Citation: Qianli Ma, Tianbing Song, Tianle He, Xirong Zhang, Huanming Xiong. Sulfur-doped carbon dots: a novel bifunctional electrolyte additive for high-performance aqueous zinc-ion batteries[J]. Acta Physico-Chimica Sinica, ;2025, 41(9): 100106. doi: 10.1016/j.actphy.2025.100106 shu

Sulfur-doped carbon dots: a novel bifunctional electrolyte additive for high-performance aqueous zinc-ion batteries

  • Corresponding author: Huanming Xiong, hmxiong@fudan.edu.cn
  • Received Date: 16 April 2025
    Revised Date: 13 May 2025
    Accepted Date: 22 May 2025

    Fund Project: the National Natural Science Foundation of China U24A20565the National Natural Science Foundation of China 21975048

  • Aqueous zinc-ion batteries (AZIBs) have gained considerable attention as next-generation energy storage devices due to their inherent safety, environmental friendliness, and cost-effectiveness. However, their widespread application is severely hampered by uncontrolled zinc dendrite growth and detrimental side reactions (e.g., hydrogen evolution, corrosion, and passivation), which lead to reduced Coulombic efficiency and shortened cycle life. Current strategies to improve zinc anode stability mainly focus on artificial interface coatings, electrode structure design, and electrolyte optimization. Among these approaches, electrolyte additive engineering is considered the most promising for practical applications due to its simplicity, low cost, and excellent scalability. Nevertheless, conventional additives (including metal ions, polymers, and surfactants) typically address only single issues (either dendrite suppression or side reaction mitigation), failing to achieve synergistic effects. In this work, we developed sulfur-doped carbon dots (S-CDs) as a novel bifunctional electrolyte additive to significantly enhance AZIB performance. The carbon dot additive was synthesized via a facile calcination method, followed by systematic characterization of its structure and properties using methods such as Fourier transform infrared spectroscopy (FT-IR), X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), and density functional theory (DFT) calculations. Comprehensive electrochemical evaluations were conducted to investigate the influence of S-CDs on zinc deposition behavior and overall battery performance. Experimental results demonstrate the successful synthesis of sulfur-doped carbon dots with abundant surface functional groups. During battery operation, the strong binding affinity between S-CDs and Zn2+ effectively reconstructs the Zn2+ solvation shell, reducing water molecule content and thereby minimizing electrode corrosion and side reactions caused by interfacial active water molecules. Moreover, the S-CDs induce the formation of stable (002) crystallographic planes that continuously renew during plating/stripping cycles, with particularly pronounced effects under high current densities, significantly enhancing the structural stability of the electrode. The synergistic effect of these dual functions leads to remarkable improvement in zinc electrode performance and ultimately endows the battery with ultra-long cycling life. Benefiting from the positive effects of the carbon dot additive, the symmetric cell achieves exceptional stability for nearly 2000 h at a high current density of 10 mA∙cm−2, far outperforming conventional electrolyte systems. Furthermore, both Zn||NH4V4O10 and Zn||MnO2 full cells exhibit superior electrochemical performance and significantly enhanced cycling stability, confirming the excellent compatibility of the carbon dot additive with various cathode materials. This study provides novel insights and fundamental theoretical guidance for developing high-performance AZIBs, representing a significant advancement in sustainable energy storage technologies.
  • 加载中
    1. [1]

      Y. H. Li, H. Yao, X. J. Liu, X. T. Yang, D. Yuan, Nano Res. 16 (2023) 9179-9194, https://doi.org/10.1007/s12274-023-5637-7.  doi: 10.1007/s12274-023-5637-7

    2. [2]

      J. D. Huang, Y. H. Zhu, Y. Feng, Y. H. Han, Z. Y. Gu, R.X. Liu, D.Y. Yang, K. Chen, X. Y. Zhang, W. Sun; et al., Acta Phys. -Chim. Sin. 38 (2022) 2208008, https://doi.org/10.3866/PKU.WHXB202208008.  doi: 10.3866/PKU.WHXB202208008

