Citation: Qi Wu, Changhua Wang, Yingying Li, Xintong Zhang. Enhanced photocatalytic synthesis of H2O2 by triplet electron transfer at g-C3N4@BN van der Waals heterojunction interface[J]. Acta Physico-Chimica Sinica, ;2025, 41(9): 100107. doi: 10.1016/j.actphy.2025.100107 shu

Enhanced photocatalytic synthesis of H2O2 by triplet electron transfer at g-C3N4@BN van der Waals heterojunction interface

  • Corresponding author: Changhua Wang, wangch100@nenu.edu.cn Xintong Zhang, xtzhang@nenu.edu.cn
  • Received Date: 31 March 2025
    Revised Date: 25 May 2025
    Accepted Date: 25 May 2025

    Fund Project: the Jilin Province Science and Technology Development Project 20220201073GXthe Natural Science Foundation of China 52273236the Natural Science Foundation of China U22A2078the Natural Science Foundation of China 91833303the Natural Science Foundation of China 51102001the Fundamental Research Funds for the Central Universities 2412022QD035the Education Department of Jilin Province JJKH20241426KJ

  • The van der Waals heterojunctions demonstrate exceptional advantages due to their outstanding charge separation capabilities and remarkable flexibility in tuning electronic properties. This study explores the potential application of the 2D/2D g-C3N4 @BN van der Waals heterojunction in the photocatalytic synthesis of hydrogen peroxide (H2O2). Based on this heterojunction, we investigated the energy transfer process between triplet excitons and singlet oxygen, emphasizing the importance of catalyst structure for charge separation and the stable generation of triplet electrons. By constructing a charge transfer pathway, the built-in electric field within the heterojunction effectively drives the directional migration of charge carriers, significantly extending their lifetime. We employed two modification strategies to regulate the excited state electronic properties of the catalyst, including adjusting the interlayer arrangement to enhance charge transport capability and halogen modification to improve the light responsiveness of materials. Experimental validation indicates that the representative chlorinated-CN@BN effectively suppresses exciton recombination compared to CN, extending the lifetime of excited-state carriers by 3.52 times. Furthermore, the photocatalytic yield of H2O2 is improved by 2.73 times. This study provides a theoretical basis for developing novel photocatalysts and inspires the design of catalysts for direct synthesis of H2O2 from oxygen.
  • 加载中
    1. [1]

      F. He, Y. Lu, Y. Wu, S. Wang, Y. Zhang, P. Dong, Y. Wang, C. Zhao, S. Wang, J. Zhang, Adv. Mater. 36 (2023), 2307490, https://doi.org/10.1002/adma.202307490.  doi: 10.1002/adma.202307490

    2. [2]

      G. Chen, Z. Zheng, W. Zhong, G. Wang, X. Wu, Acta Phys. -Chim. Sin. 40 (2024), 2406021, https://doi.org/10.3866/PKU.WHXB202406021.  doi: 10.3866/PKU.WHXB202406021

    3. [3]

      W. Liu, P. Wang, J. Chen, X. Gao, H. Che, B. Liu, Y. Ao, Adv. Funct. Mater. 32 (2022), 2205119, https://doi.org/10.1002/adfm.202205119.  doi: 10.1002/adfm.202205119

    4. [4]

      S. Qu, H. Wu, Y.H. Ng, Adv. Energy Mater. 13 (2023), 2301047, https://doi.org/10.1002/aenm.202301047.  doi: 10.1002/aenm.202301047

    5. [5]

      T.C. Khiem, N.N. Huy, E. Kwon, J. Lee, W.D. Oh, X. Duan, S. Wacławek, H. Wang, G. Lisak, F. Ghanbari, K. -Y.A. Lin, Appl. Catal., B 343 (2024), 123490, https://doi.org/10.1016/j.apcatb.2023.123490.  doi: 10.1016/j.apcatb.2023.123490

