Citation: Minglei Sun, Zhong-Yong Yuan. Valorization strategies for electrodegradation of nitrogenous wastes in sewage[J]. Acta Physico-Chimica Sinica, ;2025, 41(9): 100108. doi: 10.1016/j.actphy.2025.100108 shu

Valorization strategies for electrodegradation of nitrogenous wastes in sewage

  • Corresponding author: Zhong-Yong Yuan, zyyuan@nankai.edu.cn
  • Received Date: 12 February 2025
    Revised Date: 27 April 2025
    Accepted Date: 28 May 2025

    Fund Project: the National Natural Science Foundation of China 22179065

  • The interconversion of N2 and N-containing compounds is central to the natural nitrogen cycle, one of the most important global biogeochemical cycles, which plays a crucial role in sustaining life across all organisms. Nitrogen pollution in surface water bodies, caused by the indiscriminate discharge of industrial and domestic wastewater, has become a global environmental concern. The excessive accumulation of nitrogenous wastes poses a serious threat to human health and disrupts the natural nitrogen cycle. Traditional water purification methods, such as chemical redox processes, physical adsorption, and biological treatments, often face limitations, including high energy consumption, low efficiency, large space requirements, prolonged treatment times, sludge generation, and high operating costs. Emerging electrochemical degradation techniques offer promising solutions for efficiently degrading nitrogenous wastes. These electrochemical technologies demonstrate advantages in cost-effectiveness, environmental friendliness, high efficiency, and broad applicability, while also presenting opportunities to generate added value during the electrodegradation processes. Nitrogen-containing wastes in wastewater can be classified into electrophiles (e.g., nitrate and nitrite) and nucleophiles (e.g., ammonia nitrogen, hydrazine, and urea) according to their redox properties. Based on the different properties of nitrogenous wastes, coupling corresponding electrochemical degradation reactions with tailored electrochemical energy storage and conversion devices provides opportunities for additional energy and value generation. Herein, advanced insights into valorization strategies during the electrodegradation processes of representative nitrogenous wastes in sewage are subtly provided, where the approaches for enhanced value output efficiency are highlighted, including (ⅰ) coupling the electroreduction of electrophilic pollutants with Zn-electrophile batteries to achieve energy output and simultaneous chemical production, (ⅱ) coupling electro-oxidation of nucleophilic pollutants with hybrid direct fuel cells to realize energy output, (ⅲ) applying hybrid water electrolysis systems assisted with nucleophilic wastes for energy-saving and clean H2 production, (ⅳ) assembling Zn-nucleophile batteries for energy storage and hydrogen production, and (ⅴ) producing valuable chemicals via C―N coupling processes. The cell design, coupled with selection criteria and optimizing strategies of advanced electrodes and cell configuration, is highlighted. Finally, an in-depth analysis of current challenges and future prospects is provided to deepen the understanding of advanced electrochemical cells and bridge the gap between experimental trials and practical applications with respect to mechanism investigation, electrode design and evaluation, and cell design.
  • 加载中
    1. [1]

      N. Gruber, J.N. Galloway, Nature 451 (2008) 293, https://doi.org/10.1038/nature06592.  doi: 10.1038/nature06592

    2. [2]

      N. Lehnert, B.W. Musselman, L.C. Seefeldt, Chem. Soc. Rev. 50 (2021) 3640, https://doi.org/10.1039/D0CS00923G.  doi: 10.1039/D0CS00923G

    3. [3]

      H. Xu, Y.Y. Ma, J. Chen, W.X. Zhang, J.P. Yang, Chem. Soc. Rev. 51 (2022) 2710, https://doi.org/10.1039/D1CS00857A.  doi: 10.1039/D1CS00857A

    4. [4]

      N. Lehnert, H.T. Dong, J.B. Harland, A.P. Hunt, C.J. White, Nat. Rev. Chem. 2 (2018) 278, https://doi.org/10.1038/s41570-018-0041-7.  doi: 10.1038/s41570-018-0041-7

    5. [5]

      J.G. Chen, R.M. Crooks, L.C. Seefeldt, K.L. Bren, R.M. Bullock, M.Y. Darensbourg, P.L. Holland, B. Hoffman, M.J. Janik, A.K. Jones, M.G. Kanatzidis, P. King, K.M. Lancaster, S.V. Lymar, P. Pfromm, W.F. Schneider, R.R. Schrock, Science 360 (2018) eaar6611, https://doi.org/10.1126/science.aar6611.  doi: 10.1126/science.aar6611

    6. [6]

      H.C.J. Godfray, J.R. Beddington, I.R. Crute, L. Haddad, D. Lawrence, J.F. Muir, J. Pretty, S. Robinson, S.M. Thomas, C. Toulmin, Science 327 (2010) 812, https://doi.org/10.1126/science.1185383.  doi: 10.1126/science.1185383

    7. [7]

      S. Mishra, V. Singh, L. Cheng, A. Hussain, B. Ormeci, J. Environ. Chem. Eng. 10 (2022) 107387, https://doi.org/10.1016/j.jece.2022.107387.  doi: 10.1016/j.jece.2022.107387

    8. [8]

      W.H. Guo, K.X. Zhang, Z.B. Liang, R.Q. Zou, Q. Xu, Chem. Soc. Rev. 48 (2019) 5658, https://doi.org/10.1039/C9CS00159J.  doi: 10.1039/C9CS00159J

    9. [9]

      W.P.F. Barber, Water Res. 104 (2016) 53, https://doi.org/10.1016/j.watres.2016.07.069.  doi: 10.1016/j.watres.2016.07.069

    10. [10]

      A. Matei, G. Racoviteanu, IOP Conf. Ser.: Earth Environ. Sci. 664 (2021) 012024, https://doi.org/10.1088/1755-1315/664/1/012024.  doi: 10.1088/1755-1315/664/1/012024

    11. [11]

      Y. Wang, C. Wang, M. Li, Y. Yu, B. Zhang, Chem. Soc. Rev. 50 (2021) 6720, https://doi.org/10.1039/d1cs00116g.  doi: 10.1039/d1cs00116g

    12. [12]

      J. Chatt, J.R. Dilworth, R.L. Richards, Chem. Rev. 78 (1978) 589, https://doi.org/10.1021/cr60316a001.  doi: 10.1021/cr60316a001

    13. [13]

      H.Y. Wang, C.C. Weng, Z.Y. Yuan, J. Energy Chem. 56 (2021) 470, https://doi.org/10.1016/j.jechem.2020.08.030.  doi: 10.1016/j.jechem.2020.08.030

    14. [14]

