm.202302515.
doi: 10.1002/aenm.202302515
R. Lan, S.W. Tao, J.T.S. Irvine, Energy Environ. Sci. 3 (2010) 438, https://doi.org/10.1039/b924786f.
doi: 10.1039/b924786f
T.Z. Wang, X.J. Cao, L.F. Jiao, Angew. Chem. Int. Ed. 61 (2022) e202213328, https://doi.org/10.1002/anie.202213328.
doi: 10.1002/anie.202213328
X. Zhang, Y.T. Wang, Y.B. Wang, Y.M. Guo, X.Y. Xie, Y.F. Yu, B. Zhang, Chem. Commun. 58 (2022) 2777, https://doi.org/10.1039/D1CC06690K.
doi: 10.1039/D1CC06690K
S.S. Liu, M.F. Wang, Q.Y. Cheng, Y.Z. He, J.J. Ni, J. Liu, C.L. Yan, T. Qian, ACS Nano 16 (2022) 17911, https://doi.org/10.1021/acsnano.2c09168.
doi: 10.1021/acsnano.2c09168
X.Y. Peng, L.B. Zeng, D.S. Wang, Z.B. Liu, Y. Li, Z.J. Li, B. Yang, L.C. Lei, L.M. Dai, Y. Hou, Chem. Soc. Rev. 52 (2023) 2193, https://doi.org/10.1039/D2CS00381C.
doi: 10.1039/D2CS00381C
Y. Feng, J.T. Ren, M.L. Sun, Z.Y. Yuan, Chem. Sci. 16 (4) (2025) 1528, https://doi.org/10.1039/D4SC05936K.
doi: 10.1039/D4SC05936K
J.W. Liu, Z.Y. Li, C.D. Lv, X.Y. Tan, C. Lee, X.J. Loh, M.H. Chua, Z.B. Li, H.G. Pan, J. Chen, Q. Zhu, J.W. Xu, Q.Y. Yan, Mater. Today 73 (2024) 208, https://doi.org/10.1016/j.mattod.2024.01.009.
doi: 10.1016/j.mattod.2024.01.009
Y.Y. Zhang, Q. Yu, X. Wang, W. Guo, Chem. Eng. J. 474 (2023) 145899, https://doi.org/10.1016/j.cej.2023.145899.
doi: 10.1016/j.cej.2023.145899
M.L. Sun, H.Y. Wang, Y. Feng, J.T. Ren, L. Wang, Z.Y. Yuan, Chem. Soc. Rev. 53 (2024) 11908, https://doi.org/10.1039/D4CS00517A.
doi: 10.1039/D4CS00517A
Z.J. Yan, Q.H. Yang, C.P. Yang, J. Mater. Chem. A 12 (2024) 24746, https://doi.org/10.1039/D4TA05108D.
doi: 10.1039/D4TA05108D
F.X. Yan, H.Y. Wang, Y. Feng, H. Wang, Z.Y. Yuan, J. Energy Chem. 98 (2024) 541, https://doi.org/10.1016/j.jechem.2024.06.054.
doi: 10.1016/j.jechem.2024.06.054
R. Hao, J.T. Ren, X.W. Lv, W. Li, Y.P. Liu, Z.Y. Yuan, J. Energy Chem. 49 (2020) 14, https://doi.org/10.1016/j.jechem.2020.01.007.
doi: 10.1016/j.jechem.2020.01.007
L. Tang, H. Peng, J. Kang, H. Chen, M. Zhang, Y. Liu, D.H. Kim, Y. Liu, Z. Lin, Chem. Soc. Rev. 53 (2024) 4877, https://doi.org/10.1039/d3cs00295k.
doi: 10.1039/d3cs00295k
X.W. Lv, Y.P. Liu, W.W. Tian, L.J. Gao, Z.Y. Yuan, J. Energy Chem. 50 (2020) 324, https://doi.org/10.1016/j.jechem.2020.02.055.
doi: 10.1016/j.jechem.2020.02.055
J. Pan, Y.Y. Xu, H. Yang, Z.H. Dong, H.F. Liu, B.Y. Xia, Adv. Sci. 5 (2018) 1700691, https://doi.org/10.1002/advs.201700691.
doi: 10.1002/advs.201700691
Y. Guo, R. Zhang, S.C. Zhang, Y.W. Zhao, Q. Yang, Z.D. Huang, B.B. Dong, C.Y. Zhi, Energy Environ. Sci. 14 (2021) 3938, https://doi.org/10.1039/d1ee00806d.
doi: 10.1039/d1ee00806d
R. Zhang, S.C. Zhang, Y. Guo, C. Li, J.H. Liu, Z.D. Huang, Y.W. Zhao, Y.Y. Li, C.Y. Zhi, Energy Environ. Sci. 15 (2022) 3024, https://doi.org/10.1039/d2ee00686c.
doi: 10.1039/d2ee00686c
Y. Feng, J.T. Ren, Y.X. Song, W.W. Tian, H.Y. Wang, L. Wang, M.L. Sun, Z.Y. Yuan, CCS Chem. 7 (2024) 1344, https://doi.org/10.31635/ccschem.024.202404299.
doi: 10.31635/ccschem.024.202404299
S.L. Zhou, Y. Dai, Q. Song, L. Lu, X. Yu, ACS Appl. Mater. Inter. 16 (2024) 20551, https://doi.org/10.1021/acsami.4c01739.