    6. [6]

      P. Dong, H. Lv, R. Luo, Z. Li, X. Wu, J. Lei, Chem. Eng. J. 461 (2023), 141817, https://doi.org/10.1016/j.cej.2023.141817.  doi: 10.1016/j.cej.2023.141817

    7. [7]

      W. Zhang, W. Huang, J. Jin, Y. Gan, S. Zhang, Appl. Catal., B 292 (2021), 120197, https://doi.org/10.1016/j.apcatb.2021.120197.  doi: 10.1016/j.apcatb.2021.120197

    8. [8]

      D. Li, K. Wang, J. Tang, Y. Zhao, H. Elhaes, M. Tahir, M.A. Ibrahim, Y. Li, Appl. Surf. Sci. 613 (2023), 155991, https://doi.org/10.1016/j.apsusc.2022.155991.  doi: 10.1016/j.apsusc.2022.155991

    9. [9]

      A.K. Pal, A. Datta, J. Chem. Phys. 160 (2024), 164720, https://doi.org/10.1063/5.0196557.  doi: 10.1063/5.0196557

    10. [10]

      S. Jin, W. Shao, X. Luo, H. Wang, X. Sun, X. He, X. Zhang, Y. Xie, Adv. Mater. 34 (2022), 2206516, https://doi.org/10.1002/adma.202206516.  doi: 10.1002/adma.202206516

    11. [11]

      G. Li, T. Qiu, Q. Wu, Z. Zhao, L. Wang, Y. Li, Y. Geng, H. Tan, Angew. Chem. Int. Ed. 63 (2024), e202405396, https://doi.org/10.1002/anie.202405396.  doi: 10.1002/anie.202405396

    12. [12]

      Y. Shen, Y. Yao, C. Zhu, J. Wu, L. Chen, Q. Fang, S. Song, Chem. Eng. J. 475 (2023), 146383, https://doi.org/10.1016/j.cej.2023.146383.  doi: 10.1016/j.cej.2023.146383

    13. [13]

      X. Zeng, T. Wang, Z. Wang, M. Tebyetekerwa, Y. Liu, Z. Liu, G. Wang, A.A. Wibowo, G. Pierens, Q. Gu, X. Zhang, ACS Catal. 14 (2024), 9955, https://doi.org/10.1021/acscatal.4c01591.  doi: 10.1021/acscatal.4c01591

    14. [14]

      J. Cheng, S. Wan, S. Cao, Angew. Chem. Int. Ed. 62 (2023), e202310476, https://doi.org/10.1002/anie.202310476.  doi: 10.1002/anie.202310476

    15. [15]

      S. Pullen, Chem Catal. 3 (2023), 100861, https://doi.org/10.1016/j.checat.2023.100861.  doi: 10.1016/j.checat.2023.100861

    16. [16]

      M. Schmitz, M. -S. Bertrams, A.C. Sell, F. Glaser, C. Kerzig, J. Am. Chem. Soc. 146 (2024), 25799, https://doi.org/10.1021/jacs.4c08551.  doi: 10.1021/jacs.4c08551

    17. [17]

      H. Yersin, R. Czerwieniec, U. Monkowius, R. Ramazanov, R. Valiev, M.Z. Shafikov, W. -M. Kwok, C. Ma, Coord. Chem. Rev. 478 (2023), 214975, https://doi.org/10.1016/j.ccr.2022.214975.  doi: 10.1016/j.ccr.2022.214975

    18. [18]

      J.A. Kübler, B. Pfund, O.S. Wenger, JACS Au 2 (2022), 2367, https://doi.org/10.1021/jacsau.2c00442.  doi: 10.1021/jacsau.2c00442

    19. [19]

      T. Jin, S. He, Y. Zhu, E. Egap, T. Lian, Nano Lett. 22 (2022), 3897, https://doi.org/10.1021/acs.nanolett.2c00017.  doi: 10.1021/acs.nanolett.2c00017