      H.Y. Wang, J.T. Ren, M.L. Sun, W.W. Tian, Y. Feng, Z.Y. Yuan, Adv. Energy Mater. 14 (2024) 2302515, https://doi.org/10.1002/aenm.202302515.  doi: 10.1002/aenm.202302515

    15. [15]

      R. Lan, S.W. Tao, J.T.S. Irvine, Energy Environ. Sci. 3 (2010) 438, https://doi.org/10.1039/b924786f.  doi: 10.1039/b924786f

    16. [16]

      T.Z. Wang, X.J. Cao, L.F. Jiao, Angew. Chem. Int. Ed. 61 (2022) e202213328, https://doi.org/10.1002/anie.202213328.  doi: 10.1002/anie.202213328

    17. [17]

      X. Zhang, Y.T. Wang, Y.B. Wang, Y.M. Guo, X.Y. Xie, Y.F. Yu, B. Zhang, Chem. Commun. 58 (2022) 2777, https://doi.org/10.1039/D1CC06690K.  doi: 10.1039/D1CC06690K

    18. [18]

      S.S. Liu, M.F. Wang, Q.Y. Cheng, Y.Z. He, J.J. Ni, J. Liu, C.L. Yan, T. Qian, ACS Nano 16 (2022) 17911, https://doi.org/10.1021/acsnano.2c09168.  doi: 10.1021/acsnano.2c09168

    19. [19]

      X.Y. Peng, L.B. Zeng, D.S. Wang, Z.B. Liu, Y. Li, Z.J. Li, B. Yang, L.C. Lei, L.M. Dai, Y. Hou, Chem. Soc. Rev. 52 (2023) 2193, https://doi.org/10.1039/D2CS00381C.  doi: 10.1039/D2CS00381C

    20. [20]

      Y. Feng, J.T. Ren, M.L. Sun, Z.Y. Yuan, Chem. Sci. 16 (4) (2025) 1528, https://doi.org/10.1039/D4SC05936K.  doi: 10.1039/D4SC05936K

    21. [21]

      J.W. Liu, Z.Y. Li, C.D. Lv, X.Y. Tan, C. Lee, X.J. Loh, M.H. Chua, Z.B. Li, H.G. Pan, J. Chen, Q. Zhu, J.W. Xu, Q.Y. Yan, Mater. Today 73 (2024) 208, https://doi.org/10.1016/j.mattod.2024.01.009.  doi: 10.1016/j.mattod.2024.01.009

    22. [22]

      Y.Y. Zhang, Q. Yu, X. Wang, W. Guo, Chem. Eng. J. 474 (2023) 145899, https://doi.org/10.1016/j.cej.2023.145899.  doi: 10.1016/j.cej.2023.145899

    23. [23]

      M.L. Sun, H.Y. Wang, Y. Feng, J.T. Ren, L. Wang, Z.Y. Yuan, Chem. Soc. Rev. 53 (2024) 11908, https://doi.org/10.1039/D4CS00517A.  doi: 10.1039/D4CS00517A

    24. [24]

      Z.J. Yan, Q.H. Yang, C.P. Yang, J. Mater. Chem. A 12 (2024) 24746, https://doi.org/10.1039/D4TA05108D.  doi: 10.1039/D4TA05108D

    25. [25]

      F.X. Yan, H.Y. Wang, Y. Feng, H. Wang, Z.Y. Yuan, J. Energy Chem. 98 (2024) 541, https://doi.org/10.1016/j.jechem.2024.06.054.  doi: 10.1016/j.jechem.2024.06.054

    26. [26]

      R. Hao, J.T. Ren, X.W. Lv, W. Li, Y.P. Liu, Z.Y. Yuan, J. Energy Chem. 49 (2020) 14, https://doi.org/10.1016/j.jechem.2020.01.007.  doi: 10.1016/j.jechem.2020.01.007

    27. [27]

      L. Tang, H. Peng, J. Kang, H. Chen, M. Zhang, Y. Liu, D.H. Kim, Y. Liu, Z. Lin, Chem. Soc. Rev. 53 (2024) 4877, https://doi.org/10.1039/d3cs00295k.  doi: 10.1039/d3cs00295k

    28. [28]

      X.W. Lv, Y.P. Liu, W.W. Tian, L.J. Gao, Z.Y. Yuan, J. Energy Chem. 50 (2020) 324, https://doi.org/10.1016/j.jechem.2020.02.055.  doi: 10.1016/j.jechem.2020.02.055

    29. [29]

      J. Pan, Y.Y. Xu, H. Yang, Z.H. Dong, H.F. Liu, B.Y. Xia, Adv. Sci. 5 (2018) 1700691, https://doi.org/10.1002/advs.201700691.  doi: 10.1002/advs.201700691

    30. [30]

      Y. Guo, R. Zhang, S.C. Zhang, Y.W. Zhao, Q. Yang, Z.D. Huang, B.B. Dong, C.Y. Zhi, Energy Environ. Sci. 14 (2021) 3938, https://doi.org/10.1039/d1ee00806d.  doi: 10.1039/d1ee00806d

    31. [31]

      R. Zhang, S.C. Zhang, Y. Guo, C. Li, J.H. Liu, Z.D. Huang, Y.W. Zhao, Y.Y. Li, C.Y. Zhi, Energy Environ. Sci. 15 (2022) 3024, https://doi.org/10.1039/d2ee00686c.  doi: 10.1039/d2ee00686c

    32. [32]

      Y. Feng, J.T. Ren, Y.X. Song, W.W. Tian, H.Y. Wang, L. Wang, M.L. Sun, Z.Y. Yuan, CCS Chem. 7 (2024) 1344, https://doi.org/10.31635/ccschem.024.202404299.  doi: 10.31635/ccschem.024.202404299

    33. [33]

      S.L. Zhou, Y. Dai, Q. Song, L. Lu, X. Yu, ACS Appl. Mater. Inter. 16 (2024) 20551, https://doi.org/10.1021/acsami.4c01739.  doi: 10.1021/acsami.4c01739

    34. [34]

      C. Peng, M.Y. Wang, S. Li, X.Z. Zeng, J.Y. Wang, W.H. Wang, Z.R. Zhang, M.F. Ye, X.W. Wei, K.L. Wu, K. Zhang, J. Zeng, Angew. Chem. Int. Ed. 63 (2024) e202408771, https://doi.org/10.1002/anie.202408771.  doi: 10.1002/anie.202408771

    35. [35]

      D. De, E.E. Kalu, P.P. Tarjan, J.D. Englehardt, Chem. Eng. Technol. 27 (2004) 56, https://doi.org/10.1002/ceat.200401832.  doi: 10.1002/ceat.200401832

    36. [36]