doi: 10.1021/acsami.4c01739
C. Peng, M.Y. Wang, S. Li, X.Z. Zeng, J.Y. Wang, W.H. Wang, Z.R. Zhang, M.F. Ye, X.W. Wei, K.L. Wu, K. Zhang, J. Zeng, Angew. Chem. Int. Ed. 63 (2024) e202408771, https://doi.org/10.1002/anie.202408771.
doi: 10.1002/anie.202408771
D. De, E.E. Kalu, P.P. Tarjan, J.D. Englehardt, Chem. Eng. Technol. 27 (2004) 56, https://doi.org/10.1002/ceat.200401832.
doi: 10.1002/ceat.200401832
W.Q. Yu, J.Y. Yu, M. Huang, Y.J. Wang, Y.J. Wang, J.W. Li, H. Liu, W.J. Zhou, Energy Environ. Sci. 2991‒3001 (2023) 2991, https://doi.org/10.1039/d3ee01301d.
doi: 10.1039/d3ee01301d
F. Gong, S.H. Hong, J.M. Song, C.Z. Liu, S.L. Liu, J.J. Feng, Q.W. Wu, Y.L. Xiong, L. Medic-Pejic, Y. Cheng, Z.Q. Zhang, J. Mater. Chem. A 13 (2025) 3435, https://doi.org/10.1039/d4ta07666d.
doi: 10.1039/d4ta07666d
S. Chen, G. Qi, R. Yin, Q. Liu, L. Feng, X. Feng, G. Hu, J. Luo, X. Liu, W. Liu, Nanoscale 15 (2023) 19577, https://doi.org/10.1039/d3nr05254k.
doi: 10.1039/d3nr05254k
Y. Jin, L.P. Sun, Y.C. Wang, L.H. Huo, H. Zhao, Int. J. Hydrog. Energy 71 (2024) 820, https://doi.org/10.1016/j.ijhydene.2024.05.299.
doi: 10.1016/j.ijhydene.2024.05.299
Y.L. Fu, Y.L. Li, F.Q. Fan, B.B. Chen, X.J. Hou, Y.H. Li, H. Li, Y. Fu, W. Qi, ACS Catal. 15 (2025) 6918, https://doi.org/10.1021/acscatal.4c07320.
doi: 10.1021/acscatal.4c07320
J.Y. Ding, X.H. Hou, Y. Qiu, S.S. Zhang, Q. Liu, J. Luo, X.J. Liu, Inorg. Chem. Commun. 151 (2023) 110621, https://doi.org/10.1016/j.inoche.2023.110621.
doi: 10.1016/j.inoche.2023.110621
Y.N. Zheng, Y. Tan, X. Yu, H. Yao, S.J. Hu, J. Hu, Z. Chen, X.H. Guo, Small 20 (2024) 2312136, https://doi.org/10.1002/smll.202312136.
doi: 10.1002/smll.202312136
Z.J. Cui, P.W. Zhao, H.H. Wang, C.L. Li, W.C. Peng, J.P. Liu, Adv. Funct. Mater. 34 (2024) 2410941, https://doi.org/10.1002/adfm.202410941.
doi: 10.1002/adfm.202410941
J.F. Liu, S.W. Du, W.J. Fan, Q.L. Li, Q. Yang, L. Luo, J.N. Li, F.X. Zhang, Energy Environ. Sci. 17 (2024) 9093, https://doi.org/10.1039/D4EE03987D.
doi: 10.1039/D4EE03987D
W.J. Zhu, F. Yao, Q.F. Wu, Q. Jiang, J.X. Wang, Z.C. Wang, H.F. Liang, Energy Environ. Sci. 16 (2023) 2483, https://doi.org/10.1039/d3ee00371j.
doi: 10.1039/d3ee00371j
Y.L. Liu, J. Zhang, R. Bai, Y. Zhao, Y.T. Zhou, X. Zhao, J. Colloid Interface Sci. 675 (2024) 526, https://doi.org/10.1016/j.jcis.2024.06.213.
doi: 10.1016/j.jcis.2024.06.213
L.M. Zhou, X.Q. Chen, S.J. Zhu, K. You, Z.J. Wang, R. Fan, J. Li, Y.F. Yuan, X. Wang, J.C. Wang, Y.H. Chen, H.L. Jin, S. Wang, J.J. Lv, Angew. Chem. Int. Ed. 63 (2024) e202401924, https://doi.org/10.1002/anie.202401924.
doi: 10.1002/anie.202401924
N. Shang, K.L. Wang, M.H. Wei, Y.Y. Zuo, P.F. Zhang, H.W. Wang, Z. Chen, P. Pei, J. Mater. Chem. A 10 (2022) 16369, https://doi.org/10.1039/D2TA04294K.
doi: 10.1039/D2TA04294K
Y. Feng, L. Chen, Z. Yuan, Inorg. Chem. Front. 10 (2023) 5225, https://doi.org/10.1039/D3QI01113E.
doi: 10.1039/D3QI01113E
Z. Bi, J. Hu, M. Xu, H. Zhang, Y. Zhou, G. Hu, Angew. Chem. Int. Ed. 63 (2024) e202313434, https://doi.org/10.1002/anie.202313434.
doi: 10.1002/anie.202313434
W.Q. Yu, Y.J. Wang, H. Tan, M. Huang, J.Y. Yu, L.L. Chen, J.G. Wang, H. Liu, W.J. Zhou, Adv. Energy Mater. 14 (2024) 2402970, https://doi.org/10.1002/aenm.202402970.
