增强g-C3N4@BN范德华异质结界面上的三重态电子转移增强光催化合成H2O2

吴琦 王长华 李莹莹 张昕彤

引用本文: 吴琦, 王长华, 李莹莹, 张昕彤. 增强g-C3N4@BN范德华异质结界面上的三重态电子转移增强光催化合成H2O2[J]. 物理化学学报, 2025, 41(9): 100107. doi: 10.1016/j.actphy.2025.100107 shu
Citation:  Qi Wu, Changhua Wang, Yingying Li, Xintong Zhang. Enhanced photocatalytic synthesis of H2O2 by triplet electron transfer at g-C3N4@BN van der Waals heterojunction interface[J]. Acta Physico-Chimica Sinica, 2025, 41(9): 100107. doi: 10.1016/j.actphy.2025.100107 shu

增强g-C3N4@BN范德华异质结界面上的三重态电子转移增强光催化合成H2O2

    通讯作者: 王长华, wangch100@nenu.edu.cn; 张昕彤, xtzhang@nenu.edu.cn
  • 基金项目:

    吉林省科技发展计划项目 20220201073GX

    国家自然科学基金 52273236

    国家自然科学基金 U22A2078

    国家自然科学基金 91833303

    国家自然科学基金 51102001

    中央高校基本科研业务费专项资金 2412022QD035

    吉林省教育厅 JJKH20241426KJ

摘要: 范德华异质结因其优异的电荷分离能力和在调节电子特性方面的显著灵活性而展现出卓越优势。本研究探讨了二维/二维(2D/2D) g-C3N4@BN范德华异质结在光催化合成过氧化氢(H2O2)中的潜在应用。基于该异质结,我们深入研究了三重态激子与单线态氧之间的能量转移过程,强调了催化剂结构对电荷分离和三重态电子稳定生成的重要性。通过构建电荷转移路径,异质结内的内置电场有效驱动了电荷载流子的定向迁移,显著延长了其寿命。我们采用了两种修饰策略来调控催化剂的激发态电子特性,包括调整层间排列以增强电荷传输能力,以及卤素修饰以提高材料的光响应性。实验验证表明,与CN相比,代表性的氯化-CN@BN有效抑制了激子复合,将激发态载流子的寿命延长了3.52倍。此外,H2O2的光催化产率提高了2.73倍。本研究为开发新型光催化剂提供了理论基础,并启发了从氧气直接合成H2O2的催化剂设计。

English

    1. [1]

      F. He, Y. Lu, Y. Wu, S. Wang, Y. Zhang, P. Dong, Y. Wang, C. Zhao, S. Wang, J. Zhang, Adv. Mater. 36 (2023), 2307490, https://doi.org/10.1002/adma.202307490. doi: 10.1002/adma.202307490

    2. [2]

      G. Chen, Z. Zheng, W. Zhong, G. Wang, X. Wu, Acta Phys. -Chim. Sin. 40 (2024), 2406021, https://doi.org/10.3866/PKU.WHXB202406021. doi: 10.3866/PKU.WHXB202406021

    3. [3]

      W. Liu, P. Wang, J. Chen, X. Gao, H. Che, B. Liu, Y. Ao, Adv. Funct. Mater. 32 (2022), 2205119, https://doi.org/10.1002/adfm.202205119. doi: 10.1002/adfm.202205119

    4. [4]

      S. Qu, H. Wu, Y.H. Ng, Adv. Energy Mater. 13 (2023), 2301047, https://doi.org/10.1002/aenm.202301047. doi: 10.1002/aenm.202301047

    5. [5]

      T.C. Khiem, N.N. Huy, E. Kwon, J. Lee, W.D. Oh, X. Duan, S. Wacławek, H. Wang, G. Lisak, F. Ghanbari, K. -Y.A. Lin, Appl. Catal., B 343 (2024), 123490, https://doi.org/10.1016/j.apcatb.2023.123490. doi: 10.1016/j.apcatb.2023.123490

    6. [6]