      W.Q. Yu, J.Y. Yu, M. Huang, Y.J. Wang, Y.J. Wang, J.W. Li, H. Liu, W.J. Zhou, Energy Environ. Sci. 2991‒3001 (2023) 2991, https://doi.org/10.1039/d3ee01301d.  doi: 10.1039/d3ee01301d

    37. [37]

      F. Gong, S.H. Hong, J.M. Song, C.Z. Liu, S.L. Liu, J.J. Feng, Q.W. Wu, Y.L. Xiong, L. Medic-Pejic, Y. Cheng, Z.Q. Zhang, J. Mater. Chem. A 13 (2025) 3435, https://doi.org/10.1039/d4ta07666d.  doi: 10.1039/d4ta07666d

    38. [38]

      S. Chen, G. Qi, R. Yin, Q. Liu, L. Feng, X. Feng, G. Hu, J. Luo, X. Liu, W. Liu, Nanoscale 15 (2023) 19577, https://doi.org/10.1039/d3nr05254k.  doi: 10.1039/d3nr05254k

    39. [39]

      Y. Jin, L.P. Sun, Y.C. Wang, L.H. Huo, H. Zhao, Int. J. Hydrog. Energy 71 (2024) 820, https://doi.org/10.1016/j.ijhydene.2024.05.299.  doi: 10.1016/j.ijhydene.2024.05.299

    40. [40]

      Y.L. Fu, Y.L. Li, F.Q. Fan, B.B. Chen, X.J. Hou, Y.H. Li, H. Li, Y. Fu, W. Qi, ACS Catal. 15 (2025) 6918, https://doi.org/10.1021/acscatal.4c07320.  doi: 10.1021/acscatal.4c07320

    41. [41]

      J.Y. Ding, X.H. Hou, Y. Qiu, S.S. Zhang, Q. Liu, J. Luo, X.J. Liu, Inorg. Chem. Commun. 151 (2023) 110621, https://doi.org/10.1016/j.inoche.2023.110621.  doi: 10.1016/j.inoche.2023.110621

    42. [42]

      Y.N. Zheng, Y. Tan, X. Yu, H. Yao, S.J. Hu, J. Hu, Z. Chen, X.H. Guo, Small 20 (2024) 2312136, https://doi.org/10.1002/smll.202312136.  doi: 10.1002/smll.202312136

    43. [43]

      Z.J. Cui, P.W. Zhao, H.H. Wang, C.L. Li, W.C. Peng, J.P. Liu, Adv. Funct. Mater. 34 (2024) 2410941, https://doi.org/10.1002/adfm.202410941.  doi: 10.1002/adfm.202410941

    44. [44]

      J.F. Liu, S.W. Du, W.J. Fan, Q.L. Li, Q. Yang, L. Luo, J.N. Li, F.X. Zhang, Energy Environ. Sci. 17 (2024) 9093, https://doi.org/10.1039/D4EE03987D.  doi: 10.1039/D4EE03987D

    45. [45]

      W.J. Zhu, F. Yao, Q.F. Wu, Q. Jiang, J.X. Wang, Z.C. Wang, H.F. Liang, Energy Environ. Sci. 16 (2023) 2483, https://doi.org/10.1039/d3ee00371j.  doi: 10.1039/d3ee00371j

    46. [46]

      Y.L. Liu, J. Zhang, R. Bai, Y. Zhao, Y.T. Zhou, X. Zhao, J. Colloid Interface Sci. 675 (2024) 526, https://doi.org/10.1016/j.jcis.2024.06.213.  doi: 10.1016/j.jcis.2024.06.213

    47. [47]

      L.M. Zhou, X.Q. Chen, S.J. Zhu, K. You, Z.J. Wang, R. Fan, J. Li, Y.F. Yuan, X. Wang, J.C. Wang, Y.H. Chen, H.L. Jin, S. Wang, J.J. Lv, Angew. Chem. Int. Ed. 63 (2024) e202401924, https://doi.org/10.1002/anie.202401924.  doi: 10.1002/anie.202401924

    48. [48]

      N. Shang, K.L. Wang, M.H. Wei, Y.Y. Zuo, P.F. Zhang, H.W. Wang, Z. Chen, P. Pei, J. Mater. Chem. A 10 (2022) 16369, https://doi.org/10.1039/D2TA04294K.  doi: 10.1039/D2TA04294K

    49. [49]

      Y. Feng, L. Chen, Z. Yuan, Inorg. Chem. Front. 10 (2023) 5225, https://doi.org/10.1039/D3QI01113E.  doi: 10.1039/D3QI01113E

    50. [50]

      Z. Bi, J. Hu, M. Xu, H. Zhang, Y. Zhou, G. Hu, Angew. Chem. Int. Ed. 63 (2024) e202313434, https://doi.org/10.1002/anie.202313434.  doi: 10.1002/anie.202313434

    51. [51]

      W.Q. Yu, Y.J. Wang, H. Tan, M. Huang, J.Y. Yu, L.L. Chen, J.G. Wang, H. Liu, W.J. Zhou, Adv. Energy Mater. 14 (2024) 2402970, https://doi.org/10.1002/aenm.202402970.  doi: 10.1002/aenm.202402970

    52. [52]

      R. Zhang, C. Li, H.L. Cui, Y.B. Wang, S.C. Zhang, P. Li, Y. Hou, Y. Guo, G.J. Liang, Z.D. Huang, C. Peng, C.Y. Zhi, Nat. Commun. 14 (2023) 8036, https://doi.org/10.1038/s41467-023-43897-6.  doi: 10.1038/s41467-023-43897-6

    53. [53]

      P.H. van Langevelde, I. Katsounaros, M.T.M. Koper, Joule 5 (2021) 290, https://doi.org/10.1016/j.joule.2020.12.025.  doi: 10.1016/j.joule.2020.12.025

    54. [54]

      I. Katsounaros, M. Dortsiou, G. Kyriacou, J. Hazard. Mater. 171 (2009) 323, https://doi.org/10.1016/j.jhazmat.2009.06.005.  doi: 10.1016/j.jhazmat.2009.06.005

    55. [55]

      R. Chauhan, V.C. Srivastava, Chem. Eng. J. 386 (2020) 122065, https://doi.org/10.1016/j.cej.2019.122065.  doi: 10.1016/j.cej.2019.122065

    56. [56]

      L.H. Su, K. Li, H.B. Zhang, M.H. Fan, D.W. Ying, T.H. Sun, Y.L. Wang, J.P. Jia, Water Res. 120 (2017) 1, https://doi.org/10.1016/j.watres.2017.04.069.  doi: 10.1016/j.watres.2017.04.069

    57. [57]