doi: 10.1002/aenm.202402970
R. Zhang, C. Li, H.L. Cui, Y.B. Wang, S.C. Zhang, P. Li, Y. Hou, Y. Guo, G.J. Liang, Z.D. Huang, C. Peng, C.Y. Zhi, Nat. Commun. 14 (2023) 8036, https://doi.org/10.1038/s41467-023-43897-6.
doi: 10.1038/s41467-023-43897-6
P.H. van Langevelde, I. Katsounaros, M.T.M. Koper, Joule 5 (2021) 290, https://doi.org/10.1016/j.joule.2020.12.025.
doi: 10.1016/j.joule.2020.12.025
I. Katsounaros, M. Dortsiou, G. Kyriacou, J. Hazard. Mater. 171 (2009) 323, https://doi.org/10.1016/j.jhazmat.2009.06.005.
doi: 10.1016/j.jhazmat.2009.06.005
R. Chauhan, V.C. Srivastava, Chem. Eng. J. 386 (2020) 122065, https://doi.org/10.1016/j.cej.2019.122065.
doi: 10.1016/j.cej.2019.122065
L.H. Su, K. Li, H.B. Zhang, M.H. Fan, D.W. Ying, T.H. Sun, Y.L. Wang, J.P. Jia, Water Res. 120 (2017) 1, https://doi.org/10.1016/j.watres.2017.04.069.
doi: 10.1016/j.watres.2017.04.069
Y.Y. Wei, J.J. Huang, H. Chen, S.J. Zheng, R.W. Huang, X.Y. Dong, L.K. Li, A. Cao, J.M. Cai, S.Q. Zang, Adv. Mater. 36 (2024) 2404774, https://doi.org/10.1002/adma.202404774.
doi: 10.1002/adma.202404774
R. Huo, M. Li, W.B. Zheng, P.W. Ming, B. Li, C.M. Zhang, Z.L. Li, Energy Convers. Manag. 317 (2024) 118819, https://doi.org/10.1016/j.enconman.2024.118819.
doi: 10.1016/j.enconman.2024.118819
Y. Wang, D.F. Ruiz Diaz, K.S. Chen, Z. Wang, X.C. Adroher, Mater. Today 32 (2020) 178, https://doi.org/10.1016/j.mattod.2019.06.005.
doi: 10.1016/j.mattod.2019.06.005
S.J. Yao, S.K. Wolfson, B.K. Ahn, C.C. Liu, Nature 241 (1973) 471, https://doi.org/10.1038/241471a0.
doi: 10.1038/241471a0
C. Hong, D. Park, Y. Gu, S. Park, D. Lim, D. Seo, J. Han, K. Park, Int. J. Hydrog. Energy 87 (2024) 1367, https://doi.org/10.1016/j.ijhydene.2024.09.128.
doi: 10.1016/j.ijhydene.2024.09.128
S. Suzuki, H. Muroyama, T. Matsui, K. Eguchi, J. Power Sources 208 (2012) 257, https://doi.org/10.1016/j.jpowsour.2012.02.043.
doi: 10.1016/j.jpowsour.2012.02.043
D.K. Bora, A. Faik, Curr. Opin. Green Sustain. Chem. 48 (2024) 100944, https://doi.org/10.1016/j.cogsc.2024.100944.
doi: 10.1016/j.cogsc.2024.100944
T. Sakamoto, K. Asazawa, U. Martinez, B. Halevi, T. Suzuki, S. Arai, D. Matsumura, Y. Nishihata, P. Atanassov, H. Tanaka, J. Power Sources 234 (2013) 252, https://doi.org/10.1016/j.jpowsour.2013.01.181.
doi: 10.1016/j.jpowsour.2013.01.181
S. Behera, C. Chauhan, B. Mondal, Small 20 (2024) 2311946, https://doi.org/10.1002/smll.202311946.
doi: 10.1002/smll.202311946
T.Y. Burshtein, Y. Yasman, L. Muñoz-Moene, J.H. Zagal, D. Eisenberg, ACS Catal. 14 (2024) 2264, https://doi.org/10.1021/acscatal.3c05657.
doi: 10.1021/acscatal.3c05657
A.S. Meke, I. Dincer, Int. J. Hydrog. Energy 88 (2024) 1123, https://doi.org/10.1016/j.ijhydene.2024.09.240.
doi: 10.1016/j.ijhydene.2024.09.240
I. Amin, S.A. Bhat, M.M. Bhat, F.A. Sofi, A.Y. Bhat, P.P. Ingole, R. Mondal, M.O. Thotiyl, M.A. Bhat, New J. Chem. 47 (2023) 22146, https://doi.org/10.1039/D3NJ04229D.
doi: 10.1039/D3NJ04229D
K. Yang, L.J. Hao, Y.W. Hou, J. Zhang, J.H. Yang, Int. J. Hydrog. Energy 51 (2024) 966, https://doi.org/10.1016/j.ijhydene.2023.10.279.
doi: 10.1016/j.ijhydene.2023.10.279
J.A. Herron, P. Ferrin, M. Mavrikakis, J. Phys. Chem. C 119 (2015) 14692, https://doi.org/10.1021/jp512981f.
doi: 10.1021/jp512981f
Y.J. Shih, Y.H. Huang, C.P. Huang, Electrochim. Acta 263 (2018) 261, https://doi.org/10.1016/j.electacta.2018.01.045.
doi: 10.1016/j.electacta.2018.01.045
D.N. Stephens, M.T. Mock, Eur. J. Inorg. Chem. 27 (2024) e202400039, https://doi.org/10.1002/ejic.202400039.