    20. [20]

      Y. Zhao, X. Yu, T. Bao, Y. Guo, Y. Su, J. Zhao, Nano Lett. 24 (2024), 13534, https://doi.org/10.1021/acs.nanolett.4c02986.  doi: 10.1021/acs.nanolett.4c02986

    21. [21]

      P. Li, Y. Cui, Z. Wang, G. Dawson, C. Shao, K. Dai, Acta Phys. -Chim. Sin. 41 (2025), 100065, https://doi.org/10.1016/j.actphy.2025.100065.  doi: 10.1016/j.actphy.2025.100065

    22. [22]

      Y. Liu, C. Chen, G. Dawson, J. Zhang, C. Shao, K. Dai, J. Mater. Sci. Technol. 233 (2025), 10, https://doi.org/10.1016/j.jmst.2024.12.094.  doi: 10.1016/j.jmst.2024.12.094

    23. [23]

      Z. Wang, S. Hu, F. Deng, H. Shi, X. Li, S. Zhang, J. Zou, X. Luo, Sep. Purif. Technol. 330 (2024), 125287, https://doi.org/10.1016/j.seppur.2023.125287.  doi: 10.1016/j.seppur.2023.125287

    24. [24]

      Z. Wang, B. Cheng, L. Zhang, J. Yu, Y. Li, S. Wageh, A.A. Al-Ghamdi, Chin. J. Catal. 43 (2022), 1657, https://doi.org/10.1016/S1872-2067(21)64010-X.  doi: 10.1016/S1872-2067(21)64010-X

    25. [25]

      H. Zhang, C. Shao, Z. Wang, J. Zhang, K. Dai, J. Mater. Sci. Technol. 195 (2024), 146, https://doi.org/10.1016/j.jmst.2023.11.081.  doi: 10.1016/j.jmst.2023.11.081

    26. [26]

      Y. Cui, J. Zhang, H. Chu, L. Sun, K. Dai, Acta Phys. -Chim. Sin. 40 (2024), 2405016, https://doi.org/10.3866/PKU.WHXB202405016.  doi: 10.3866/PKU.WHXB202405016

    27. [27]

      K. Dong, C. Shen, R. Yan, Y. Liu, C. Zhuang, S. Li, Acta Phys. -Chim. Sin. 40 (2024), 2310013, https://doi.org/10.3866/PKU.WHXB202310013.  doi: 10.3866/PKU.WHXB202310013

    28. [28]

      Z. Fang, J. Qi, Y. Xu, Y. Liu, T. Qi, L. Xing, Q. Dai, L. Wang, Chem. Eng. J. 441 (2022), 136051, https://doi.org/10.1016/j.cej.2022.136051.  doi: 10.1016/j.cej.2022.136051

    29. [29]

      A. Savateev, N.V. Tarakina, V. Strauss, T. Hussain, K. ten Brummelhuis, J.M. Sánchez Vadillo, Y. Markushyna, S. Mazzanti, A.P. Tyutyunnik, R. Walczak, M. Oschatz, D.M. Guldi, A. Karton, M. Antonietti, Angew. Chem. Int. Ed. 59 (2020), 15061, https://doi.org/10.1002/anie.202004747.  doi: 10.1002/anie.202004747

    30. [30]

      S. Liang, Q. Wu, C. Wang, R. Wang, D. Li, Y. Xing, D. Jin, H. Ma, Y. Liu, P. Zhang, X. Zhang, Proc. Natl. Acad. Sci 121 (2024), e2410504121, https://doi.org/10.1073/pnas.2410504121.  doi: 10.1073/pnas.2410504121

    31. [31]

      Y. Luo, H. Zheng, X. Li, F. Li, H. Tang, X. She, Acta Phys. -Chim. Sin. 41 (2025), 100052, https://doi.org/10.1016/j.actphy.2025.100052.  doi: 10.1016/j.actphy.2025.100052