      P. Dong, H. Lv, R. Luo, Z. Li, X. Wu, J. Lei, Chem. Eng. J. 461 (2023), 141817, https://doi.org/10.1016/j.cej.2023.141817. doi: 10.1016/j.cej.2023.141817

    7. [7]

      W. Zhang, W. Huang, J. Jin, Y. Gan, S. Zhang, Appl. Catal., B 292 (2021), 120197, https://doi.org/10.1016/j.apcatb.2021.120197. doi: 10.1016/j.apcatb.2021.120197

    8. [8]

      D. Li, K. Wang, J. Tang, Y. Zhao, H. Elhaes, M. Tahir, M.A. Ibrahim, Y. Li, Appl. Surf. Sci. 613 (2023), 155991, https://doi.org/10.1016/j.apsusc.2022.155991. doi: 10.1016/j.apsusc.2022.155991

    9. [9]

      A.K. Pal, A. Datta, J. Chem. Phys. 160 (2024), 164720, https://doi.org/10.1063/5.0196557. doi: 10.1063/5.0196557

    10. [10]

      S. Jin, W. Shao, X. Luo, H. Wang, X. Sun, X. He, X. Zhang, Y. Xie, Adv. Mater. 34 (2022), 2206516, https://doi.org/10.1002/adma.202206516. doi: 10.1002/adma.202206516

    11. [11]

      G. Li, T. Qiu, Q. Wu, Z. Zhao, L. Wang, Y. Li, Y. Geng, H. Tan, Angew. Chem. Int. Ed. 63 (2024), e202405396, https://doi.org/10.1002/anie.202405396. doi: 10.1002/anie.202405396

    12. [12]

      Y. Shen, Y. Yao, C. Zhu, J. Wu, L. Chen, Q. Fang, S. Song, Chem. Eng. J. 475 (2023), 146383, https://doi.org/10.1016/j.cej.2023.146383. doi: 10.1016/j.cej.2023.146383

    13. [13]

      X. Zeng, T. Wang, Z. Wang, M. Tebyetekerwa, Y. Liu, Z. Liu, G. Wang, A.A. Wibowo, G. Pierens, Q. Gu, X. Zhang, ACS Catal. 14 (2024), 9955, https://doi.org/10.1021/acscatal.4c01591. doi: 10.1021/acscatal.4c01591

    14. [14]

      J. Cheng, S. Wan, S. Cao, Angew. Chem. Int. Ed. 62 (2023), e202310476, https://doi.org/10.1002/anie.202310476. doi: 10.1002/anie.202310476

    15. [15]

      S. Pullen, Chem Catal. 3 (2023), 100861, https://doi.org/10.1016/j.checat.2023.100861. doi: 10.1016/j.checat.2023.100861

    16. [16]

      M. Schmitz, M. -S. Bertrams, A.C. Sell, F. Glaser, C. Kerzig, J. Am. Chem. Soc. 146 (2024), 25799, https://doi.org/10.1021/jacs.4c08551. doi: 10.1021/jacs.4c08551

    17. [17]

      H. Yersin, R. Czerwieniec, U. Monkowius, R. Ramazanov, R. Valiev, M.Z. Shafikov, W. -M. Kwok, C. Ma, Coord. Chem. Rev. 478 (2023), 214975, https://doi.org/10.1016/j.ccr.2022.214975. doi: 10.1016/j.ccr.2022.214975

    18. [18]

      J.A. Kübler, B. Pfund, O.S. Wenger, JACS Au 2 (2022), 2367, https://doi.org/10.1021/jacsau.2c00442. doi: 10.1021/jacsau.2c00442

    19. [19]

      T. Jin, S. He, Y. Zhu, E. Egap, T. Lian, Nano Lett. 22 (2022), 3897, https://doi.org/10.1021/acs.nanolett.2c00017. doi: 10.1021/acs.nanolett.2c00017

    20. [20]

      Y. Zhao, X. Yu, T. Bao, Y. Guo, Y. Su, J. Zhao, Nano Lett. 24 (2024), 13534, https://doi.org/10.1021/acs.nanolett.4c02986. doi: 10.1021/acs.nanolett.4c02986