    3. [3]

      M. Song, H. Tan, D. L. Chao, H. J. Fan, Adv. Funct. Mater. 28 (2018) 1802564, https://doi.org/10.1002/adfm.201802564.  doi: 10.1002/adfm.201802564

    4. [4]

      Z. H. Yi, G. Y. Chen, F. Hou, L. Q. Wang, J. Liang, Adv. Energy Mater. 11 (2020) 2003065, https://doi.org/10.1002/aenm.202003065.  doi: 10.1002/aenm.202003065

    5. [5]

      B. Qiu, L. Z. Xie, G. Q. Zhang, K. J. Cheng, Z. W. Lin, W. Liu, C. X. He, P. X. Zhang, H. W. Mi, Chem. Eng. J. 449 (2022) 137843, https://doi.org/10.1016/j.cej.2022.137843.  doi: 10.1016/j.cej.2022.137843

    6. [6]

      B. Qiu, K. Y. Liang, W. Huang, G. Q. Zhang, C. X. He, P. X. Zhang, H. W. Mi, Adv. Energy Mater. 13 (2023) 2301193, https://doi.org/10.1002/aenm.202301193.  doi: 10.1002/aenm.202301193

    7. [7]

      Z. Zhao, R. Wang, C. Peng, W. Chen, T. Wu, B. Hu, W. Weng, Y. Yao, J. Zeng, Z. Chen, P. Liu, Y. Liu, G. Li, J. Guo, H. Lu, Z. Guo, Nat. Commun. 12 (2021) 6606, https://doi.org/10.1038/s41467-021-26947-9.  doi: 10.1038/s41467-021-26947-9

    8. [8]

      X. Wang, J. P. Meng, X. G. Lin, Y. D. Yang, S. Zhou, Y. P. Wang, A. Q. Pan, Adv. Funct. Mater. 31 (2021) 2106114, https://doi.org/10.1002/adfm.202106114.  doi: 10.1002/adfm.202106114

    9. [9]

      Z. Yi, J. Liu, S. Tan, Z. Sang, J. Mao, L. Yin, X. Liu, L. Wang, F. Hou, S. X. Dou, H. Cheng, J. Liang, Adv. Mater. 34 (2022) e2203835, https://doi.org/10.1002/adma.202203835.  doi: 10.1002/adma.202203835

    10. [10]

      H. Lu, Q. Jin, X. Jiang, Z. M. Dang, D. Zhang, Y. Jin, Small 18 (2022) e2200131, https://doi.org/10.1002/smll.202200131.  doi: 10.1002/smll.202200131

    11. [11]

      Y. E. Qi, Y. Y. Xia, Acta Phys. -Chim. Sin. 39 (2023), https://doi.org/10.3866/Pku.Whxb202205045.  doi: 10.3866/Pku.Whxb202205045

    12. [12]

      X.C. Liang, X.F. Chen, Z.X. Zhai, R.S. Huang, T.Q. Yu, S.B. Yin, Chem. Eng. J. 480 (2024) 148040, https://doi.org/10.1016/j.cej.2023.148040.  doi: 10.1016/j.cej.2023.148040

    13. [13]

      J. Cao, M. Sun, D. Zhang, Y. Zhang, C. Yang, D. Luo, X. Yang, X. Zhang, J. Qin, B. Huang, Z. Zeng, J. Lu, ACS Nano 18 (2024) 16610, https://doi.org/10.1021/acsnano.4c00288.  doi: 10.1021/acsnano.4c00288

    14. [14]

      R. X. Zhang, Y. X. Cui, L. L. Liu, S. M. Chen, J. Power Sources 602 (2024) 234351, https://doi.org/10.1016/j.jpowsour.2024.234351.  doi: 10.1016/j.jpowsour.2024.234351

    15. [15]

      C. Xia, S. Zhu, T. Feng, M. Yang, B. Yang, Adv. Sci. 6 (2019) 1901316, https://doi.org/10.1002/advs.201901316.  doi: 10.1002/advs.201901316