    32. [32]

      C. You, C. Wang, M. Cai, Y. Liu, B. Zhu, S. Li, Acta Phys. -Chim. Sin. 40 (2024), 2407014, https://doi.org/10.3866/PKU.WHXB202407014.  doi: 10.3866/PKU.WHXB202407014

    33. [33]

      M. Cai, Y. Liu, K. Dong, X. Chen, S. Li, Chin. J. Catal. 52 (2023), 239, https://doi.org/10.1016/S1872-2067(23)64496-1.  doi: 10.1016/S1872-2067(23)64496-1

    34. [34]

      J. Zhang, G. Yu, C. Yang, S. Li, Curr. Opin. Chem. Eng. 45 (2024), 101040, https://doi.org/10.1016/j.coche.2024.101040.  doi: 10.1016/j.coche.2024.101040

    35. [35]

      K. Li, C. Liu, J. Li, G. Wang, K. Wang, Acta Phys. -Chim. Sin. 40 (2024), 2403009, https://doi.org/10.3866/PKU.WHXB202403009.  doi: 10.3866/PKU.WHXB202403009

    36. [36]

      W. Zhong, D. Zheng, Y. Ou, A. Meng, Y. Su, Acta Phys. -Chim. Sin. 40 (2024), 2406005, https://doi.org/10.3866/PKU.WHXB202406005.  doi: 10.3866/PKU.WHXB202406005

    37. [37]

      Z. Xiu, W. Mu, X. Zhou, X. Han, Chin. J. Catal. 65 (2024), 126, https://doi.org/10.1016/S1872-2067(24)60114-2.  doi: 10.1016/S1872-2067(24)60114-2

    38. [38]

      L. Zhang, J. Zhang, J. Yu, H. García, Nat. Rev. Chem. 9 (2025), 328, https://doi.org/10.1038/s41570-025-00698-3.  doi: 10.1038/s41570-025-00698-3

    39. [39]

      L. Acharya, S.P. Pattnaik, A. Behera, R. Acharya, K. Parida, Inorg. Chem. 60 (2021), 5021, https://doi.org/10.1021/acs.inorgchem.1c00062.  doi: 10.1021/acs.inorgchem.1c00062

    40. [40]

      H. Sohrabi, O. Arbabzadeh, M. Falaki, V. Vatanpour, M.R. Majidi, N. Kudaibergenov, S.W. Joo, A. Khataee, Surf. Interfaces 41 (2023), 103152, https://doi.org/10.1016/j.surfin.2023.103152.  doi: 10.1016/j.surfin.2023.103152

    41. [41]

      C. Chen, J. Zhang, H. Chu, L. Sun, G. Dawson, K. Dai, Chin. J. Catal. 63 (2024), 81, https://doi.org/10.1016/S1872-2067(24)60072-0.  doi: 10.1016/S1872-2067(24)60072-0

    42. [42]

      T. Yang, J. Wang, Z. Wang, J. Zhang, K. Dai, Chin. J. Catal. 58 (2024), 157, https://doi.org/10.1016/S1872-2067(23)64607-8.  doi: 10.1016/S1872-2067(23)64607-8

    43. [43]

      L. Jiang, X. Yuan, G. Zeng, Z. Wu, J. Liang, X. Chen, L. Leng, H. Wang, H. Wang, Appl. Catal., B. 221 (2018), 715, https://doi.org/10.1016/j.apcatb.2017.09.059.  doi: 10.1016/j.apcatb.2017.09.059

    44. [44]

      Q. Wu, Y. Lin, Y. Ou, C. Wang, H. Ma, R. Wang, Y. Li, X. Zhang, J. Mater. Chem. A 12 (2024), 14302, https://doi.org/10.1039/D4TA02059F.  doi: 10.1039/D4TA02059F

    45. [45]