doi: 10.1002/ejic.202400039
V. Rosca, M.T.M. Koper, Electrochim. Acta 53 (2008) 5199, https://doi.org/10.1016/j.electacta.2008.02.054.
doi: 10.1016/j.electacta.2008.02.054
L. Zhang, W.X. Niu, W.Y. Gao, L.M. Qi, J.M. Zhao, M. Xu, G.B. Xu, Electrochem. Commun. 37 (2013) 57, https://doi.org/10.1016/j.elecom.2013.10.006.
doi: 10.1016/j.elecom.2013.10.006
D.S. Hall, D.J. Lockwood, C. Bock, B.R. MacDougall, Proc. Math. Phys. Eng. Sci. 471 (2015) 20140792, https://doi.org/10.1098/rspa.2014.0792.
doi: 10.1098/rspa.2014.0792
C.J. Huang, H.M. Xu, T.Y. Shuai, Q.N. Zhan, Z.J. Zhang, G.R. Li, Small 19 (2023) e2301130, https://doi.org/10.1002/smll.202301130.
doi: 10.1002/smll.202301130
V. Vedharathinam, G.G. Botte, J. Phys. Chem. C 118 (2014) 21806, https://doi.org/10.1021/jp5052529.
doi: 10.1021/jp5052529
S. Barik, G.P. Kharabe, P.P. Samal, R.R. Urkude, S. Kumar, A. Yoyakki, C.P. Vinod, S. Krishnamurty, S. Kurungot, Small 20 (2024) 2406589, https://doi.org/10.1002/smll.202406589.
doi: 10.1002/smll.202406589
L.Y. Gao, H.R. Sun, H. Sun, Y.S. Wang, Y.Z. Li, Y. Lu, D.J. Zhou, X.M. Sun, W. Liu, Appl. Catal. B 358 (2024) 124287, https://doi.org/10.1016/j.apcatb.2024.124287.
doi: 10.1016/j.apcatb.2024.124287
P. Basumatary, D. Konwar, Y.S. Yoon, Electrochim. Acta 261 (2018) 78, https://doi.org/10.1016/j.electacta.2017.12.123.
doi: 10.1016/j.electacta.2017.12.123
E.T. Sayed, T. Eisa, H.O. Mohamed, M.A. Abdelkareem, A. Allagui, H. Alawadhi, K.J. Chae, J. Power Sources 417 (2019) 159, https://doi.org/10.1016/j.jpowsour.2018.12.024.
doi: 10.1016/j.jpowsour.2018.12.024
G. Feng, Y. Kuang, P. Li, N. Han, M. Sun, G. Zhang, X. Sun, Adv. Sci. 4 (2017) 1600179, https://doi.org/10.1002/advs.201600179.
doi: 10.1002/advs.201600179
F. Guo, D.X. Cao, M.M. Du, K. Ye, G.L. Wang, W.P. Zhang, Y.Y. Gao, K. Cheng, J. Power Sources 307 (2016) 697, https://doi.org/10.1016/j.jpowsour.2016.01.042.
doi: 10.1016/j.jpowsour.2016.01.042
H.M. Zhang, W.Y. Chen, H.L. Wang, X. Tong, Y.F. Wang, X. Yang, Z.C. Wu, Z.M. Liu, Int. J. Hydrog. Energy 47 (2022) 16080, https://doi.org/10.1016/j.ijhydene.2022.03.139.
doi: 10.1016/j.ijhydene.2022.03.139
Y.M.T.A. Putri, T.W. Chamberlain, V. Degirmenci, J. Gunlazuardi, Y.K. Krisnandi, R.I. Walton, T.A. Ivandini, ACS Appl. Energy Mater. 6 (2023) 2497, https://doi.org/10.1021/acsaem.2c03938.
doi: 10.1021/acsaem.2c03938
X. Yin, K. Zhu, K. Ye, J. Yan, D. Cao, D. Zhang, J. Yao, G. Wang, J. Colloid Interf. Sci. 654 (2024) 36, https://doi.org/10.1016/j.jcis.2023.10.011.
doi: 10.1016/j.jcis.2023.10.011
Y.J. Cao, Y. Guo, Z.J. Hu, F.K. Gui, Y.K. Lei, J. Ni, C.M. Zhang, Q.F. Xiao, Energy Fuels 38 (2024) 14645, https://doi.org/10.1021/acs.energyfuels.4c02183.
doi: 10.1021/acs.energyfuels.4c02183
X. Li, H.M. Zheng, Y.J. Liao, K.M. Huang, Y.B. Ye, H.R. Xin, H.P. Luo, G.L. Liu, ACS Sustain. Chem. Eng. 12 (2024) 3621, https://doi.org/10.1021/acssuschemeng.3c06691.
doi: 10.1021/acssuschemeng.3c06691
S. Nangan, Y. Ding, A.Z. Alhakemy, Y. Liu, Z. Wen, Appl. Catal. B 286 (2021) 119892, https://doi.org/10.1016/j.apcatb.2021.119892.
doi: 10.1016/j.apcatb.2021.119892
W. Xu, H.M. Zhang, G. Li, Z.C. Wu, J. Electroanal. Chem. 764 (2016) 38, https://doi.org/10.1016/j.jelechem.2016.01.013.
doi: 10.1016/j.jelechem.2016.01.013
W. Zhu, X. Zhang, F. Yao, R. Huang, Y. Chen, C. Chen, J. Fei, Y. Chen, Z. Wang, H. Liang, Angew. Chem. Int. Ed. 62 (2023) e202300390, https://doi.org/10.1002/anie.202300390.
