硫掺杂的碳点作为双功能电解液添加剂实现高性能水系锌离子电池

马千里 宋天兵 何天乐 张熙荣 熊焕明

引用本文: 马千里, 宋天兵, 何天乐, 张熙荣, 熊焕明. 硫掺杂的碳点作为双功能电解液添加剂实现高性能水系锌离子电池[J]. 物理化学学报, 2025, 41(9): 100106. doi: 10.1016/j.actphy.2025.100106 shu
Citation:  Qianli Ma, Tianbing Song, Tianle He, Xirong Zhang, Huanming Xiong. Sulfur-doped carbon dots: a novel bifunctional electrolyte additive for high-performance aqueous zinc-ion batteries[J]. Acta Physico-Chimica Sinica, 2025, 41(9): 100106. doi: 10.1016/j.actphy.2025.100106 shu

硫掺杂的碳点作为双功能电解液添加剂实现高性能水系锌离子电池

    通讯作者: 熊焕明, hmxiong@fudan.edu.cn
  • 基金项目:

    国家自然科学基金 U24A20565

    国家自然科学基金 21975048

摘要: 水系锌离子电池因其高安全性、环境友好性和低成本等优势,被视为一种富有前景的新型储能器件。然而,不可控的锌枝晶生长以及有害的副反应严重限制了水系锌电池的电化学性能。在众多改善策略中,电解液添加剂因其成本低廉和操作简便的优势,相较于人工界面涂层和电极结构设计更具应用潜力。本研究采用一种新型零维纳米材料——硫掺杂的碳点,作为电解液添加剂,通过多种表征手段对其结构和性质进行了系统分析,并组装成电池以评估这种碳点对电池性能的影响。实验结果表明,碳点通过其表面磺酸基团诱导锌电极表面择优形成稳定的(002)晶面,并重构水合Zn2+的溶剂化壳层,显著提升了电池的循环稳定性。在碳点添加剂的作用下,对称电池在10 mA∙cm−2的高电流密度下实现了近2000 h的稳定循环,Zn||NH4V4O10和Zn||MnO2全电池也表现出优异的电化学性能和显著提升的循环稳定性。本研究为开发高性能水系锌离子电池提供了新的思路和理论依据。

English

    1. [1]

      Y. H. Li, H. Yao, X. J. Liu, X. T. Yang, D. Yuan, Nano Res. 16 (2023) 9179-9194, https://doi.org/10.1007/s12274-023-5637-7. doi: 10.1007/s12274-023-5637-7

    2. [2]

      J. D. Huang, Y. H. Zhu, Y. Feng, Y. H. Han, Z. Y. Gu, R.X. Liu, D.Y. Yang, K. Chen, X. Y. Zhang, W. Sun; et al., Acta Phys. -Chim. Sin. 38 (2022) 2208008, https://doi.org/10.3866/PKU.WHXB202208008. doi: 10.3866/PKU.WHXB202208008

    3. [3]

      M. Song, H. Tan, D. L. Chao, H. J. Fan, Adv. Funct. Mater. 28 (2018) 1802564, https://doi.org/10.1002/adfm.201802564. doi: 10.1002/adfm.201802564

    4. [4]

      Z. H. Yi, G. Y. Chen, F. Hou, L. Q. Wang, J. Liang, Adv. Energy Mater. 11 (2020) 2003065, https://doi.org/10.1002/aenm.202003065. doi: 10.1002/aenm.202003065

    5. [5]

      B. Qiu, L. Z. Xie, G. Q. Zhang, K. J. Cheng, Z. W. Lin, W. Liu, C. X. He, P. X. Zhang, H. W. Mi, Chem. Eng. J. 449 (2022) 137843, https://doi.org/10.1016/j.cej.2022.137843. doi: 10.1016/j.cej.2022.137843

    6. [6]

      B. Qiu, K. Y. Liang, W. Huang, G. Q. Zhang, C. X. He, P. X. Zhang, H. W. Mi, Adv. Energy Mater. 13 (2023) 2301193, https://doi.org/10.1002/aenm.202301193. doi: 10.1002/aenm.202301193

    7. [7]