      H. He, Z. Wang, J. Zhang, C. Shao, K. Dai, K. Fan, Adv. Funct. Mater. 34 (2024), 2315426, https://doi.org/10.1002/adfm.202315426.  doi: 10.1002/adfm.202315426

    46. [46]

      M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, G.A. Petersson, H. Nakatsuji, et al. Gaussian 16 Rev. B. 01[Z]. Wallingford, CT. 2016

    47. [47]

      Z. Liu, X. Wang, T. Lu, A. Yuan, X. Yan, Carbon 187 (2022), 78, https://doi.org/10.1016/j.carbon.2021.11.005.  doi: 10.1016/j.carbon.2021.11.005

    48. [48]

      T. Lu, F. Chen, J. Comput. Chem. 33 (2012), 580, https://doi.org/10.1002/jcc.22885.  doi: 10.1002/jcc.22885

    49. [49]

      F. Neese, WIREs Comput. Mol. Sci. 2 (2012), 73, https://doi.org/10.1002/wcms.81.  doi: 10.1002/wcms.81

    50. [50]

      T. Lu, Q. Chen, J. Comput. Chem. 43 (2022), 539, https://doi.org/10.1002/jcc.26812.  doi: 10.1002/jcc.26812

    51. [51]

      R.A. Marcus, N. Sutin, Biochim. Biophys. Acta 811 (1985), 265.  doi: 10.1016/0304-4173(85)90014-X

    52. [52]

      A.A. Peterson, F. Abild-Pedersen, F. Studt, J. Rossmeisl, J.K. Nrskov, Energy Environ. Sci. 3 (2010), 1311, https://doi.org/10.1039/C0EE00071J.  doi: 10.1039/c0ee00071j

    53. [53]

      X. Wang, B. Liu, S. Ma, Y. Zhang, L. Wang, G. Zhu, W. Huang, S. Wang, Nat. Commun. 15 (2024), 2600, https://doi.org/10.1038/s41467-024-47022-z.  doi: 10.1038/s41467-024-47022-z

    54. [54]

      S. Guo, Y. Park, E. Park, S. Jin, L. Chen, Y.M. Jung, Angew. Chem., Int. Ed. 62 (2023), e202306709, https://doi.org/10.1002/anie.202306709.  doi: 10.1002/anie.202306709

    55. [55]

      C.A. Ullrich, Z.-H. Yang, Braz. J. Phys. 44 (2014), 154, https://doi.org/10.1007/s13538-013-0141-2.  doi: 10.1007/s13538-013-0141-2

    56. [56]

      Z. Liu, T. Lu, Q. Chen, Carbon 165 (2020), 461, https://doi.org/10.1016/j.carbon.2020.05.023.  doi: 10.1016/j.carbon.2020.05.023

    57. [57]

      C.A. Guido, P. Cortona, B. Mennucci, C. Adamo, J. Chem. Theory Comput. 9 (2013), 3118, https://doi.org/10.1021/ct400337e.  doi: 10.1021/ct400337e

    58. [58]

      R.A. House, G.J. Rees, K. McColl, J.-J. Marie, M. Garcia-Fernandez, A. Nag, K.-J. Zhou, S. Cassidy, B.J. Morgan, M. Saiful Islam, P.G. Bruce, Nat. Energy 8 (2023), 351, https://doi.org/10.1038/s41560-023-01211-0.  doi: 10.1038/s41560-023-01211-0

    59. [59]

      C. Duan, J. Li, C. Han, D. Ding, H. Yang, Y. Wei, H. Xu, Chem. Mater. 28 (2016), 5667, https://doi.org/10.1021/acs.chemmater.6b01691.  doi: 10.1021/acs.chemmater.6b01691

    60. [60]

      T.J. Penfold, J. Phys. Chem. C 119 (2015), 13535, https://doi.org/10.1021/acs.jpcc.5b03530.  doi: 10.1021/acs.jpcc.5b03530