      Y.Y. Wei, J.J. Huang, H. Chen, S.J. Zheng, R.W. Huang, X.Y. Dong, L.K. Li, A. Cao, J.M. Cai, S.Q. Zang, Adv. Mater. 36 (2024) 2404774, https://doi.org/10.1002/adma.202404774.  doi: 10.1002/adma.202404774

    58. [58]

      R. Huo, M. Li, W.B. Zheng, P.W. Ming, B. Li, C.M. Zhang, Z.L. Li, Energy Convers. Manag. 317 (2024) 118819, https://doi.org/10.1016/j.enconman.2024.118819.  doi: 10.1016/j.enconman.2024.118819

    59. [59]

      Y. Wang, D.F. Ruiz Diaz, K.S. Chen, Z. Wang, X.C. Adroher, Mater. Today 32 (2020) 178, https://doi.org/10.1016/j.mattod.2019.06.005.  doi: 10.1016/j.mattod.2019.06.005

    60. [60]

      S.J. Yao, S.K. Wolfson, B.K. Ahn, C.C. Liu, Nature 241 (1973) 471, https://doi.org/10.1038/241471a0.  doi: 10.1038/241471a0

    61. [61]

      C. Hong, D. Park, Y. Gu, S. Park, D. Lim, D. Seo, J. Han, K. Park, Int. J. Hydrog. Energy 87 (2024) 1367, https://doi.org/10.1016/j.ijhydene.2024.09.128.  doi: 10.1016/j.ijhydene.2024.09.128

    62. [62]

      S. Suzuki, H. Muroyama, T. Matsui, K. Eguchi, J. Power Sources 208 (2012) 257, https://doi.org/10.1016/j.jpowsour.2012.02.043.  doi: 10.1016/j.jpowsour.2012.02.043

    63. [63]

      D.K. Bora, A. Faik, Curr. Opin. Green Sustain. Chem. 48 (2024) 100944, https://doi.org/10.1016/j.cogsc.2024.100944.  doi: 10.1016/j.cogsc.2024.100944

    64. [64]

      T. Sakamoto, K. Asazawa, U. Martinez, B. Halevi, T. Suzuki, S. Arai, D. Matsumura, Y. Nishihata, P. Atanassov, H. Tanaka, J. Power Sources 234 (2013) 252, https://doi.org/10.1016/j.jpowsour.2013.01.181.  doi: 10.1016/j.jpowsour.2013.01.181

    65. [65]

      S. Behera, C. Chauhan, B. Mondal, Small 20 (2024) 2311946, https://doi.org/10.1002/smll.202311946.  doi: 10.1002/smll.202311946

    66. [66]

      T.Y. Burshtein, Y. Yasman, L. Muñoz-Moene, J.H. Zagal, D. Eisenberg, ACS Catal. 14 (2024) 2264, https://doi.org/10.1021/acscatal.3c05657.  doi: 10.1021/acscatal.3c05657

    67. [67]

      A.S. Meke, I. Dincer, Int. J. Hydrog. Energy 88 (2024) 1123, https://doi.org/10.1016/j.ijhydene.2024.09.240.  doi: 10.1016/j.ijhydene.2024.09.240

    68. [68]

      I. Amin, S.A. Bhat, M.M. Bhat, F.A. Sofi, A.Y. Bhat, P.P. Ingole, R. Mondal, M.O. Thotiyl, M.A. Bhat, New J. Chem. 47 (2023) 22146, https://doi.org/10.1039/D3NJ04229D.  doi: 10.1039/D3NJ04229D

    69. [69]

      K. Yang, L.J. Hao, Y.W. Hou, J. Zhang, J.H. Yang, Int. J. Hydrog. Energy 51 (2024) 966, https://doi.org/10.1016/j.ijhydene.2023.10.279.  doi: 10.1016/j.ijhydene.2023.10.279

    70. [70]

      J.A. Herron, P. Ferrin, M. Mavrikakis, J. Phys. Chem. C 119 (2015) 14692, https://doi.org/10.1021/jp512981f.  doi: 10.1021/jp512981f

    71. [71]

      Y.J. Shih, Y.H. Huang, C.P. Huang, Electrochim. Acta 263 (2018) 261, https://doi.org/10.1016/j.electacta.2018.01.045.  doi: 10.1016/j.electacta.2018.01.045

    72. [72]

      D.N. Stephens, M.T. Mock, Eur. J. Inorg. Chem. 27 (2024) e202400039, https://doi.org/10.1002/ejic.202400039.  doi: 10.1002/ejic.202400039

    73. [73]

      V. Rosca, M.T.M. Koper, Electrochim. Acta 53 (2008) 5199, https://doi.org/10.1016/j.electacta.2008.02.054.  doi: 10.1016/j.electacta.2008.02.054

    74. [74]

      L. Zhang, W.X. Niu, W.Y. Gao, L.M. Qi, J.M. Zhao, M. Xu, G.B. Xu, Electrochem. Commun. 37 (2013) 57, https://doi.org/10.1016/j.elecom.2013.10.006.  doi: 10.1016/j.elecom.2013.10.006

    75. [75]

      D.S. Hall, D.J. Lockwood, C. Bock, B.R. MacDougall, Proc. Math. Phys. Eng. Sci. 471 (2015) 20140792, https://doi.org/10.1098/rspa.2014.0792.  doi: 10.1098/rspa.2014.0792

    76. [76]

      C.J. Huang, H.M. Xu, T.Y. Shuai, Q.N. Zhan, Z.J. Zhang, G.R. Li, Small 19 (2023) e2301130, https://doi.org/10.1002/smll.202301130.  doi: 10.1002/smll.202301130

    77. [77]

      V. Vedharathinam, G.G. Botte, J. Phys. Chem. C 118 (2014) 21806, https://doi.org/10.1021/jp5052529.  doi: 10.1021/jp5052529

    78. [78]

      S. Barik, G.P. Kharabe, P.P. Samal, R.R. Urkude, S. Kumar, A. Yoyakki, C.P. Vinod, S. Krishnamurty, S. Kurungot, Small 20 (2024) 2406589, https://doi.org/10.1002/smll.202406589.  doi: 10.1002/smll.202406589

    79. [79]

      L.Y. Gao, H.R. Sun, H. Sun, Y.S. Wang, Y.Z. Li, Y. Lu, D.J. Zhou, X.M. Sun, W. Liu, Appl. Catal. B 358 (2024) 124287, https://doi.org/10.1016/j.apcatb.2024.124287.  doi: 10.1016/j.apcatb.2024.124287

    80. [80]

      P. Basumatary, D. Konwar, Y.S. Yoon, Electrochim. Acta 261 (2018) 78, https://doi.org/10.1016/j.electacta.2017.12.123.  doi: 10.1016/j.electacta.2017.12.123

    81. [81]