    16. [16]

      L. Ai, R. Shi, J. Yang, T. Zhang, S. Lu, Small 17 (2021) e2007523, https://doi.org/10.1002/smll.202007523.  doi: 10.1002/smll.202007523

    17. [17]

      J. Gao, M. M. Zhu, H. Huang, Y. Liu, Z. H. Kang, Inorg. Chem. Front. 4 (2017) 1963, https://doi.org/10.1039/c7qi00614d.  doi: 10.1039/C7QI00614D

    18. [18]

      M. G. Yi, M. J. Jing, Y. C. Yang, Y. J. Huang, G. Q. Zou, T. J. Wu, H. S. Hou, X. B. Ji, Adv. Funct. Mater. 34 (2024) 2400001, https://doi.org/10.1002/adfm.202400001.  doi: 10.1002/adfm.202400001

    19. [19]

      R. T. Guo, L. Li, B. W. Wang, Y. G. Xiang, G. Q. Zou, Y. R. Zhu, H. S. Hou, X. B. Ji, Energy Stor. Mater. 37 (2021) 8, https://doi.org/10.1016/j.ensm.2021.01.020.  doi: 10.1016/j.ensm.2021.01.020

    20. [20]

      H. Zhang, R. T. Guo, S. Li, C. Liu, H. Y. Li, G. Q. Zou, J. G. Hu, H. S. Hou, X. B. Ji, Nano Energy 92 (2022) 106752, https://doi.org/10.1016/j.nanoen.2021.106752.  doi: 10.1016/j.nanoen.2021.106752

    21. [21]

      W. Zhang, M. Dong, K. Jiang, D. Yang, X. Tan, S. Zhai, R. Feng, N. Chen, G. King, H. Zhang, H. Zeng, H. Li, M. Antonietti, Z. Li, Nat. Commun. 13 (2022) 5348, https://doi.org/10.1038/s41467-022-32955-0.  doi: 10.1038/s41467-022-32955-0

    22. [22]

      T. B. Song, Z. H. Huang, X. R. Zhang, J. W. Ni, H. M. Xiong, Small 19 (2023) e2205558, https://doi.org/10.1002/smll.202205558.  doi: 10.1002/smll.202205558

    23. [23]

      Q. Luo, H. Ding, X. Hu, J. Xu, A. Sadat, M. Xu, F. L. Primo, A. C. Tedesco, H. Zhang, H. Bi, Dalton Trans. 49 (2020) 6950, https://doi.org/10.1039/d0dt01187h.  doi: 10.1039/d0dt01187h

    24. [24]

      S. J. Mohammed, K. M. Omer, F. E. Hawaiz, RSC Adv. 13 (2023) 14340, https://doi.org/10.1039/d3ra01646c.  doi: 10.1039/D3RA01646C

    25. [25]

      P. P. Zhu, Z. Cheng, L. L. Du, Q. Chen, K. J. Tan, Langmuir 34 (2018) 9982, https://doi.org/10.1021/acs.langmuir.8b01230.  doi: 10.1021/acs.langmuir.8b01230

    26. [26]

      J. Duan, J. Yu, S. Feng, L. Su, Talanta 153 (2016) 332, https://doi.org/10.1016/j.talanta.2016.03.035.  doi: 10.1016/j.talanta.2016.03.035

    27. [27]

      L. Li, Y. Li, Y. Ye, R. Guo, A. Wang, G. Zou, H. Hou, X. Ji, ACS Nano 15 (2021) 6872, https://doi.org/10.1021/acsnano.0c10624.  doi: 10.1021/acsnano.0c10624

    28. [28]

      Y. Park, J. Yoo, B. Lim, W. Kwon, S. W. Rhee, J. Mater. Chem. A 4 (2016) 11582, https://doi.org/10.1039/c6ta04813g.  doi: 10.1039/C6TA04813G

    29. [29]

      P. Boulanger, J. Riga, J. Delhalle, J. J. Verbist, Polymer 29 (1988) 797-801, https://doi.org/10.1016/0032-3861(88)90135-8.  doi: 10.1016/0032-3861(88)90135-8