    21. [21]

      P. Li, Y. Cui, Z. Wang, G. Dawson, C. Shao, K. Dai, Acta Phys. -Chim. Sin. 41 (2025), 100065, https://doi.org/10.1016/j.actphy.2025.100065. doi: 10.1016/j.actphy.2025.100065

    22. [22]

      Y. Liu, C. Chen, G. Dawson, J. Zhang, C. Shao, K. Dai, J. Mater. Sci. Technol. 233 (2025), 10, https://doi.org/10.1016/j.jmst.2024.12.094. doi: 10.1016/j.jmst.2024.12.094

    23. [23]

      Z. Wang, S. Hu, F. Deng, H. Shi, X. Li, S. Zhang, J. Zou, X. Luo, Sep. Purif. Technol. 330 (2024), 125287, https://doi.org/10.1016/j.seppur.2023.125287. doi: 10.1016/j.seppur.2023.125287

    24. [24]

      Z. Wang, B. Cheng, L. Zhang, J. Yu, Y. Li, S. Wageh, A.A. Al-Ghamdi, Chin. J. Catal. 43 (2022), 1657, https://doi.org/10.1016/S1872-2067(21)64010-X. doi: 10.1016/S1872-2067(21)64010-X

    25. [25]

      H. Zhang, C. Shao, Z. Wang, J. Zhang, K. Dai, J. Mater. Sci. Technol. 195 (2024), 146, https://doi.org/10.1016/j.jmst.2023.11.081. doi: 10.1016/j.jmst.2023.11.081

    26. [26]

      Y. Cui, J. Zhang, H. Chu, L. Sun, K. Dai, Acta Phys. -Chim. Sin. 40 (2024), 2405016, https://doi.org/10.3866/PKU.WHXB202405016. doi: 10.3866/PKU.WHXB202405016

    27. [27]

      K. Dong, C. Shen, R. Yan, Y. Liu, C. Zhuang, S. Li, Acta Phys. -Chim. Sin. 40 (2024), 2310013, https://doi.org/10.3866/PKU.WHXB202310013. doi: 10.3866/PKU.WHXB202310013

    28. [28]

      Z. Fang, J. Qi, Y. Xu, Y. Liu, T. Qi, L. Xing, Q. Dai, L. Wang, Chem. Eng. J. 441 (2022), 136051, https://doi.org/10.1016/j.cej.2022.136051. doi: 10.1016/j.cej.2022.136051

    29. [29]

      A. Savateev, N.V. Tarakina, V. Strauss, T. Hussain, K. ten Brummelhuis, J.M. Sánchez Vadillo, Y. Markushyna, S. Mazzanti, A.P. Tyutyunnik, R. Walczak, M. Oschatz, D.M. Guldi, A. Karton, M. Antonietti, Angew. Chem. Int. Ed. 59 (2020), 15061, https://doi.org/10.1002/anie.202004747. doi: 10.1002/anie.202004747

    30. [30]

      S. Liang, Q. Wu, C. Wang, R. Wang, D. Li, Y. Xing, D. Jin, H. Ma, Y. Liu, P. Zhang, X. Zhang, Proc. Natl. Acad. Sci 121 (2024), e2410504121, https://doi.org/10.1073/pnas.2410504121. doi: 10.1073/pnas.2410504121

    31. [31]

      Y. Luo, H. Zheng, X. Li, F. Li, H. Tang, X. She, Acta Phys. -Chim. Sin. 41 (2025), 100052, https://doi.org/10.1016/j.actphy.2025.100052. doi: 10.1016/j.actphy.2025.100052

    32. [32]

      C. You, C. Wang, M. Cai, Y. Liu, B. Zhu, S. Li, Acta Phys. -Chim. Sin. 40 (2024), 2407014, https://doi.org/10.3866/PKU.WHXB202407014. doi: 10.3866/PKU.WHXB202407014

    33. [33]