    61. [61]

      Y. Yang, X. Zhou, M. Gu, B. Cheng, Z. Wu, J. Zhang, Acta Phys. -Chim. Sin. 41 (2025), 100064, https://doi.org/10.1016/j.actphy.2025.100064.  doi: 10.1016/j.actphy.2025.100064

    62. [62]

      J. Yan, J. Zhang, J. Mater. Sci. Technol. 193 (2024), 18, https://doi.org/10.1016/j.jmst.2023.12.054.  doi: 10.1016/j.jmst.2023.12.054

  • 加载中
    1. [1]

      You Wu Chang Cheng Kezhen Qi Bei Cheng Jianjun Zhang Jiaguo Yu Liuyang Zhang . ZnO/D-A共轭聚合物S型异质结高效光催化产H2O2及其电荷转移动力学研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-. doi: 10.3866/PKU.WHXB202406027

    2. [2]

      Yi YangXin ZhouMiaoli GuBei ChengZhen WuJianjun Zhang . Femtosecond transient absorption spectroscopy investigation on ultrafast electron transfer in S-scheme ZnO/CdIn2S4 photocatalyst for H2O2 production and benzylamine oxidation. Acta Physico-Chimica Sinica, 2025, 41(6): 100064-0. doi: 10.1016/j.actphy.2025.100064

    3. [3]

      Weikang WangYadong WuJianjun ZhangKai MengJinhe LiLele WangQinqin Liu . Green H2O2 synthesis via melamine-foam supported S-scheme Cd0.5Zn0.5In2S4/S-doped carbon nitride heterojunction: synergistic interfacial charge transfer and local photothermal effect. Acta Physico-Chimica Sinica, 2025, 41(8): 100093-0. doi: 10.1016/j.actphy.2025.100093

    4. [4]

      Liyong DingZhenhua PanQian Wang . 2D photocatalysts for hydrogen peroxide synthesis. Chinese Chemical Letters, 2024, 35(12): 110125-. doi: 10.1016/j.cclet.2024.110125

    5. [5]

      Xiaofang LiZhigang Wang . Modulating dz2-orbital occupancy of Au cocatalysts for enhanced photocatalytic H2O2 production. Acta Physico-Chimica Sinica, 2025, 41(7): 100080-0. doi: 10.1016/j.actphy.2025.100080

    6. [6]

      Jiaxing Cai Wendi Xu Haoqiang Chi Qian Liu Wa Gao Li Shi Jingxiang Low Zhigang Zou Yong Zhou . 具有0D/2D界面的InOOH/ZnIn2S4空心球S型异质结用于增强光催化CO2转化性能. Acta Physico-Chimica Sinica, 2024, 40(11): 2407002-. doi: 10.3866/PKU.WHXB202407002

    7. [7]

      Yang Xia Kangyan Zhang Heng Yang Lijuan Shi Qun Yi . 构建双通道路径增强iCOF/Bi2O3 S型异质结在纯水体系中光催化合成H2O2性能. Acta Physico-Chimica Sinica, 2024, 40(11): 2407012-. doi: 10.3866/PKU.WHXB202407012

    8. [8]

      Li LiXue KeShan WangZhuo JiangYuzheng GuoChunguang Kuai . Antioxidative strategies of 2D MXenes in aqueous energy storage system. Chinese Chemical Letters, 2025, 36(5): 110423-. doi: 10.1016/j.cclet.2024.110423

    9. [9]

      Xinyu Yin Haiyang Shi Yu Wang Xuefei Wang Ping Wang Huogen Yu . Spontaneously Improved Adsorption of H2O and Its Intermediates on Electron-Deficient Mn(3+δ)+ for Efficient Photocatalytic H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312007-. doi: 10.3866/PKU.WHXB202312007

    10. [10]

