
Citation: Qi Wu, Changhua Wang, Yingying Li, Xintong Zhang. Enhanced photocatalytic synthesis of H2O2 by triplet electron transfer at g-C3N4@BN van der Waals heterojunction interface[J]. Acta Physico-Chimica Sinica, 2025, 41(9): 100107. doi: 10.1016/j.actphy.2025.100107

增强g-C3N4@BN范德华异质结界面上的三重态电子转移增强光催化合成H2O2
-
关键词:
- 2D/2D异质结界面
- / 光催化合成H2O2
- / 三重态电子转移
- / 能量转移
English
Enhanced photocatalytic synthesis of H2O2 by triplet electron transfer at g-C3N4@BN van der Waals heterojunction interface

-
-
[1]
F. He, Y. Lu, Y. Wu, S. Wang, Y. Zhang, P. Dong, Y. Wang, C. Zhao, S. Wang, J. Zhang, Adv. Mater. 36 (2023), 2307490, https://doi.org/10.1002/adma.202307490. doi: 10.1002/adma.202307490
-
[2]
G. Chen, Z. Zheng, W. Zhong, G. Wang, X. Wu, Acta Phys. -Chim. Sin. 40 (2024), 2406021, https://doi.org/10.3866/PKU.WHXB202406021. doi: 10.3866/PKU.WHXB202406021
-
[3]
W. Liu, P. Wang, J. Chen, X. Gao, H. Che, B. Liu, Y. Ao, Adv. Funct. Mater. 32 (2022), 2205119, https://doi.org/10.1002/adfm.202205119. doi: 10.1002/adfm.202205119
-
[4]
S. Qu, H. Wu, Y.H. Ng, Adv. Energy Mater. 13 (2023), 2301047, https://doi.org/10.1002/aenm.202301047. doi: 10.1002/aenm.202301047
-
[5]
T.C. Khiem, N.N. Huy, E. Kwon, J. Lee, W.D. Oh, X. Duan, S. Wacławek, H. Wang, G. Lisak, F. Ghanbari, K. -Y.A. Lin, Appl. Catal., B 343 (2024), 123490, https://doi.org/10.1016/j.apcatb.2023.123490. doi: 10.1016/j.apcatb.2023.123490
-
[6]
P. Dong, H. Lv, R. Luo, Z. Li, X. Wu, J. Lei, Chem. Eng. J. 461 (2023), 141817, https://doi.org/10.1016/j.cej.2023.141817. doi: 10.1016/j.cej.2023.141817
-
[7]
W. Zhang, W. Huang, J. Jin, Y. Gan, S. Zhang, Appl. Catal., B 292 (2021), 120197, https://doi.org/10.1016/j.apcatb.2021.120197. doi: 10.1016/j.apcatb.2021.120197
-
[8]
D. Li, K. Wang, J. Tang, Y. Zhao, H. Elhaes, M. Tahir, M.A. Ibrahim, Y. Li, Appl. Surf. Sci. 613 (2023), 155991, https://doi.org/10.1016/j.apsusc.2022.155991. doi: 10.1016/j.apsusc.2022.155991
-
[9]
A.K. Pal, A. Datta, J. Chem. Phys. 160 (2024), 164720, https://doi.org/10.1063/5.0196557. doi: 10.1063/5.0196557
-
[10]
S. Jin, W. Shao, X. Luo, H. Wang, X. Sun, X. He, X. Zhang, Y. Xie, Adv. Mater. 34 (2022), 2206516, https://doi.org/10.1002/adma.202206516. doi: 10.1002/adma.202206516
-
[11]
G. Li, T. Qiu, Q. Wu, Z. Zhao, L. Wang, Y. Li, Y. Geng, H. Tan, Angew. Chem. Int. Ed. 63 (2024), e202405396, https://doi.org/10.1002/anie.202405396. doi: 10.1002/anie.202405396
-
[12]
Y. Shen, Y. Yao, C. Zhu, J. Wu, L. Chen, Q. Fang, S. Song, Chem. Eng. J. 475 (2023), 146383, https://doi.org/10.1016/j.cej.2023.146383. doi: 10.1016/j.cej.2023.146383
-
[13]
X. Zeng, T. Wang, Z. Wang, M. Tebyetekerwa, Y. Liu, Z. Liu, G. Wang, A.A. Wibowo, G. Pierens, Q. Gu, X. Zhang, ACS Catal. 14 (2024), 9955, https://doi.org/10.1021/acscatal.4c01591. doi: 10.1021/acscatal.4c01591