    30. [30]

      W. W. Liu, M. Li, G. P. Jiang, G. R. Li, J. B. Zhu, M. L. Xiao, Y. F. Zhu, R. Gao, A. P. Yu, M. Feng; et al., Adv. Energy. Mater. 10 (2020) 2001275, https://doi.org/10.1002/aenm.202001275.  doi: 10.1002/aenm.202001275

    31. [31]

      X. Fan, L. Chen, Y. Wang, X. Xu, X. Jiao, P. Zhou, Y. Liu, Z. Song, J. Zhou, Nanomicro Lett 16 (2024) 270, https://doi.org/10.1007/s40820-024-01475-5.  doi: 10.1007/s40820-024-01475-5

    32. [32]

      J. Hao, L. Yuan, C. Ye, D. Chao, K. Davey, Z. Guo, S. Z. Qiao, Angew. Chem. Int. Ed. Engl. 60 (2021) 7366-7375, https://doi.org/10.1002/anie.202016531.  doi: 10.1002/anie.202016531

    33. [33]

      N. N. Chang, T. Y. Li, R. Li, S. N. Wang, Y. B. Yin, H. M. Zhang, X. F. Li, Energy Environ Sci 13 (2020) 3527-3535, https://doi.org/10.1039/d0ee01538e.  doi: 10.1039/D0EE01538E

    34. [34]

      Z. Cao, X. Zhu, S. Gao, D. Xu, Z. Wang, Z. Ye, L. Wang, B. Chen, L. Li, M. Ye; et al., Small 18 (2022) e2103345, https://doi.org/10.1002/smll.202103345.  doi: 10.1002/smll.202103345

    35. [35]

      F. X. Xie, H. Li, X. S. Wang, X. Zhi, D. L. Chao, K. Davey, S. Z. Qiao, Adv. Energy. Mater. 11 (2021) 2003419, https://doi.org/10.1002/aenm.202003419.  doi: 10.1002/aenm.202003419

    36. [36]

      J. L. Cong, X. Shen, Z. P. Wen, X. Wang, L. Q. Peng, J. Zeng, J. B. Zhao, Energy Storage Mater 35 (2021) 586-594, https://doi.org/10.1016/j.ensm.2020.11.041.  doi: 10.1016/j.ensm.2020.11.041

    37. [37]

      Z. M. Zhao, J. W. Zhao, Z. L. Hu, J. D. Li, J. J. Li, Y. J. Zhang, C. Wang, G. L. Cui, Energy Environ Sci 12 (2019) 1938-1949, https://doi.org/10.1039/c9ee00596j.  doi: 10.1039/C9EE00596J

    38. [38]

      G. D. Wilcox, P. J. Mitchell, J. Power Sources 28 (1989) 345-359, https://doi.org/10.1016/0378-7753(89)80064-3.  doi: 10.1016/0378-7753(89)80064-3

    39. [39]

      M. Chen, Y. Gong, Y. Zhao, Y. Song, Y. Tang, Z. Zeng, S. Liang, P. Zhou, B. Lu, X. Zhang; et al., Natl Sci Rev 11 (2024) nwae205, https://doi.org/10.1093/nsr/nwae205.  doi: 10.1093/nsr/nwae205

    40. [40]

      W. Y. Chen, S. Guo, L. P. Qin, L. Y. Li, X. X. Cao, J. Zhou, Z. G. Luo, G. Z. Fang, S. Q. Liang, Adv. Funct. Mater. 32 (2022) 2112609, https://doi.org/10.1002/adfm.202112609.  doi: 10.1002/adfm.202112609

    41. [41]

      D. L. Han, Z. X. Wang, H. T. Lu, H. Li, C. J. Cui, Z. C. Zhang, R. Sun, C. N. Geng, Q. H. Liang, X. X. Guo; et al., Adv. Energy. Mater. 12 (2022) 2102982, https://doi.org/10.1002/aenm.202102982.  doi: 10.1002/aenm.202102982