doi: 10.1002/anie.202300390
Z.J. Chen, X.G. Duan, W. Wei, S.B. Wang, B.J. Ni, Nano Energy 78 (2020) 105270, https://doi.org/doi.org/10.1016/j.nanoen.2020.105270.
doi: 10.1016/j.nanoen.2020.105270
H.Y. Wang, J.T. Ren, L. Wang, M.L. Sun, H.M. Yang, X.W. Lv, Z.Y. Yuan, J. Energy Chem. 75 (2022) 66, https://doi.org/10.1016/j.jechem.2022.08.019.
doi: 10.1016/j.jechem.2022.08.019
H.M. Yang, H.Y. Wang, S.X. Zhai, J.T. Ren, Z.Y. Yuan, Chem. Eng. J. 489 (2024) 151236, https://doi.org/10.1016/j.cej.2024.151236.
doi: 10.1016/j.cej.2024.151236
F. Sun, J. Qin, Z. Wang, M. Yu, X. Wu, X. Sun, J. Qiu, Nat. Commun. 12 (2021) 4182, https://doi.org/10.1038/s41467-021-24529-3.
doi: 10.1038/s41467-021-24529-3
H.Y. Wang, L. Wang, J.T. Ren, W. Tian, M.L. Sun, Y. Feng, Z.Y. Yuan, ACS Nano 17 (2023) 10965, https://doi.org/10.1021/acsnano.3c03095.
doi: 10.1021/acsnano.3c03095
X.W. Lv, W.W. Tian, Z.Y. Yuan, Electro. Energy Rev. 6 (2023) 23, https://doi.org/10.1007/s41918-022-00159-1.
doi: 10.1007/s41918-022-00159-1
C. Tang, R. Zhang, W. Lu, Z. Wang, D. Liu, S. Hao, G. Du, A.M. Asiri, X. Sun, Angew. Chem. Int. Ed. 56 (2017) 842, https://doi.org/10.1002/anie.201608899.
doi: 10.1002/anie.201608899
X.Y. Zhang, G. Ma, L.L. Shui, G.F. Zhou, X. Wang, J. Energy Chem. 72 (2022) 88, https://doi.org/10.1016/j.jechem.2022.04.045.
doi: 10.1016/j.jechem.2022.04.045
H.Y. Wang, M.L. Sun, J.T. Ren, Z.Y. Yuan, Adv. Energy Mater. 13 (2022) 2203568, https://doi.org/10.1002/aenm.202203568.
doi: 10.1002/aenm.202203568
L. Chen, J.T. Ren, Z.Y. Yuan, Adv. Energy Mater. 13 (2023) 2203720, https://doi.org/10.1002/aenm.202203720.
doi: 10.1002/aenm.202203720
H.M. Yang, H.Y. Wang, M.L. Sun, Z.Y. Yuan, Chem. Eng. J. 475 (2023) 146134, https://doi.org/10.1016/j.cej.2023.146134.
doi: 10.1016/j.cej.2023.146134
R.Q. Xu, R.B. Sun, H.Q. Xu, G. Xie, J.J. Ge, J. Mater. Chem. A 12 (2024) 26316, https://doi.org/10.1039/D4TA03382E.
doi: 10.1039/D4TA03382E
H.Y. Wang, F.X. Yan, H. Wang, S.X. Zhai, J.T. Ren, L. Wang, M.L. Sun, Z.Y. Yuan, Adv. Energy Mater. 14 (2024) 2402611, https://doi.org/10.1002/aenm.202402611.
doi: 10.1002/aenm.202402611
X.L. Sun, J. Liu, Y.M. Du, Y.R. Liu, W.N. Wang, D.H. Chen, R.Y. Zhang, L. Wang, ACS Catal. 14 (2024) 17421, https://doi.org/10.1021/acscatal.4c05825.
doi: 10.1021/acscatal.4c05825
S. Ajmal, A. Rasheed, W.X. Sheng, G. Dastgeer, Q.A.T. Nguyen, P.H. Wang, P. Chen, S.J. Liu, V.Q. Bui, M.Z. Zhu, P. Li, D.S. Wang, Adv. Mater. 37 (2024) 2412173, https://doi.org/10.1002/adma.202412173.
doi: 10.1002/adma.202412173
Z.J. Zhao, H. Zhao, X.Q. Du, X.S. Zhang, Int. J. Hydrog. Energy 88 (2024) 313, https://doi.org/10.1016/j.ijhydene.2024.09.193.
doi: 10.1016/j.ijhydene.2024.09.193
S.Y. Tang, Z.P. Zhang, Q.J. Lv, X.Q. Pan, J.L. Dong, L.Y. Liu, Y.Y. Wan, J. Han, F.Z. Song, ACS Appl. Mater. Inter. 16 (2024) 66008, https://doi.org/10.1021/acsami.4c11228.
doi: 10.1021/acsami.4c11228
Q.H. Quan, X.L. Li, C. Song, Q.S. Jia, H.S. Lu, X.J. Cui, G.B. Liu, X. Chen, L.H. Jiang, Chem. Eng. J. 488 (2024) 150897, https://doi.org/10.1016/j.cej.2024.150897.
doi: 10.1016/j.cej.2024.150897
Y.X. Qin, Y.Y. Wang, G.Q. Jin, X.L. Tong, N.J. Yang, Adv. Energy Mater. 14 (2024) 2402429, https://doi.org/10.1002/aenm.202402429.