      Z. Zhao, R. Wang, C. Peng, W. Chen, T. Wu, B. Hu, W. Weng, Y. Yao, J. Zeng, Z. Chen, P. Liu, Y. Liu, G. Li, J. Guo, H. Lu, Z. Guo, Nat. Commun. 12 (2021) 6606, https://doi.org/10.1038/s41467-021-26947-9. doi: 10.1038/s41467-021-26947-9

    8. [8]

      X. Wang, J. P. Meng, X. G. Lin, Y. D. Yang, S. Zhou, Y. P. Wang, A. Q. Pan, Adv. Funct. Mater. 31 (2021) 2106114, https://doi.org/10.1002/adfm.202106114. doi: 10.1002/adfm.202106114

    9. [9]

      Z. Yi, J. Liu, S. Tan, Z. Sang, J. Mao, L. Yin, X. Liu, L. Wang, F. Hou, S. X. Dou, H. Cheng, J. Liang, Adv. Mater. 34 (2022) e2203835, https://doi.org/10.1002/adma.202203835. doi: 10.1002/adma.202203835

    10. [10]

      H. Lu, Q. Jin, X. Jiang, Z. M. Dang, D. Zhang, Y. Jin, Small 18 (2022) e2200131, https://doi.org/10.1002/smll.202200131. doi: 10.1002/smll.202200131

    11. [11]

      Y. E. Qi, Y. Y. Xia, Acta Phys. -Chim. Sin. 39 (2023), https://doi.org/10.3866/Pku.Whxb202205045. doi: 10.3866/Pku.Whxb202205045

    12. [12]

      X.C. Liang, X.F. Chen, Z.X. Zhai, R.S. Huang, T.Q. Yu, S.B. Yin, Chem. Eng. J. 480 (2024) 148040, https://doi.org/10.1016/j.cej.2023.148040. doi: 10.1016/j.cej.2023.148040

    13. [13]

      J. Cao, M. Sun, D. Zhang, Y. Zhang, C. Yang, D. Luo, X. Yang, X. Zhang, J. Qin, B. Huang, Z. Zeng, J. Lu, ACS Nano 18 (2024) 16610, https://doi.org/10.1021/acsnano.4c00288. doi: 10.1021/acsnano.4c00288

    14. [14]

      R. X. Zhang, Y. X. Cui, L. L. Liu, S. M. Chen, J. Power Sources 602 (2024) 234351, https://doi.org/10.1016/j.jpowsour.2024.234351. doi: 10.1016/j.jpowsour.2024.234351

    15. [15]

      C. Xia, S. Zhu, T. Feng, M. Yang, B. Yang, Adv. Sci. 6 (2019) 1901316, https://doi.org/10.1002/advs.201901316. doi: 10.1002/advs.201901316

    16. [16]

      L. Ai, R. Shi, J. Yang, T. Zhang, S. Lu, Small 17 (2021) e2007523, https://doi.org/10.1002/smll.202007523. doi: 10.1002/smll.202007523

    17. [17]

      J. Gao, M. M. Zhu, H. Huang, Y. Liu, Z. H. Kang, Inorg. Chem. Front. 4 (2017) 1963, https://doi.org/10.1039/c7qi00614d. doi: 10.1039/C7QI00614D

    18. [18]

      M. G. Yi, M. J. Jing, Y. C. Yang, Y. J. Huang, G. Q. Zou, T. J. Wu, H. S. Hou, X. B. Ji, Adv. Funct. Mater. 34 (2024) 2400001, https://doi.org/10.1002/adfm.202400001. doi: 10.1002/adfm.202400001

    19. [19]

      R. T. Guo, L. Li, B. W. Wang, Y. G. Xiang, G. Q. Zou, Y. R. Zhu, H. S. Hou, X. B. Ji, Energy Stor. Mater. 37 (2021) 8, https://doi.org/10.1016/j.ensm.2021.01.020. doi: 10.1016/j.ensm.2021.01.020

    20. [20]

      H. Zhang, R. T. Guo, S. Li, C. Liu, H. Y. Li, G. Q. Zou, J. G. Hu, H. S. Hou, X. B. Ji, Nano Energy 92 (2022) 106752, https://doi.org/10.1016/j.nanoen.2021.106752. doi: 10.1016/j.nanoen.2021.106752