-
[14]
J. Cheng, S. Wan, S. Cao, Angew. Chem. Int. Ed. 62 (2023), e202310476, https://doi.org/10.1002/anie.202310476. doi: 10.1002/anie.202310476
-
[15]
S. Pullen, Chem Catal. 3 (2023), 100861, https://doi.org/10.1016/j.checat.2023.100861. doi: 10.1016/j.checat.2023.100861
-
[16]
M. Schmitz, M. -S. Bertrams, A.C. Sell, F. Glaser, C. Kerzig, J. Am. Chem. Soc. 146 (2024), 25799, https://doi.org/10.1021/jacs.4c08551. doi: 10.1021/jacs.4c08551
-
[17]
H. Yersin, R. Czerwieniec, U. Monkowius, R. Ramazanov, R. Valiev, M.Z. Shafikov, W. -M. Kwok, C. Ma, Coord. Chem. Rev. 478 (2023), 214975, https://doi.org/10.1016/j.ccr.2022.214975. doi: 10.1016/j.ccr.2022.214975
-
[18]
J.A. Kübler, B. Pfund, O.S. Wenger, JACS Au 2 (2022), 2367, https://doi.org/10.1021/jacsau.2c00442. doi: 10.1021/jacsau.2c00442
-
[19]
T. Jin, S. He, Y. Zhu, E. Egap, T. Lian, Nano Lett. 22 (2022), 3897, https://doi.org/10.1021/acs.nanolett.2c00017. doi: 10.1021/acs.nanolett.2c00017
-
[20]
Y. Zhao, X. Yu, T. Bao, Y. Guo, Y. Su, J. Zhao, Nano Lett. 24 (2024), 13534, https://doi.org/10.1021/acs.nanolett.4c02986. doi: 10.1021/acs.nanolett.4c02986
-
[21]
P. Li, Y. Cui, Z. Wang, G. Dawson, C. Shao, K. Dai, Acta Phys. -Chim. Sin. 41 (2025), 100065, https://doi.org/10.1016/j.actphy.2025.100065. doi: 10.1016/j.actphy.2025.100065
-
[22]
Y. Liu, C. Chen, G. Dawson, J. Zhang, C. Shao, K. Dai, J. Mater. Sci. Technol. 233 (2025), 10, https://doi.org/10.1016/j.jmst.2024.12.094. doi: 10.1016/j.jmst.2024.12.094
-
[23]
Z. Wang, S. Hu, F. Deng, H. Shi, X. Li, S. Zhang, J. Zou, X. Luo, Sep. Purif. Technol. 330 (2024), 125287, https://doi.org/10.1016/j.seppur.2023.125287. doi: 10.1016/j.seppur.2023.125287
-
[24]
Z. Wang, B. Cheng, L. Zhang, J. Yu, Y. Li, S. Wageh, A.A. Al-Ghamdi, Chin. J. Catal. 43 (2022), 1657, https://doi.org/10.1016/S1872-2067(21)64010-X. doi: 10.1016/S1872-2067(21)64010-X
-
[25]
H. Zhang, C. Shao, Z. Wang, J. Zhang, K. Dai, J. Mater. Sci. Technol. 195 (2024), 146, https://doi.org/10.1016/j.jmst.2023.11.081. doi: 10.1016/j.jmst.2023.11.081
-
[26]
Y. Cui, J. Zhang, H. Chu, L. Sun, K. Dai, Acta Phys. -Chim. Sin. 40 (2024), 2405016, https://doi.org/10.3866/PKU.WHXB202405016. doi: 10.3866/PKU.WHXB202405016
-
[27]
K. Dong, C. Shen, R. Yan, Y. Liu, C. Zhuang, S. Li, Acta Phys. -Chim. Sin. 40 (2024), 2310013, https://doi.org/10.3866/PKU.WHXB202310013. doi: 10.3866/PKU.WHXB202310013
-
[28]
Z. Fang, J. Qi, Y. Xu, Y. Liu, T. Qi, L. Xing, Q. Dai, L. Wang, Chem. Eng. J. 441 (2022), 136051, https://doi.org/10.1016/j.cej.2022.136051. doi: 10.1016/j.cej.2022.136051
-
[29]
A. Savateev, N.V. Tarakina, V. Strauss, T. Hussain, K. ten Brummelhuis, J.M. Sánchez Vadillo, Y. Markushyna, S. Mazzanti, A.P. Tyutyunnik, R. Walczak, M. Oschatz, D.M. Guldi, A. Karton, M. Antonietti, Angew. Chem. Int. Ed. 59 (2020), 15061, https://doi.org/10.1002/anie.202004747. doi: 10.1002/anie.202004747