doi: 10.1002/aenm.202402429
Y.P. Huang, X. Zhang, L.F. Li, M. Humayun, H.M. Zhang, X.F. Xu, S.P. Anthony, Z.H. Chen, J.R. Zeng, D.V. Shtansky, K.F. Huo, H.S. Song, C.D. Wang, W.J. Zhang, Adv. Funct. Mater. (2024) 2401011, https://doi.org/10.1002/adfm.202401011.
doi: 10.1002/adfm.202401011
Y.F. Yang, X.Y. Li, G.L. Liu, H.X. Liu, Y.H. Shi, C.M. Ye, Z. Fang, M.X. Ye, J.F. Shen, Adv. Mater. 36 (2024) 2307979, https://doi.org/10.1002/adma.202307979.
doi: 10.1002/adma.202307979
M.X. Du, Y.J. Ji, Y.Y. Li, S.X. Liu, J.Q. Yan, Adv. Funct. Mater. 34 (2024) 2402776, https://doi.org/10.1002/adfm.202402776.
doi: 10.1002/adfm.202402776
Z.G. Yuan, X. Sun, B. Gao, Z.g. Fan, P.x. Yang, Z.B. Feng, Chem. Eng. J. 499 (2024) 156647, https://doi.org/10.1016/j.cej.2024.156647.
doi: 10.1016/j.cej.2024.156647
N. Vadivel, A.P. Murthy, Small 20 (2024) 2407845, https://doi.org/10.1002/smll.202407845.
doi: 10.1002/smll.202407845
Y. Tong, P.Z. Chen, Inorg. Chem. Front. 11 (2024) 6218, https://doi.org/10.1039/D4QI01789G.
doi: 10.1039/D4QI01789G
G. Feng, Y. Pan, D. Su, D.G. Xia, Adv. Mater. 36 (2024) 2309715, https://doi.org/10.1002/adma.202309715.
doi: 10.1002/adma.202309715
Z.K. Shi, Y. Zhang, W. Guo, Z.H. Niu, Y. Chen, J.L. Huang, Adv. Funct. Mater. (2024) 2414935, https://doi.org/10.1002/adfm.202414935.
doi: 10.1002/adfm.202414935
M.A. Ahsan, T. He, J.C. Noveron, K. Reuter, A.R. Puente-Santiago, R. Luque, Chem. Soc. Rev. 51 (2022) 812, https://doi.org/10.1039/D1CS00498K.
doi: 10.1039/D1CS00498K
Y. Feng, J.T. Ren, H.Y. Wang, L. Wang, Z.Y. Yuan, Inorg. Chem. Front. 10 (2023) 4510, https://doi.org/10.1039/D3QI00795B.
doi: 10.1039/D3QI00795B
J.T. Ren, Y.D. Ying, Y.P. Liu, W. Li, Z.Y. Yuan, J. Energy Chem. 71 (2022) 619, https://doi.org/10.1016/j.jechem.2022.03.048.
doi: 10.1016/j.jechem.2022.03.048
H.Y. Wang, S.X. Zhai, H. Wang, F.X. Yan, J.T. Ren, L. Wang, M.L. Sun, Z.Y. Yuan, ACS Nano 18 (2024) 19682, https://doi.org/10.1021/acsnano.4c04831.
doi: 10.1021/acsnano.4c04831
W.X. Wang, J.J. Zhang, J.S. Rong, L.L. Chen, S.Q. Cui, J. Colloid Interface Sci. 680 (2025) 214, https://doi.org/10.1016/j.jcis.2024.11.098.
doi: 10.1016/j.jcis.2024.11.098
H.Y. Wang, L. Wang, J.T. Ren, W.W. Tian, M.L. Sun, Z.Y. Yuan, Nanomicro Lett. 15 (2023) 155, https://doi.org/10.1007/s40820-023-01128-z.
doi: 10.1007/s40820-023-01128-z
F.X. Yan, H.Y. Wang, L. Wang, H. Wang, Z.Y. Yuan, Inorg. Chem. Front. 11 (2024) 6376, https://doi.org/10.1039/D4QI01740D.
doi: 10.1039/D4QI01740D
J.Q. Xu, M.X. Zhong, S. Yan, X.J. Chen, W.M. Li, M.J. Xu, C. Wang, X.F. Lu, J. Colloid Interface Sci. 679 (2025) 171, https://doi.org/10.1016/j.jcis.2024.09.227.
doi: 10.1016/j.jcis.2024.09.227
Y.Y. Feng, Q.M. Shi, J. Lin, E. Chai, X. Zhang, Z.L. Liu, L. Jiao, Y.B. Wang, Adv. Mater. 34 (2022) 2207747, https://doi.org/10.1002/adma.202207747.
doi: 10.1002/adma.202207747
C.J. Moon, V. Maheskumar, A. Min, A. Kumar, S. Lee, R.A. Senthil, M. Ubaidullah, M.Y. Choi, Small (2024) 2408569, https://doi.org/10.1002/smll.202408569.
doi: 10.1002/smll.202408569
G.Q. Ma, L.C. Miao, Y. Dong, W.T. Yuan, X.Y. Nie, S.L. Di, Y.Y. Wang, L.B. Wang, N. Zhang, Energy Stor. Mater. 47 (2022) 203, https://doi.org/10.1016/j.ensm.2022.02.019.
doi: 10.1016/j.ensm.2022.02.019
P. Thakur, K. Alam, A. Roy, C. Downing, V. Nicolosi, P. Sen, T.N. Narayanan, ACS Appl. Mater. Inter. 13 (2021) 33112, https://doi.org/10.1021/acsami.1c08300.