      E.T. Sayed, T. Eisa, H.O. Mohamed, M.A. Abdelkareem, A. Allagui, H. Alawadhi, K.J. Chae, J. Power Sources 417 (2019) 159, https://doi.org/10.1016/j.jpowsour.2018.12.024.  doi: 10.1016/j.jpowsour.2018.12.024

    82. [82]

      G. Feng, Y. Kuang, P. Li, N. Han, M. Sun, G. Zhang, X. Sun, Adv. Sci. 4 (2017) 1600179, https://doi.org/10.1002/advs.201600179.  doi: 10.1002/advs.201600179

    83. [83]

      F. Guo, D.X. Cao, M.M. Du, K. Ye, G.L. Wang, W.P. Zhang, Y.Y. Gao, K. Cheng, J. Power Sources 307 (2016) 697, https://doi.org/10.1016/j.jpowsour.2016.01.042.  doi: 10.1016/j.jpowsour.2016.01.042

    84. [84]

      H.M. Zhang, W.Y. Chen, H.L. Wang, X. Tong, Y.F. Wang, X. Yang, Z.C. Wu, Z.M. Liu, Int. J. Hydrog. Energy 47 (2022) 16080, https://doi.org/10.1016/j.ijhydene.2022.03.139.  doi: 10.1016/j.ijhydene.2022.03.139

    85. [85]

      Y.M.T.A. Putri, T.W. Chamberlain, V. Degirmenci, J. Gunlazuardi, Y.K. Krisnandi, R.I. Walton, T.A. Ivandini, ACS Appl. Energy Mater. 6 (2023) 2497, https://doi.org/10.1021/acsaem.2c03938.  doi: 10.1021/acsaem.2c03938

    86. [86]

      X. Yin, K. Zhu, K. Ye, J. Yan, D. Cao, D. Zhang, J. Yao, G. Wang, J. Colloid Interf. Sci. 654 (2024) 36, https://doi.org/10.1016/j.jcis.2023.10.011.  doi: 10.1016/j.jcis.2023.10.011

    87. [87]

      Y.J. Cao, Y. Guo, Z.J. Hu, F.K. Gui, Y.K. Lei, J. Ni, C.M. Zhang, Q.F. Xiao, Energy Fuels 38 (2024) 14645, https://doi.org/10.1021/acs.energyfuels.4c02183.  doi: 10.1021/acs.energyfuels.4c02183

    88. [88]

      X. Li, H.M. Zheng, Y.J. Liao, K.M. Huang, Y.B. Ye, H.R. Xin, H.P. Luo, G.L. Liu, ACS Sustain. Chem. Eng. 12 (2024) 3621, https://doi.org/10.1021/acssuschemeng.3c06691.  doi: 10.1021/acssuschemeng.3c06691

    89. [89]

      S. Nangan, Y. Ding, A.Z. Alhakemy, Y. Liu, Z. Wen, Appl. Catal. B 286 (2021) 119892, https://doi.org/10.1016/j.apcatb.2021.119892.  doi: 10.1016/j.apcatb.2021.119892

    90. [90]

      W. Xu, H.M. Zhang, G. Li, Z.C. Wu, J. Electroanal. Chem. 764 (2016) 38, https://doi.org/10.1016/j.jelechem.2016.01.013.  doi: 10.1016/j.jelechem.2016.01.013

    91. [91]

      W. Zhu, X. Zhang, F. Yao, R. Huang, Y. Chen, C. Chen, J. Fei, Y. Chen, Z. Wang, H. Liang, Angew. Chem. Int. Ed. 62 (2023) e202300390, https://doi.org/10.1002/anie.202300390.  doi: 10.1002/anie.202300390

    92. [92]

      Z.J. Chen, X.G. Duan, W. Wei, S.B. Wang, B.J. Ni, Nano Energy 78 (2020) 105270, https://doi.org/doi.org/10.1016/j.nanoen.2020.105270.  doi: 10.1016/j.nanoen.2020.105270

    93. [93]

      H.Y. Wang, J.T. Ren, L. Wang, M.L. Sun, H.M. Yang, X.W. Lv, Z.Y. Yuan, J. Energy Chem. 75 (2022) 66, https://doi.org/10.1016/j.jechem.2022.08.019.  doi: 10.1016/j.jechem.2022.08.019

    94. [94]

      H.M. Yang, H.Y. Wang, S.X. Zhai, J.T. Ren, Z.Y. Yuan, Chem. Eng. J. 489 (2024) 151236, https://doi.org/10.1016/j.cej.2024.151236.  doi: 10.1016/j.cej.2024.151236

    95. [95]

      F. Sun, J. Qin, Z. Wang, M. Yu, X. Wu, X. Sun, J. Qiu, Nat. Commun. 12 (2021) 4182, https://doi.org/10.1038/s41467-021-24529-3.  doi: 10.1038/s41467-021-24529-3

    96. [96]

      H.Y. Wang, L. Wang, J.T. Ren, W. Tian, M.L. Sun, Y. Feng, Z.Y. Yuan, ACS Nano 17 (2023) 10965, https://doi.org/10.1021/acsnano.3c03095.  doi: 10.1021/acsnano.3c03095

    97. [97]

      X.W. Lv, W.W. Tian, Z.Y. Yuan, Electro. Energy Rev. 6 (2023) 23, https://doi.org/10.1007/s41918-022-00159-1.  doi: 10.1007/s41918-022-00159-1

    98. [98]

      C. Tang, R. Zhang, W. Lu, Z. Wang, D. Liu, S. Hao, G. Du, A.M. Asiri, X. Sun, Angew. Chem. Int. Ed. 56 (2017) 842, https://doi.org/10.1002/anie.201608899.  doi: 10.1002/anie.201608899

    99. [99]

      X.Y. Zhang, G. Ma, L.L. Shui, G.F. Zhou, X. Wang, J. Energy Chem. 72 (2022) 88, https://doi.org/10.1016/j.jechem.2022.04.045.  doi: 10.1016/j.jechem.2022.04.045

    100. [100]

      H.Y. Wang, M.L. Sun, J.T. Ren, Z.Y. Yuan, Adv. Energy Mater. 13 (2022) 2203568, https://doi.org/10.1002/aenm.202203568.  doi: 10.1002/aenm.202203568

    101. [101]

      L. Chen, J.T. Ren, Z.Y. Yuan, Adv. Energy Mater. 13 (2023) 2203720, https://doi.org/10.1002/aenm.202203720.  doi: 10.1002/aenm.202203720

    102. [102]

      H.M. Yang, H.Y. Wang, M.L. Sun, Z.Y. Yuan, Chem. Eng. J. 475 (2023) 146134, https://doi.org/10.1016/j.cej.2023.146134.  doi: 10.1016/j.cej.2023.146134