      M. Cai, Y. Liu, K. Dong, X. Chen, S. Li, Chin. J. Catal. 52 (2023), 239, https://doi.org/10.1016/S1872-2067(23)64496-1. doi: 10.1016/S1872-2067(23)64496-1

    34. [34]

      J. Zhang, G. Yu, C. Yang, S. Li, Curr. Opin. Chem. Eng. 45 (2024), 101040, https://doi.org/10.1016/j.coche.2024.101040. doi: 10.1016/j.coche.2024.101040

    35. [35]

      K. Li, C. Liu, J. Li, G. Wang, K. Wang, Acta Phys. -Chim. Sin. 40 (2024), 2403009, https://doi.org/10.3866/PKU.WHXB202403009. doi: 10.3866/PKU.WHXB202403009

    36. [36]

      W. Zhong, D. Zheng, Y. Ou, A. Meng, Y. Su, Acta Phys. -Chim. Sin. 40 (2024), 2406005, https://doi.org/10.3866/PKU.WHXB202406005. doi: 10.3866/PKU.WHXB202406005

    37. [37]

      Z. Xiu, W. Mu, X. Zhou, X. Han, Chin. J. Catal. 65 (2024), 126, https://doi.org/10.1016/S1872-2067(24)60114-2. doi: 10.1016/S1872-2067(24)60114-2

    38. [38]

      L. Zhang, J. Zhang, J. Yu, H. García, Nat. Rev. Chem. 9 (2025), 328, https://doi.org/10.1038/s41570-025-00698-3. doi: 10.1038/s41570-025-00698-3

    39. [39]

      L. Acharya, S.P. Pattnaik, A. Behera, R. Acharya, K. Parida, Inorg. Chem. 60 (2021), 5021, https://doi.org/10.1021/acs.inorgchem.1c00062. doi: 10.1021/acs.inorgchem.1c00062

    40. [40]

      H. Sohrabi, O. Arbabzadeh, M. Falaki, V. Vatanpour, M.R. Majidi, N. Kudaibergenov, S.W. Joo, A. Khataee, Surf. Interfaces 41 (2023), 103152, https://doi.org/10.1016/j.surfin.2023.103152. doi: 10.1016/j.surfin.2023.103152

    41. [41]

      C. Chen, J. Zhang, H. Chu, L. Sun, G. Dawson, K. Dai, Chin. J. Catal. 63 (2024), 81, https://doi.org/10.1016/S1872-2067(24)60072-0. doi: 10.1016/S1872-2067(24)60072-0

    42. [42]

      T. Yang, J. Wang, Z. Wang, J. Zhang, K. Dai, Chin. J. Catal. 58 (2024), 157, https://doi.org/10.1016/S1872-2067(23)64607-8. doi: 10.1016/S1872-2067(23)64607-8

    43. [43]

      L. Jiang, X. Yuan, G. Zeng, Z. Wu, J. Liang, X. Chen, L. Leng, H. Wang, H. Wang, Appl. Catal., B. 221 (2018), 715, https://doi.org/10.1016/j.apcatb.2017.09.059. doi: 10.1016/j.apcatb.2017.09.059

    44. [44]

      Q. Wu, Y. Lin, Y. Ou, C. Wang, H. Ma, R. Wang, Y. Li, X. Zhang, J. Mater. Chem. A 12 (2024), 14302, https://doi.org/10.1039/D4TA02059F. doi: 10.1039/D4TA02059F

    45. [45]

      H. He, Z. Wang, J. Zhang, C. Shao, K. Dai, K. Fan, Adv. Funct. Mater. 34 (2024), 2315426, https://doi.org/10.1002/adfm.202315426. doi: 10.1002/adfm.202315426

    46. [46]

      M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, G.A. Petersson, H. Nakatsuji, et al. Gaussian 16 Rev. B. 01[Z]. Wallingford, CT. 2016

    47. [47]

      Z. Liu, X. Wang, T. Lu, A. Yuan, X. Yan, Carbon 187 (2022), 78, https://doi.org/10.1016/j.carbon.2021.11.005. doi: 10.1016/j.carbon.2021.11.005

    48. [48]