doi: 10.1021/acsami.1c08300
F.Y. Chen, A. Elgazzar, S. Pecaut, C. Qiu, Y.G. Feng, S. Ashokkumar, Z. Yu, C. Sellers, S.Y. Hao, P. Zhu, H.T. Wang, Nat. Catal. 7 (2024) 1032, https://doi.org/10.1038/s41929-024-01200-w.
doi: 10.1038/s41929-024-01200-w
M. Shibata, K. Yoshida, N. Furuya, J. Electroanal. Chem. 442 (1998) 67, https://doi.org/10.1016/S0022-0728(97)00504-4.
doi: 10.1016/S0022-0728(97)00504-4
M. Shibata, K. Yoshida, N. Furuya, J. Electrochem. Soc. 145 (1998) 2348, https://doi.org/10.1149/1.1838641.
doi: 10.1149/1.1838641
X.R. Zhu, M. Ge, X.L. Yuan, Y.J. Wang, Y.F. Tang, Appl. Catal. B 363 (2025) 124826, https://doi.org/10.1016/j.apcatb.2024.124826.
doi: 10.1016/j.apcatb.2024.124826
Y. Zhong, H.L. Xiong, J.X. Low, R. Long, Y.J. Xiong, eScience 3 (2023) 100086, https://doi.org/10.1016/j.esci.2022.11.002.
doi: 10.1016/j.esci.2022.11.002
Z.X. Tao, C.L. Rooney, Y.Y. Liang, H.L. Wang, J. Am. Chem. Soc. 143 (2021) 19630, https://doi.org/10.1021/jacs.1c10714.
doi: 10.1021/jacs.1c10714
M. Jouny, J.J. Lv, T. Cheng, B.H. Ko, J.J. Zhu, W.A. Goddard, F. Jiao, Nat. Chem. 11 (2019) 846, https://doi.org/10.1038/s41557-019-0312-z.
doi: 10.1038/s41557-019-0312-z
Z.X. Tao, Y.S. Wu, Z.S. Wu, B. Shang, C. Rooney, H.L. Wang, J. Energy Chem. 65 (2022) 367, https://doi.org/10.1016/j.jechem.2021.06.007.
doi: 10.1016/j.jechem.2021.06.007
Y.S. Wu, Z. Jiang, Z.C. Lin, Y.Y. Liang, H.L. Wang, Nat. Sustain. 4 (2021) 725, https://doi.org/10.1038/s41893-021-00705-7.
doi: 10.1038/s41893-021-00705-7
M. Shibata, K. Yoshida, N. Furuya, J. Electroanal. Chem. 387 (1995) 143, https://doi.org/10.1016/0022-0728(95)03992-P.
doi: 10.1016/0022-0728(95)03992-P
N.N. Meng, Y.M. Huang, Y. Liu, Y.F. Yu, B. Zhang, Cell Rep. Phys. Sci. 2 (2021) 100378, https://doi.org/10.1016/j.xcrp.2021.100378.
doi: 10.1016/j.xcrp.2021.100378
P. Guo, X.D. Wang, Y.F. Wang, Y.W. Luo, K. Chu, Chem. Commun. 60 (2024) 14649, https://doi.org/10.1039/D4CC05002A.
doi: 10.1039/D4CC05002A
C. Chen, X.R. Zhu, X.J. Wen, Y.Y. Zhou, L. Zhou, H. Li, L. Tao, Q.L. Li, S.Q. Du, T.T. Liu, D.F. Yan, C. Xie, Y.Q. Zou, Y.Y. Wang, R. Chen, J. Huo, Y.F. Li, J. Cheng, H. Su, X. Zhao, W.R. Cheng, Q.H. Liu, H.Z. Lin, J. Luo, J. Chen, M.D. Dong, K. Cheng, C.G. Li, S.Y. Wang, Nat. Chem. 12 (2020) 717, https://doi.org/10.1038/s41557-020-0481-9.
doi: 10.1038/s41557-020-0481-9
H. Wang, Y. Jiang, S.J. Li, F.L. Gou, X.R. Liu, Y.M. Jiang, W. Luo, W. Shen, R.X. He, M. Li, Appl. Catal. B 318 (2022) 121819, https://doi.org/10.1016/j.apcatb.2022.121819.
doi: 10.1016/j.apcatb.2022.121819
Y. Feng, X.W. Lv, H.Y. Wang, H. Wang, F.X. Yan, L. Wang, H.Y. Wang, J.T. Ren, Z.Y. Yuan, Adv. Funct. Mater. 35 (2025) 2425687, https://doi.org/10.1002/adfm.202425687.