    21. [21]

      W. Zhang, M. Dong, K. Jiang, D. Yang, X. Tan, S. Zhai, R. Feng, N. Chen, G. King, H. Zhang, H. Zeng, H. Li, M. Antonietti, Z. Li, Nat. Commun. 13 (2022) 5348, https://doi.org/10.1038/s41467-022-32955-0. doi: 10.1038/s41467-022-32955-0

    22. [22]

      T. B. Song, Z. H. Huang, X. R. Zhang, J. W. Ni, H. M. Xiong, Small 19 (2023) e2205558, https://doi.org/10.1002/smll.202205558. doi: 10.1002/smll.202205558

    23. [23]

      Q. Luo, H. Ding, X. Hu, J. Xu, A. Sadat, M. Xu, F. L. Primo, A. C. Tedesco, H. Zhang, H. Bi, Dalton Trans. 49 (2020) 6950, https://doi.org/10.1039/d0dt01187h. doi: 10.1039/d0dt01187h

    24. [24]

      S. J. Mohammed, K. M. Omer, F. E. Hawaiz, RSC Adv. 13 (2023) 14340, https://doi.org/10.1039/d3ra01646c. doi: 10.1039/D3RA01646C

    25. [25]

      P. P. Zhu, Z. Cheng, L. L. Du, Q. Chen, K. J. Tan, Langmuir 34 (2018) 9982, https://doi.org/10.1021/acs.langmuir.8b01230. doi: 10.1021/acs.langmuir.8b01230

    26. [26]

      J. Duan, J. Yu, S. Feng, L. Su, Talanta 153 (2016) 332, https://doi.org/10.1016/j.talanta.2016.03.035. doi: 10.1016/j.talanta.2016.03.035

    27. [27]

      L. Li, Y. Li, Y. Ye, R. Guo, A. Wang, G. Zou, H. Hou, X. Ji, ACS Nano 15 (2021) 6872, https://doi.org/10.1021/acsnano.0c10624. doi: 10.1021/acsnano.0c10624

    28. [28]

      Y. Park, J. Yoo, B. Lim, W. Kwon, S. W. Rhee, J. Mater. Chem. A 4 (2016) 11582, https://doi.org/10.1039/c6ta04813g. doi: 10.1039/C6TA04813G

    29. [29]

      P. Boulanger, J. Riga, J. Delhalle, J. J. Verbist, Polymer 29 (1988) 797-801, https://doi.org/10.1016/0032-3861(88)90135-8. doi: 10.1016/0032-3861(88)90135-8

    30. [30]

      W. W. Liu, M. Li, G. P. Jiang, G. R. Li, J. B. Zhu, M. L. Xiao, Y. F. Zhu, R. Gao, A. P. Yu, M. Feng; et al., Adv. Energy. Mater. 10 (2020) 2001275, https://doi.org/10.1002/aenm.202001275. doi: 10.1002/aenm.202001275

    31. [31]

      X. Fan, L. Chen, Y. Wang, X. Xu, X. Jiao, P. Zhou, Y. Liu, Z. Song, J. Zhou, Nanomicro Lett 16 (2024) 270, https://doi.org/10.1007/s40820-024-01475-5. doi: 10.1007/s40820-024-01475-5

    32. [32]

      J. Hao, L. Yuan, C. Ye, D. Chao, K. Davey, Z. Guo, S. Z. Qiao, Angew. Chem. Int. Ed. Engl. 60 (2021) 7366-7375, https://doi.org/10.1002/anie.202016531. doi: 10.1002/anie.202016531

    33. [33]

      N. N. Chang, T. Y. Li, R. Li, S. N. Wang, Y. B. Yin, H. M. Zhang, X. F. Li, Energy Environ Sci 13 (2020) 3527-3535, https://doi.org/10.1039/d0ee01538e. doi: 10.1039/D0EE01538E

    34. [34]

      Z. Cao, X. Zhu, S. Gao, D. Xu, Z. Wang, Z. Ye, L. Wang, B. Chen, L. Li, M. Ye; et al., Small 18 (2022) e2103345, https://doi.org/10.1002/smll.202103345. doi: 10.1002/smll.202103345

    35. [35]