    103. [103]

      R.Q. Xu, R.B. Sun, H.Q. Xu, G. Xie, J.J. Ge, J. Mater. Chem. A 12 (2024) 26316, https://doi.org/10.1039/D4TA03382E.  doi: 10.1039/D4TA03382E

    104. [104]

      H.Y. Wang, F.X. Yan, H. Wang, S.X. Zhai, J.T. Ren, L. Wang, M.L. Sun, Z.Y. Yuan, Adv. Energy Mater. 14 (2024) 2402611, https://doi.org/10.1002/aenm.202402611.  doi: 10.1002/aenm.202402611

    105. [105]

      X.L. Sun, J. Liu, Y.M. Du, Y.R. Liu, W.N. Wang, D.H. Chen, R.Y. Zhang, L. Wang, ACS Catal. 14 (2024) 17421, https://doi.org/10.1021/acscatal.4c05825.  doi: 10.1021/acscatal.4c05825

    106. [106]

      S. Ajmal, A. Rasheed, W.X. Sheng, G. Dastgeer, Q.A.T. Nguyen, P.H. Wang, P. Chen, S.J. Liu, V.Q. Bui, M.Z. Zhu, P. Li, D.S. Wang, Adv. Mater. 37 (2024) 2412173, https://doi.org/10.1002/adma.202412173.  doi: 10.1002/adma.202412173

    107. [107]

      Z.J. Zhao, H. Zhao, X.Q. Du, X.S. Zhang, Int. J. Hydrog. Energy 88 (2024) 313, https://doi.org/10.1016/j.ijhydene.2024.09.193.  doi: 10.1016/j.ijhydene.2024.09.193

    108. [108]

      S.Y. Tang, Z.P. Zhang, Q.J. Lv, X.Q. Pan, J.L. Dong, L.Y. Liu, Y.Y. Wan, J. Han, F.Z. Song, ACS Appl. Mater. Inter. 16 (2024) 66008, https://doi.org/10.1021/acsami.4c11228.  doi: 10.1021/acsami.4c11228

    109. [109]

      Q.H. Quan, X.L. Li, C. Song, Q.S. Jia, H.S. Lu, X.J. Cui, G.B. Liu, X. Chen, L.H. Jiang, Chem. Eng. J. 488 (2024) 150897, https://doi.org/10.1016/j.cej.2024.150897.  doi: 10.1016/j.cej.2024.150897

    110. [110]

      Y.X. Qin, Y.Y. Wang, G.Q. Jin, X.L. Tong, N.J. Yang, Adv. Energy Mater. 14 (2024) 2402429, https://doi.org/10.1002/aenm.202402429.  doi: 10.1002/aenm.202402429

    111. [111]

      Y.P. Huang, X. Zhang, L.F. Li, M. Humayun, H.M. Zhang, X.F. Xu, S.P. Anthony, Z.H. Chen, J.R. Zeng, D.V. Shtansky, K.F. Huo, H.S. Song, C.D. Wang, W.J. Zhang, Adv. Funct. Mater. (2024) 2401011, https://doi.org/10.1002/adfm.202401011.  doi: 10.1002/adfm.202401011

    112. [112]

      Y.F. Yang, X.Y. Li, G.L. Liu, H.X. Liu, Y.H. Shi, C.M. Ye, Z. Fang, M.X. Ye, J.F. Shen, Adv. Mater. 36 (2024) 2307979, https://doi.org/10.1002/adma.202307979.  doi: 10.1002/adma.202307979

    113. [113]

      M.X. Du, Y.J. Ji, Y.Y. Li, S.X. Liu, J.Q. Yan, Adv. Funct. Mater. 34 (2024) 2402776, https://doi.org/10.1002/adfm.202402776.  doi: 10.1002/adfm.202402776

    114. [114]

      Z.G. Yuan, X. Sun, B. Gao, Z.g. Fan, P.x. Yang, Z.B. Feng, Chem. Eng. J. 499 (2024) 156647, https://doi.org/10.1016/j.cej.2024.156647.  doi: 10.1016/j.cej.2024.156647

    115. [115]

      N. Vadivel, A.P. Murthy, Small 20 (2024) 2407845, https://doi.org/10.1002/smll.202407845.  doi: 10.1002/smll.202407845

    116. [116]

      Y. Tong, P.Z. Chen, Inorg. Chem. Front. 11 (2024) 6218, https://doi.org/10.1039/D4QI01789G.  doi: 10.1039/D4QI01789G

    117. [117]

      G. Feng, Y. Pan, D. Su, D.G. Xia, Adv. Mater. 36 (2024) 2309715, https://doi.org/10.1002/adma.202309715.  doi: 10.1002/adma.202309715

    118. [118]

      Z.K. Shi, Y. Zhang, W. Guo, Z.H. Niu, Y. Chen, J.L. Huang, Adv. Funct. Mater. (2024) 2414935, https://doi.org/10.1002/adfm.202414935.  doi: 10.1002/adfm.202414935

    119. [119]

      M.A. Ahsan, T. He, J.C. Noveron, K. Reuter, A.R. Puente-Santiago, R. Luque, Chem. Soc. Rev. 51 (2022) 812, https://doi.org/10.1039/D1CS00498K.  doi: 10.1039/D1CS00498K

    120. [120]

      Y. Feng, J.T. Ren, H.Y. Wang, L. Wang, Z.Y. Yuan, Inorg. Chem. Front. 10 (2023) 4510, https://doi.org/10.1039/D3QI00795B.  doi: 10.1039/D3QI00795B

    121. [121]

      J.T. Ren, Y.D. Ying, Y.P. Liu, W. Li, Z.Y. Yuan, J. Energy Chem. 71 (2022) 619, https://doi.org/10.1016/j.jechem.2022.03.048.  doi: 10.1016/j.jechem.2022.03.048

    122. [122]

      H.Y. Wang, S.X. Zhai, H. Wang, F.X. Yan, J.T. Ren, L. Wang, M.L. Sun, Z.Y. Yuan, ACS Nano 18 (2024) 19682, https://doi.org/10.1021/acsnano.4c04831.  doi: 10.1021/acsnano.4c04831

    123. [123]

      W.X. Wang, J.J. Zhang, J.S. Rong, L.L. Chen, S.Q. Cui, J. Colloid Interface Sci. 680 (2025) 214, https://doi.org/10.1016/j.jcis.2024.11.098.  doi: 10.1016/j.jcis.2024.11.098

    124. [124]

      H.Y. Wang, L. Wang, J.T. Ren, W.W. Tian, M.L. Sun, Z.Y. Yuan, Nanomicro Lett. 15 (2023) 155, https://doi.org/10.1007/s40820-023-01128-z.  doi: 10.1007/s40820-023-01128-z