-
[30]
S. Liang, Q. Wu, C. Wang, R. Wang, D. Li, Y. Xing, D. Jin, H. Ma, Y. Liu, P. Zhang, X. Zhang, Proc. Natl. Acad. Sci 121 (2024), e2410504121, https://doi.org/10.1073/pnas.2410504121. doi: 10.1073/pnas.2410504121
-
[31]
Y. Luo, H. Zheng, X. Li, F. Li, H. Tang, X. She, Acta Phys. -Chim. Sin. 41 (2025), 100052, https://doi.org/10.1016/j.actphy.2025.100052. doi: 10.1016/j.actphy.2025.100052
-
[32]
C. You, C. Wang, M. Cai, Y. Liu, B. Zhu, S. Li, Acta Phys. -Chim. Sin. 40 (2024), 2407014, https://doi.org/10.3866/PKU.WHXB202407014. doi: 10.3866/PKU.WHXB202407014
-
[33]
M. Cai, Y. Liu, K. Dong, X. Chen, S. Li, Chin. J. Catal. 52 (2023), 239, https://doi.org/10.1016/S1872-2067(23)64496-1. doi: 10.1016/S1872-2067(23)64496-1
-
[34]
J. Zhang, G. Yu, C. Yang, S. Li, Curr. Opin. Chem. Eng. 45 (2024), 101040, https://doi.org/10.1016/j.coche.2024.101040. doi: 10.1016/j.coche.2024.101040
-
[35]
K. Li, C. Liu, J. Li, G. Wang, K. Wang, Acta Phys. -Chim. Sin. 40 (2024), 2403009, https://doi.org/10.3866/PKU.WHXB202403009. doi: 10.3866/PKU.WHXB202403009
-
[36]
W. Zhong, D. Zheng, Y. Ou, A. Meng, Y. Su, Acta Phys. -Chim. Sin. 40 (2024), 2406005, https://doi.org/10.3866/PKU.WHXB202406005. doi: 10.3866/PKU.WHXB202406005
-
[37]
Z. Xiu, W. Mu, X. Zhou, X. Han, Chin. J. Catal. 65 (2024), 126, https://doi.org/10.1016/S1872-2067(24)60114-2. doi: 10.1016/S1872-2067(24)60114-2
-
[38]
L. Zhang, J. Zhang, J. Yu, H. García, Nat. Rev. Chem. 9 (2025), 328, https://doi.org/10.1038/s41570-025-00698-3. doi: 10.1038/s41570-025-00698-3
-
[39]
L. Acharya, S.P. Pattnaik, A. Behera, R. Acharya, K. Parida, Inorg. Chem. 60 (2021), 5021, https://doi.org/10.1021/acs.inorgchem.1c00062. doi: 10.1021/acs.inorgchem.1c00062
-
[40]
H. Sohrabi, O. Arbabzadeh, M. Falaki, V. Vatanpour, M.R. Majidi, N. Kudaibergenov, S.W. Joo, A. Khataee, Surf. Interfaces 41 (2023), 103152, https://doi.org/10.1016/j.surfin.2023.103152. doi: 10.1016/j.surfin.2023.103152
-
[41]
C. Chen, J. Zhang, H. Chu, L. Sun, G. Dawson, K. Dai, Chin. J. Catal. 63 (2024), 81, https://doi.org/10.1016/S1872-2067(24)60072-0. doi: 10.1016/S1872-2067(24)60072-0
-
[42]
T. Yang, J. Wang, Z. Wang, J. Zhang, K. Dai, Chin. J. Catal. 58 (2024), 157, https://doi.org/10.1016/S1872-2067(23)64607-8. doi: 10.1016/S1872-2067(23)64607-8
-
[43]
L. Jiang, X. Yuan, G. Zeng, Z. Wu, J. Liang, X. Chen, L. Leng, H. Wang, H. Wang, Appl. Catal., B. 221 (2018), 715, https://doi.org/10.1016/j.apcatb.2017.09.059. doi: 10.1016/j.apcatb.2017.09.059
-
[44]
Q. Wu, Y. Lin, Y. Ou, C. Wang, H. Ma, R. Wang, Y. Li, X. Zhang, J. Mater. Chem. A 12 (2024), 14302, https://doi.org/10.1039/D4TA02059F. doi: 10.1039/D4TA02059F
-
[45]