    42. [42]

      K. Ouyang, S. Chen, W. Ling, M. Cui, Q. Ma, K. Zhang, P. Zhang, Y. Huang, Angew. Chem. Int. Ed. Engl. 62 (2023) e202311988, https://doi.org/10.1002/anie.202311988.  doi: 10.1002/anie.202311988

    43. [43]

      M. Qiu, P. Sun, Y. Wang, L. Ma, C. Zhi, W. Mai, Angew. Chem. Int. Ed. Engl. 61 (2022) e202210979, https://doi.org/10.1002/anie.202210979.  doi: 10.1002/anie.202210979

    44. [44]

      D. Xu, Z. Wang, C. Liu, H. Li, F. Ouyang, B. Chen, W. Li, X. Ren, L. Bai, Z. Chang; et al., Adv. Mater. 36 (2024) e2403765, https://doi.org/10.1002/adma.202403765.  doi: 10.1002/adma.202403765

    45. [45]

      Y. H. Tao, Y.J. Cui, H. X. Wang, Z. L. Li, Z. J. S. Qian, P. P. Zhang, H. J. Zhou, M. J. Shi, Adv. Funct. Mater. 35 (2024) 2414805, https://doi.org/10.1002/adfm.202414805.  doi: 10.1002/adfm.202414805

    46. [46]

      Y. H. Tao, J. Jin, Y. J. Cui, H. X. Wang, Z. J. S. Qian, M. J. Shi, ACS Sustain Chem Eng 12 (2024) 16434-16443, https://doi.org/10.1021/acssuschemeng.4c06939.  doi: 10.1021/acssuschemeng.4c06939

  • 加载中
    1. [1]

      Qinjin DAIShan FANPengyang FANXiaoying ZHENGWei DONGMengxue WANGYong ZHANG . Performance of oxygen vacancy-rich V-doped MnO2 for high-performance aqueous zinc ion battery. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 453-460. doi: 10.11862/CJIC.20240326

    2. [2]

      Zhaoxuan ZHULixin WANGXiaoning TANGLong LIYan SHIJiaojing SHAO . Application of poly(vinyl alcohol) conductive hydrogel electrolytes in zinc ion batteries. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 893-902. doi: 10.11862/CJIC.20240368

    3. [3]

      Wenli FENGLu ZHAOYunfeng BAIFeng FENG . Research progress on ultralong room temperature phosphorescent carbon dots. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 833-846. doi: 10.11862/CJIC.20240308

    4. [4]

      Xue WuYupeng LiuBingzhe WangLingyun LiZhenjian LiQingcheng WangQuansheng ChengGuichuan XingSongnan Qu . Rationally assembling different surface functionalized carbon dots for enhanced near-infrared tumor photothermal therapy. Acta Physico-Chimica Sinica, 2025, 41(9): 100109-0. doi: 10.1016/j.actphy.2025.100109

    5. [5]

      Shanghua Li Malin Li Xiwen Chi Xin Yin Zhaodi Luo Jihong Yu . 基于高离子迁移动力学的取向ZnQ分子筛保护层实现高稳定水系锌金属负极的构筑. Acta Physico-Chimica Sinica, 2025, 41(1): 2309003-. doi: 10.3866/PKU.WHXB202309003

    6. [6]

      Qiuyang LUOXiaoning TANGShu XIAJunnan LIUXingfu YANGJie LEI . Application of a densely hydrophobic copper metal layer in-situ prepared with organic solvents for protecting zinc anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1243-1253. doi: 10.11862/CJIC.20240110

    7. [7]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    8. [8]

      Fengqiao Bi Jun Wang Dongmei Yang . Specialized Experimental Design for Chemistry Majors in the Context of “Dual Carbon”: Taking the Assembly and Performance Evaluation of Zinc-Air Fuel Batteries as an Example. University Chemistry, 2024, 39(4): 198-205. doi: 10.3866/PKU.DXHX202311069

    9. [9]