    125. [125]

      F.X. Yan, H.Y. Wang, L. Wang, H. Wang, Z.Y. Yuan, Inorg. Chem. Front. 11 (2024) 6376, https://doi.org/10.1039/D4QI01740D.  doi: 10.1039/D4QI01740D

    126. [126]

      J.Q. Xu, M.X. Zhong, S. Yan, X.J. Chen, W.M. Li, M.J. Xu, C. Wang, X.F. Lu, J. Colloid Interface Sci. 679 (2025) 171, https://doi.org/10.1016/j.jcis.2024.09.227.  doi: 10.1016/j.jcis.2024.09.227

    127. [127]

      Y.Y. Feng, Q.M. Shi, J. Lin, E. Chai, X. Zhang, Z.L. Liu, L. Jiao, Y.B. Wang, Adv. Mater. 34 (2022) 2207747, https://doi.org/10.1002/adma.202207747.  doi: 10.1002/adma.202207747

    128. [128]

      C.J. Moon, V. Maheskumar, A. Min, A. Kumar, S. Lee, R.A. Senthil, M. Ubaidullah, M.Y. Choi, Small (2024) 2408569, https://doi.org/10.1002/smll.202408569.  doi: 10.1002/smll.202408569

    129. [129]

      G.Q. Ma, L.C. Miao, Y. Dong, W.T. Yuan, X.Y. Nie, S.L. Di, Y.Y. Wang, L.B. Wang, N. Zhang, Energy Stor. Mater. 47 (2022) 203, https://doi.org/10.1016/j.ensm.2022.02.019.  doi: 10.1016/j.ensm.2022.02.019

    130. [130]

      P. Thakur, K. Alam, A. Roy, C. Downing, V. Nicolosi, P. Sen, T.N. Narayanan, ACS Appl. Mater. Inter. 13 (2021) 33112, https://doi.org/10.1021/acsami.1c08300.  doi: 10.1021/acsami.1c08300

    131. [131]

      F.Y. Chen, A. Elgazzar, S. Pecaut, C. Qiu, Y.G. Feng, S. Ashokkumar, Z. Yu, C. Sellers, S.Y. Hao, P. Zhu, H.T. Wang, Nat. Catal. 7 (2024) 1032, https://doi.org/10.1038/s41929-024-01200-w.  doi: 10.1038/s41929-024-01200-w

    132. [132]

      M. Shibata, K. Yoshida, N. Furuya, J. Electroanal. Chem. 442 (1998) 67, https://doi.org/10.1016/S0022-0728(97)00504-4.  doi: 10.1016/S0022-0728(97)00504-4

    133. [133]

      M. Shibata, K. Yoshida, N. Furuya, J. Electrochem. Soc. 145 (1998) 2348, https://doi.org/10.1149/1.1838641.  doi: 10.1149/1.1838641

    134. [134]

      X.R. Zhu, M. Ge, X.L. Yuan, Y.J. Wang, Y.F. Tang, Appl. Catal. B 363 (2025) 124826, https://doi.org/10.1016/j.apcatb.2024.124826.  doi: 10.1016/j.apcatb.2024.124826

    135. [135]

      Y. Zhong, H.L. Xiong, J.X. Low, R. Long, Y.J. Xiong, eScience 3 (2023) 100086, https://doi.org/10.1016/j.esci.2022.11.002.  doi: 10.1016/j.esci.2022.11.002

    136. [136]

      Z.X. Tao, C.L. Rooney, Y.Y. Liang, H.L. Wang, J. Am. Chem. Soc. 143 (2021) 19630, https://doi.org/10.1021/jacs.1c10714.  doi: 10.1021/jacs.1c10714

    137. [137]

      M. Jouny, J.J. Lv, T. Cheng, B.H. Ko, J.J. Zhu, W.A. Goddard, F. Jiao, Nat. Chem. 11 (2019) 846, https://doi.org/10.1038/s41557-019-0312-z.  doi: 10.1038/s41557-019-0312-z

    138. [138]

      Z.X. Tao, Y.S. Wu, Z.S. Wu, B. Shang, C. Rooney, H.L. Wang, J. Energy Chem. 65 (2022) 367, https://doi.org/10.1016/j.jechem.2021.06.007.  doi: 10.1016/j.jechem.2021.06.007

    139. [139]

      Y.S. Wu, Z. Jiang, Z.C. Lin, Y.Y. Liang, H.L. Wang, Nat. Sustain. 4 (2021) 725, https://doi.org/10.1038/s41893-021-00705-7.  doi: 10.1038/s41893-021-00705-7

    140. [140]

      M. Shibata, K. Yoshida, N. Furuya, J. Electroanal. Chem. 387 (1995) 143, https://doi.org/10.1016/0022-0728(95)03992-P.  doi: 10.1016/0022-0728(95)03992-P

    141. [141]

      N.N. Meng, Y.M. Huang, Y. Liu, Y.F. Yu, B. Zhang, Cell Rep. Phys. Sci. 2 (2021) 100378, https://doi.org/10.1016/j.xcrp.2021.100378.  doi: 10.1016/j.xcrp.2021.100378

    142. [142]

      P. Guo, X.D. Wang, Y.F. Wang, Y.W. Luo, K. Chu, Chem. Commun. 60 (2024) 14649, https://doi.org/10.1039/D4CC05002A.  doi: 10.1039/D4CC05002A

    143. [143]

      C. Chen, X.R. Zhu, X.J. Wen, Y.Y. Zhou, L. Zhou, H. Li, L. Tao, Q.L. Li, S.Q. Du, T.T. Liu, D.F. Yan, C. Xie, Y.Q. Zou, Y.Y. Wang, R. Chen, J. Huo, Y.F. Li, J. Cheng, H. Su, X. Zhao, W.R. Cheng, Q.H. Liu, H.Z. Lin, J. Luo, J. Chen, M.D. Dong, K. Cheng, C.G. Li, S.Y. Wang, Nat. Chem. 12 (2020) 717, https://doi.org/10.1038/s41557-020-0481-9.  doi: 10.1038/s41557-020-0481-9

    144. [144]

      H. Wang, Y. Jiang, S.J. Li, F.L. Gou, X.R. Liu, Y.M. Jiang, W. Luo, W. Shen, R.X. He, M. Li, Appl. Catal. B 318 (2022) 121819, https://doi.org/10.1016/j.apcatb.2022.121819.  doi: 10.1016/j.apcatb.2022.121819

    145. [145]