      T. Lu, F. Chen, J. Comput. Chem. 33 (2012), 580, https://doi.org/10.1002/jcc.22885. doi: 10.1002/jcc.22885

    49. [49]

      F. Neese, WIREs Comput. Mol. Sci. 2 (2012), 73, https://doi.org/10.1002/wcms.81. doi: 10.1002/wcms.81

    50. [50]

      T. Lu, Q. Chen, J. Comput. Chem. 43 (2022), 539, https://doi.org/10.1002/jcc.26812. doi: 10.1002/jcc.26812

    51. [51]

      R.A. Marcus, N. Sutin, Biochim. Biophys. Acta 811 (1985), 265. doi: 10.1016/0304-4173(85)90014-X

    52. [52]

      A.A. Peterson, F. Abild-Pedersen, F. Studt, J. Rossmeisl, J.K. Nrskov, Energy Environ. Sci. 3 (2010), 1311, https://doi.org/10.1039/C0EE00071J. doi: 10.1039/c0ee00071j

    53. [53]

      X. Wang, B. Liu, S. Ma, Y. Zhang, L. Wang, G. Zhu, W. Huang, S. Wang, Nat. Commun. 15 (2024), 2600, https://doi.org/10.1038/s41467-024-47022-z. doi: 10.1038/s41467-024-47022-z

    54. [54]

      S. Guo, Y. Park, E. Park, S. Jin, L. Chen, Y.M. Jung, Angew. Chem., Int. Ed. 62 (2023), e202306709, https://doi.org/10.1002/anie.202306709. doi: 10.1002/anie.202306709

    55. [55]

      C.A. Ullrich, Z.-H. Yang, Braz. J. Phys. 44 (2014), 154, https://doi.org/10.1007/s13538-013-0141-2. doi: 10.1007/s13538-013-0141-2

    56. [56]

      Z. Liu, T. Lu, Q. Chen, Carbon 165 (2020), 461, https://doi.org/10.1016/j.carbon.2020.05.023. doi: 10.1016/j.carbon.2020.05.023

    57. [57]

      C.A. Guido, P. Cortona, B. Mennucci, C. Adamo, J. Chem. Theory Comput. 9 (2013), 3118, https://doi.org/10.1021/ct400337e. doi: 10.1021/ct400337e

    58. [58]

      R.A. House, G.J. Rees, K. McColl, J.-J. Marie, M. Garcia-Fernandez, A. Nag, K.-J. Zhou, S. Cassidy, B.J. Morgan, M. Saiful Islam, P.G. Bruce, Nat. Energy 8 (2023), 351, https://doi.org/10.1038/s41560-023-01211-0. doi: 10.1038/s41560-023-01211-0

    59. [59]

      C. Duan, J. Li, C. Han, D. Ding, H. Yang, Y. Wei, H. Xu, Chem. Mater. 28 (2016), 5667, https://doi.org/10.1021/acs.chemmater.6b01691. doi: 10.1021/acs.chemmater.6b01691

    60. [60]

      T.J. Penfold, J. Phys. Chem. C 119 (2015), 13535, https://doi.org/10.1021/acs.jpcc.5b03530. doi: 10.1021/acs.jpcc.5b03530

    61. [61]

      Y. Yang, X. Zhou, M. Gu, B. Cheng, Z. Wu, J. Zhang, Acta Phys. -Chim. Sin. 41 (2025), 100064, https://doi.org/10.1016/j.actphy.2025.100064. doi: 10.1016/j.actphy.2025.100064

    62. [62]

      J. Yan, J. Zhang, J. Mater. Sci. Technol. 193 (2024), 18, https://doi.org/10.1016/j.jmst.2023.12.054. doi: 10.1016/j.jmst.2023.12.054

  • 加载中
计量
  • PDF下载量:  0
  • 文章访问数:  9
  • HTML全文浏览量:  2
文章相关
  • 发布日期:  2025-09-15
  • 收稿日期:  2025-03-31
  • 接受日期:  2025-05-25
  • 修回日期:  2025-05-25
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章