      Yuan TengZichun ZhouJinghua ChenSiying HuangHongyan ChenDaibin Kuang . Dual atom-bridge effect promoting interfacial charge transfer in 2D/2D Cs3Bi2Br9/BiOBr epitaxial heterojunction for efficient photocatalysis. Chinese Chemical Letters, 2025, 36(2): 110430-. doi: 10.1016/j.cclet.2024.110430

    11. [11]

      Yu WangHaiyang ShiZihan ChenFeng ChenPing WangXuefei Wang . Hollow AgPt@Pt core-shell cocatalyst with electron-rich Ptδ shell for boosting selectivity of photocatalytic H2O2 production for faceted BiVO4. Acta Physico-Chimica Sinica, 2025, 41(7): 100081-0. doi: 10.1016/j.actphy.2025.100081

    12. [12]

      Mahmoud SayedHan LiChuanbiao Bie . Challenges and prospects of photocatalytic H2O2 production. Acta Physico-Chimica Sinica, 2025, 41(9): 100117-0. doi: 10.1016/j.actphy.2025.100117

    13. [13]

      Wei Zhong Dan Zheng Yuanxin Ou Aiyun Meng Yaorong Su . K原子掺杂高度面间结晶的g-C3N4光催化剂及其高效H2O2光合成. Acta Physico-Chimica Sinica, 2024, 40(11): 2406005-. doi: 10.3866/PKU.WHXB202406005

    14. [14]

      Guoqiang Chen Zixuan Zheng Wei Zhong Guohong Wang Xinhe Wu . 熔融中间体运输导向合成富氨基g-C3N4纳米片用于高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406021-. doi: 10.3866/PKU.WHXB202406021

    15. [15]

      Chaozheng HeJia WangLing FuWei Wei . Nitric oxide assists nitrogen reduction reaction on 2D MBene: A theoretical study. Chinese Chemical Letters, 2024, 35(5): 109037-. doi: 10.1016/j.cclet.2023.109037

    16. [16]

      Jaeyong AhnZhenping LiZhiwei WangKe GaoHuagui ZhuoWanuk ChoiGang ChangXiaobo ShangJoon Hak Oh . Surface doping effect on the optoelectronic performance of 2D organic crystals based on cyano-substituted perylene diimides. Chinese Chemical Letters, 2024, 35(9): 109777-. doi: 10.1016/j.cclet.2024.109777

    17. [17]

      Lili WangYa YanRulin LiXujie HanJiahui LiTing RanJialu LiBaichuan XiongXiaorong SongZhaohui YinHong WangQingjun ZhuBowen ChengZhen Yin . Interface engineering of 2D NiFe LDH/NiFeS heterostructure for highly efficient 5-hydroxymethylfurfural electrooxidation. Chinese Chemical Letters, 2024, 35(9): 110011-. doi: 10.1016/j.cclet.2024.110011

    18. [18]

      Jinwei Zhang Lipiao Bao Xing Lu . Synthesis methodologies of conductive 2D conjugated metal-organic frameworks. Chinese Journal of Structural Chemistry, 2025, 44(4): 100459-100459. doi: 10.1016/j.cjsc.2024.100459

    19. [19]

      Peng LiYuanying CuiZhongliao WangGraham DawsonChunfeng ShaoKai Dai . Efficient interfacial charge transfer of CeO2/Bi19Br3S27 S-scheme heterojunction for boosted photocatalytic CO2 reduction. Acta Physico-Chimica Sinica, 2025, 41(6): 100065-0. doi: 10.1016/j.actphy.2025.100065

    20. [20]

      Junjie DuanDan ChenLong ChenShuying LiTing ChenDong Wang . 2D hexagonal tessellations sustained by Br···Br/H contacts: From regular to semiregular to k-uniform tilings. Chinese Chemical Letters, 2025, 36(3): 110445-. doi: 10.1016/j.cclet.2024.110445

Metrics
  • PDF Downloads(0)
  • Abstract views(8)
  • HTML views(2)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return