      F. X. Xie, H. Li, X. S. Wang, X. Zhi, D. L. Chao, K. Davey, S. Z. Qiao, Adv. Energy. Mater. 11 (2021) 2003419, https://doi.org/10.1002/aenm.202003419. doi: 10.1002/aenm.202003419

    36. [36]

      J. L. Cong, X. Shen, Z. P. Wen, X. Wang, L. Q. Peng, J. Zeng, J. B. Zhao, Energy Storage Mater 35 (2021) 586-594, https://doi.org/10.1016/j.ensm.2020.11.041. doi: 10.1016/j.ensm.2020.11.041

    37. [37]

      Z. M. Zhao, J. W. Zhao, Z. L. Hu, J. D. Li, J. J. Li, Y. J. Zhang, C. Wang, G. L. Cui, Energy Environ Sci 12 (2019) 1938-1949, https://doi.org/10.1039/c9ee00596j. doi: 10.1039/C9EE00596J

    38. [38]

      G. D. Wilcox, P. J. Mitchell, J. Power Sources 28 (1989) 345-359, https://doi.org/10.1016/0378-7753(89)80064-3. doi: 10.1016/0378-7753(89)80064-3

    39. [39]

      M. Chen, Y. Gong, Y. Zhao, Y. Song, Y. Tang, Z. Zeng, S. Liang, P. Zhou, B. Lu, X. Zhang; et al., Natl Sci Rev 11 (2024) nwae205, https://doi.org/10.1093/nsr/nwae205. doi: 10.1093/nsr/nwae205

    40. [40]

      W. Y. Chen, S. Guo, L. P. Qin, L. Y. Li, X. X. Cao, J. Zhou, Z. G. Luo, G. Z. Fang, S. Q. Liang, Adv. Funct. Mater. 32 (2022) 2112609, https://doi.org/10.1002/adfm.202112609. doi: 10.1002/adfm.202112609

    41. [41]

      D. L. Han, Z. X. Wang, H. T. Lu, H. Li, C. J. Cui, Z. C. Zhang, R. Sun, C. N. Geng, Q. H. Liang, X. X. Guo; et al., Adv. Energy. Mater. 12 (2022) 2102982, https://doi.org/10.1002/aenm.202102982. doi: 10.1002/aenm.202102982

    42. [42]

      K. Ouyang, S. Chen, W. Ling, M. Cui, Q. Ma, K. Zhang, P. Zhang, Y. Huang, Angew. Chem. Int. Ed. Engl. 62 (2023) e202311988, https://doi.org/10.1002/anie.202311988. doi: 10.1002/anie.202311988

    43. [43]

      M. Qiu, P. Sun, Y. Wang, L. Ma, C. Zhi, W. Mai, Angew. Chem. Int. Ed. Engl. 61 (2022) e202210979, https://doi.org/10.1002/anie.202210979. doi: 10.1002/anie.202210979

    44. [44]

      D. Xu, Z. Wang, C. Liu, H. Li, F. Ouyang, B. Chen, W. Li, X. Ren, L. Bai, Z. Chang; et al., Adv. Mater. 36 (2024) e2403765, https://doi.org/10.1002/adma.202403765. doi: 10.1002/adma.202403765

    45. [45]

      Y. H. Tao, Y.J. Cui, H. X. Wang, Z. L. Li, Z. J. S. Qian, P. P. Zhang, H. J. Zhou, M. J. Shi, Adv. Funct. Mater. 35 (2024) 2414805, https://doi.org/10.1002/adfm.202414805. doi: 10.1002/adfm.202414805

    46. [46]

      Y. H. Tao, J. Jin, Y. J. Cui, H. X. Wang, Z. J. S. Qian, M. J. Shi, ACS Sustain Chem Eng 12 (2024) 16434-16443, https://doi.org/10.1021/acssuschemeng.4c06939. doi: 10.1021/acssuschemeng.4c06939

  • 加载中
计量
  • PDF下载量:  0
  • 文章访问数:  18
  • HTML全文浏览量:  1
文章相关
  • 发布日期:  2025-09-15
  • 收稿日期:  2025-04-16
  • 接受日期:  2025-05-22
  • 修回日期:  2025-05-13
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章