      Xiaoning TANGJunnan LIUXingfu YANGJie LEIQiuyang LUOShu XIAAn XUE . Effect of sodium alginate-sodium carboxymethylcellulose gel layer on the stability of Zn anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1452-1460. doi: 10.11862/CJIC.20240191

    10. [10]

      Doudou Qin Junyang Ding Chu Liang Qian Liu Ligang Feng Yang Luo Guangzhi Hu Jun Luo Xijun Liu . Addressing Challenges and Enhancing Performance of Manganese-based Cathode Materials in Aqueous Zinc-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(10): 2310034-. doi: 10.3866/PKU.WHXB202310034

    11. [11]

      Kun Xu Xinxin Song Zhilei Yin Jian Yang Qisheng Song . Comprehensive Experimental Design of Preferential Orientation of Zinc Metal by Heat Treatment for Enhanced Electrochemical Performance. University Chemistry, 2024, 39(4): 192-197. doi: 10.3866/PKU.DXHX202309050

    12. [12]

      Pengyang FANShan FANQinjin DAIXiaoying ZHENGWei DONGMengxue WANGXiaoxiao HUANGYong ZHANG . Preparation and performance of rich 1T-MoS2 nanosheets for high-performance aqueous zinc ion battery cathode materials. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 675-682. doi: 10.11862/CJIC.20240339

    13. [13]

      Li'na ZHONGJingling CHENQinghua ZHAO . Synthesis of multi-responsive carbon quantum dots from green carbon sources for detection of iron ions and L-ascorbic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 709-718. doi: 10.11862/CJIC.20240280

    14. [14]

      Wenqi Gao Xiaoyan Fan Feixiang Wang Zhuojun Fu Jing Zhang Enlai Hu Peijun Gong . Exploring Nernst Equation Factors and Applications of Solid Zinc-Air Battery. University Chemistry, 2024, 39(5): 98-107. doi: 10.3866/PKU.DXHX202310026

    15. [15]

      Ping Ye Lingshuang Qin Mengyao He Fangfang Wu Zengye Chen Mingxing Liang Libo Deng . 荷叶衍生多孔碳的零电荷电位调节实现废水中电化学捕集镉离子. Acta Physico-Chimica Sinica, 2025, 41(3): 2311032-. doi: 10.3866/PKU.WHXB202311032

    16. [16]

      Yue WANGZhizhi GUJingyi DONGJie ZHUCunguang LIUGuohan LIMeichen LUJian HANShengnan CAOWei WANG . Effects of kelp-derived carbon dots on embryonic development of zebrafish. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1209-1217. doi: 10.11862/CJIC.20230423

    17. [17]

      Wenlong WangWentao HaoLang HeJia QiaoNing LiChaoqiu ChenYong Qin . Bandgap and adsorption engineering of carbon dots/TiO2 S-scheme heterojunctions for enhanced photocatalytic CO2 methanation. Acta Physico-Chimica Sinica, 2025, 41(9): 100116-0. doi: 10.1016/j.actphy.2025.100116

    18. [18]

      Yu Guo Zhiwei Huang Yuqing Hu Junzhe Li Jie Xu . 钠离子电池中铁基异质结构负极材料的最新研究进展. Acta Physico-Chimica Sinica, 2025, 41(3): 2311015-. doi: 10.3866/PKU.WHXB202311015

    19. [19]

      Xintong ZhuBin CaoChong YanCheng TangAibing ChenQiang Zhang . Advances in coating strategies for graphite anodes in lithium-ion batteries. Acta Physico-Chimica Sinica, 2025, 41(9): 100096-0. doi: 10.1016/j.actphy.2025.100096

    20. [20]

      Zhiyuan TONGZiyuan LIKe ZHANG . Three-dimensional porous collector based on Cu-Li6.4La3Zr1.4Ta0.6O12 composite layer for the construction of stable lithium metal anode. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 499-508. doi: 10.11862/CJIC.20240238

Metrics
  • PDF Downloads(0)
  • Abstract views(5)
  • HTML views(1)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return