H. He, Z. Wang, J. Zhang, C. Shao, K. Dai, K. Fan, Adv. Funct. Mater. 34 (2024), 2315426, https://doi.org/10.1002/adfm.202315426. doi: 10.1002/adfm.202315426
-
[46]
M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, G.A. Petersson, H. Nakatsuji, et al. Gaussian 16 Rev. B. 01[Z]. Wallingford, CT. 2016
-
[47]
Z. Liu, X. Wang, T. Lu, A. Yuan, X. Yan, Carbon 187 (2022), 78, https://doi.org/10.1016/j.carbon.2021.11.005. doi: 10.1016/j.carbon.2021.11.005
-
[48]
T. Lu, F. Chen, J. Comput. Chem. 33 (2012), 580, https://doi.org/10.1002/jcc.22885. doi: 10.1002/jcc.22885
-
[49]
F. Neese, WIREs Comput. Mol. Sci. 2 (2012), 73, https://doi.org/10.1002/wcms.81. doi: 10.1002/wcms.81
-
[50]
T. Lu, Q. Chen, J. Comput. Chem. 43 (2022), 539, https://doi.org/10.1002/jcc.26812. doi: 10.1002/jcc.26812
-
[51]
R.A. Marcus, N. Sutin, Biochim. Biophys. Acta 811 (1985), 265. doi: 10.1016/0304-4173(85)90014-X
-
[52]
A.A. Peterson, F. Abild-Pedersen, F. Studt, J. Rossmeisl, J.K. Nrskov, Energy Environ. Sci. 3 (2010), 1311, https://doi.org/10.1039/C0EE00071J. doi: 10.1039/c0ee00071j
-
[53]
X. Wang, B. Liu, S. Ma, Y. Zhang, L. Wang, G. Zhu, W. Huang, S. Wang, Nat. Commun. 15 (2024), 2600, https://doi.org/10.1038/s41467-024-47022-z. doi: 10.1038/s41467-024-47022-z
-
[54]
S. Guo, Y. Park, E. Park, S. Jin, L. Chen, Y.M. Jung, Angew. Chem., Int. Ed. 62 (2023), e202306709, https://doi.org/10.1002/anie.202306709. doi: 10.1002/anie.202306709
-
[55]
C.A. Ullrich, Z.-H. Yang, Braz. J. Phys. 44 (2014), 154, https://doi.org/10.1007/s13538-013-0141-2. doi: 10.1007/s13538-013-0141-2
-
[56]
Z. Liu, T. Lu, Q. Chen, Carbon 165 (2020), 461, https://doi.org/10.1016/j.carbon.2020.05.023. doi: 10.1016/j.carbon.2020.05.023
-
[57]
C.A. Guido, P. Cortona, B. Mennucci, C. Adamo, J. Chem. Theory Comput. 9 (2013), 3118, https://doi.org/10.1021/ct400337e. doi: 10.1021/ct400337e
-
[58]
R.A. House, G.J. Rees, K. McColl, J.-J. Marie, M. Garcia-Fernandez, A. Nag, K.-J. Zhou, S. Cassidy, B.J. Morgan, M. Saiful Islam, P.G. Bruce, Nat. Energy 8 (2023), 351, https://doi.org/10.1038/s41560-023-01211-0. doi: 10.1038/s41560-023-01211-0
-
[59]
C. Duan, J. Li, C. Han, D. Ding, H. Yang, Y. Wei, H. Xu, Chem. Mater. 28 (2016), 5667, https://doi.org/10.1021/acs.chemmater.6b01691. doi: 10.1021/acs.chemmater.6b01691
-
[60]
T.J. Penfold, J. Phys. Chem. C 119 (2015), 13535, https://doi.org/10.1021/acs.jpcc.5b03530. doi: 10.1021/acs.jpcc.5b03530
-
[61]
Y. Yang, X. Zhou, M. Gu, B. Cheng, Z. Wu, J. Zhang, Acta Phys. -Chim. Sin. 41 (2025), 100064, https://doi.org/10.1016/j.actphy.2025.100064. doi: 10.1016/j.actphy.2025.100064
-
[62]
J. Yan, J. Zhang, J. Mater. Sci. Technol. 193 (2024), 18, https://doi.org/10.1016/j.jmst.2023.12.054. doi: 10.1016/j.jmst.2023.12.054
-
[1]
-

计量
- PDF下载量: 0
- 文章访问数: 9
- HTML全文浏览量: 2