      Y. Feng, X.W. Lv, H.Y. Wang, H. Wang, F.X. Yan, L. Wang, H.Y. Wang, J.T. Ren, Z.Y. Yuan, Adv. Funct. Mater. 35 (2025) 2425687, https://doi.org/10.1002/adfm.202425687.  doi: 10.1002/adfm.202425687

  • 加载中
    1. [1]

      Kai PENGXinyi ZHAOZixi CHENXuhai ZHANGYuqiao ZENGJianqing JIANG . Progress in the application of high-entropy alloys and high-entropy ceramics in water electrolysis. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1257-1275. doi: 10.11862/CJIC.20240454

    2. [2]

      Hao GUOTong WEIQingqing SHENAnqi HONGZeting DENGZheng FANGJichao SHIRenhong LI . Electrocatalytic decoupling of urea solution for hydrogen production by nickel foam-supported Co9S8/Ni3S2 heterojunction. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2141-2154. doi: 10.11862/CJIC.20240085

    3. [3]

      Jianchun Wang Ruyu Xie . The Fantastical Dance of Miss Electron: Contra-Thermodynamic Electrocatalytic Reactions. University Chemistry, 2025, 40(4): 331-339. doi: 10.12461/PKU.DXHX202406082

    4. [4]

      Haodong JINQingqing LIUChaoyang SHIDanyang WEIJie YUXuhui XUMingli XU . NiCu/ZnO heterostructure photothermal electrocatalyst for efficient hydrogen evolution reaction. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1068-1082. doi: 10.11862/CJIC.20250048

    5. [5]

      Fengqiao Bi Jun Wang Dongmei Yang . Specialized Experimental Design for Chemistry Majors in the Context of “Dual Carbon”: Taking the Assembly and Performance Evaluation of Zinc-Air Fuel Batteries as an Example. University Chemistry, 2024, 39(4): 198-205. doi: 10.3866/PKU.DXHX202311069

    6. [6]

      Zhaoxuan ZHULixin WANGXiaoning TANGLong LIYan SHIJiaojing SHAO . Application of poly(vinyl alcohol) conductive hydrogel electrolytes in zinc ion batteries. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 893-902. doi: 10.11862/CJIC.20240368

    7. [7]

      Qingqing SHENXiangbowen DUKaicheng QIANZhikang JINZheng FANGTong WEIRenhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028

    8. [8]

      Doudou Qin Junyang Ding Chu Liang Qian Liu Ligang Feng Yang Luo Guangzhi Hu Jun Luo Xijun Liu . Addressing Challenges and Enhancing Performance of Manganese-based Cathode Materials in Aqueous Zinc-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(10): 2310034-. doi: 10.3866/PKU.WHXB202310034

    9. [9]

      Yong Zhou Jia Guo Yun Xiong Luying He Hui Li . Comprehensive Teaching Experiment on Electrochemical Corrosion in Galvanic Cell for Chemical Safety and Environmental Protection Course. University Chemistry, 2024, 39(7): 330-336. doi: 10.3866/PKU.DXHX202310109

    10. [10]

      Caixia Lin Ting Liu Zhaojiang Shi Hong Yan Keyin Ye Yaofeng Yuan . Innovative Experiment of Electrochemical Dearomative Spirocyclization of N-Acyl Sulfonamides. University Chemistry, 2025, 40(4): 359-366. doi: 10.12461/PKU.DXHX202406107

    11. [11]

      Qianli MaTianbing SongTianle HeXirong ZhangHuanming Xiong . Sulfur-doped carbon dots: a novel bifunctional electrolyte additive for high-performance aqueous zinc-ion batteries. Acta Physico-Chimica Sinica, 2025, 41(9): 100106-0. doi: 10.1016/j.actphy.2025.100106

    12. [12]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    13. [13]

      Qianwen Han Tenglong Zhu Qiuqiu Lü Mahong Yu Qin Zhong . 氢电极支撑可逆固体氧化物电池性能及电化学不对称性优化. Acta Physico-Chimica Sinica, 2025, 41(1): 2309037-. doi: 10.3866/PKU.WHXB202309037

    14. [14]

      Lingbang Qiu Jiangmin Jiang Libo Wang Lang Bai Fei Zhou Gaoyu Zhou Quanchao Zhuang Yanhua Cui . 原位电化学阻抗谱监测长寿命热电池Nb12WO33正极材料的高温双放电机制. Acta Physico-Chimica Sinica, 2025, 41(5): 100040-. doi: 10.1016/j.actphy.2024.100040

    15. [15]

      Wenqi Gao Xiaoyan Fan Feixiang Wang Zhuojun Fu Jing Zhang Enlai Hu Peijun Gong . Exploring Nernst Equation Factors and Applications of Solid Zinc-Air Battery. University Chemistry, 2024, 39(5): 98-107. doi: 10.3866/PKU.DXHX202310026

    16. [16]

      Haihua Yang Minjie Zhou Binhong He Wenyuan Xu Bing Chen Enxiang Liang . Synthesis and Electrocatalytic Performance of Iron Phosphide@Carbon Nanotubes as Cathode Material for Zinc-Air Battery: a Comprehensive Undergraduate Chemical Experiment. University Chemistry, 2024, 39(10): 426-432. doi: 10.12461/PKU.DXHX202405100

    17. [17]

      Jinyao Du Xingchao Zang Ningning Xu Yongjun Liu Weisi Guo . Electrochemical Thiocyanation of 4-Bromoethylbenzene. University Chemistry, 2024, 39(6): 312-317. doi: 10.3866/PKU.DXHX202310039

    18. [18]

      Tao Jiang Yuting Wang Lüjin Gao Yi Zou Bowen Zhu Li Chen Xianzeng Li . Experimental Design for the Preparation of Composite Solid Electrolytes for Application in All-Solid-State Batteries: Exploration of Comprehensive Chemistry Laboratory Teaching. University Chemistry, 2024, 39(2): 371-378. doi: 10.3866/PKU.DXHX202308057

    19. [19]

      Kun Xu Xinxin Song Zhilei Yin Jian Yang Qisheng Song . Comprehensive Experimental Design of Preferential Orientation of Zinc Metal by Heat Treatment for Enhanced Electrochemical Performance. University Chemistry, 2024, 39(4): 192-197. doi: 10.3866/PKU.DXHX202309050

    20. [20]

      Jiandong Liu Zhijia Zhang Mikhail Kamenskii Filipp Volkov Svetlana Eliseeva Jianmin Ma . Research Progress on Cathode Electrolyte Interphase in High-Voltage Lithium Batteries. Acta Physico-Chimica Sinica, 2025, 41(2): 100011-. doi: 10.3866/PKU.WHXB202308048

Metrics
  • PDF Downloads(0)
  • Abstract views(8)
  • HTML views(2)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return