doi: 10.1002/adfm.202425687
Kai PENG , Xinyi ZHAO , Zixi CHEN , Xuhai ZHANG , Yuqiao ZENG , Jianqing JIANG . Progress in the application of high-entropy alloys and high-entropy ceramics in water electrolysis. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1257-1275. doi: 10.11862/CJIC.20240454
Hao GUO , Tong WEI , Qingqing SHEN , Anqi HONG , Zeting DENG , Zheng FANG , Jichao SHI , Renhong LI . Electrocatalytic decoupling of urea solution for hydrogen production by nickel foam-supported Co9S8/Ni3S2 heterojunction. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2141-2154. doi: 10.11862/CJIC.20240085
Jianchun Wang , Ruyu Xie . The Fantastical Dance of Miss Electron: Contra-Thermodynamic Electrocatalytic Reactions. University Chemistry, 2025, 40(4): 331-339. doi: 10.12461/PKU.DXHX202406082
Haodong JIN , Qingqing LIU , Chaoyang SHI , Danyang WEI , Jie YU , Xuhui XU , Mingli XU . NiCu/ZnO heterostructure photothermal electrocatalyst for efficient hydrogen evolution reaction. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1068-1082. doi: 10.11862/CJIC.20250048
Fengqiao Bi , Jun Wang , Dongmei Yang . Specialized Experimental Design for Chemistry Majors in the Context of “Dual Carbon”: Taking the Assembly and Performance Evaluation of Zinc-Air Fuel Batteries as an Example. University Chemistry, 2024, 39(4): 198-205. doi: 10.3866/PKU.DXHX202311069
Zhaoxuan ZHU , Lixin WANG , Xiaoning TANG , Long LI , Yan SHI , Jiaojing SHAO . Application of poly(vinyl alcohol) conductive hydrogel electrolytes in zinc ion batteries. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 893-902. doi: 10.11862/CJIC.20240368
Qingqing SHEN , Xiangbowen DU , Kaicheng QIAN , Zhikang JIN , Zheng FANG , Tong WEI , Renhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028
Doudou Qin , Junyang Ding , Chu Liang , Qian Liu , Ligang Feng , Yang Luo , Guangzhi Hu , Jun Luo , Xijun Liu . Addressing Challenges and Enhancing Performance of Manganese-based Cathode Materials in Aqueous Zinc-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(10): 2310034-. doi: 10.3866/PKU.WHXB202310034
Yong Zhou , Jia Guo , Yun Xiong , Luying He , Hui Li . Comprehensive Teaching Experiment on Electrochemical Corrosion in Galvanic Cell for Chemical Safety and Environmental Protection Course. University Chemistry, 2024, 39(7): 330-336. doi: 10.3866/PKU.DXHX202310109
Caixia Lin , Ting Liu , Zhaojiang Shi , Hong Yan , Keyin Ye , Yaofeng Yuan . Innovative Experiment of Electrochemical Dearomative Spirocyclization of N-Acyl Sulfonamides. University Chemistry, 2025, 40(4): 359-366. doi: 10.12461/PKU.DXHX202406107
Qianli Ma , Tianbing Song , Tianle He , Xirong Zhang , Huanming Xiong . Sulfur-doped carbon dots: a novel bifunctional electrolyte additive for high-performance aqueous zinc-ion batteries. Acta Physico-Chimica Sinica, 2025, 41(9): 100106-0. doi: 10.1016/j.actphy.2025.100106
Kai CHEN , Fengshun WU , Shun XIAO , Jinbao ZHANG , Lihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350
Qianwen Han , Tenglong Zhu , Qiuqiu Lü , Mahong Yu , Qin Zhong . 氢电极支撑可逆固体氧化物电池性能及电化学不对称性优化. Acta Physico-Chimica Sinica, 2025, 41(1): 2309037-. doi: 10.3866/PKU.WHXB202309037
Lingbang Qiu , Jiangmin Jiang , Libo Wang , Lang Bai , Fei Zhou , Gaoyu Zhou , Quanchao Zhuang , Yanhua Cui . 原位电化学阻抗谱监测长寿命热电池Nb12WO33正极材料的高温双放电机制. Acta Physico-Chimica Sinica, 2025, 41(5): 100040-. doi: 10.1016/j.actphy.2024.100040
Wenqi Gao , Xiaoyan Fan , Feixiang Wang , Zhuojun Fu , Jing Zhang , Enlai Hu , Peijun Gong . Exploring Nernst Equation Factors and Applications of Solid Zinc-Air Battery. University Chemistry, 2024, 39(5): 98-107. doi: 10.3866/PKU.DXHX202310026
Haihua Yang , Minjie Zhou , Binhong He , Wenyuan Xu , Bing Chen , Enxiang Liang . Synthesis and Electrocatalytic Performance of Iron Phosphide@Carbon Nanotubes as Cathode Material for Zinc-Air Battery: a Comprehensive Undergraduate Chemical Experiment. University Chemistry, 2024, 39(10): 426-432. doi: 10.12461/PKU.DXHX202405100
Jinyao Du , Xingchao Zang , Ningning Xu , Yongjun Liu , Weisi Guo . Electrochemical Thiocyanation of 4-Bromoethylbenzene. University Chemistry, 2024, 39(6): 312-317. doi: 10.3866/PKU.DXHX202310039
Tao Jiang , Yuting Wang , Lüjin Gao , Yi Zou , Bowen Zhu , Li Chen , Xianzeng Li . Experimental Design for the Preparation of Composite Solid Electrolytes for Application in All-Solid-State Batteries: Exploration of Comprehensive Chemistry Laboratory Teaching. University Chemistry, 2024, 39(2): 371-378. doi: 10.3866/PKU.DXHX202308057
Kun Xu , Xinxin Song , Zhilei Yin , Jian Yang , Qisheng Song . Comprehensive Experimental Design of Preferential Orientation of Zinc Metal by Heat Treatment for Enhanced Electrochemical Performance. University Chemistry, 2024, 39(4): 192-197. doi: 10.3866/PKU.DXHX202309050
Jiandong Liu , Zhijia Zhang , Mikhail Kamenskii , Filipp Volkov , Svetlana Eliseeva , Jianmin Ma . Research Progress on Cathode Electrolyte Interphase in High-Voltage Lithium Batteries. Acta Physico-Chimica Sinica, 2025, 41(2): 100011-. doi: 10.3866/PKU.WHXB202308048