Citation: Menglan Wei, Xiaoxia Ou, Yimeng Wang, Mengyuan Zhang, Fei Teng, Kaixuan Wang. S-scheme heterojunction g-C3N4/Bi2WO6 highly efficient degradation of levofloxacin: performance, mechanism and degradation pathway[J]. Acta Physico-Chimica Sinica, ;2025, 41(9): 100105. doi: 10.1016/j.actphy.2025.100105 shu

S-scheme heterojunction g-C3N4/Bi2WO6 highly efficient degradation of levofloxacin: performance, mechanism and degradation pathway

  • Corresponding author: Xiaoxia Ou, ouxiaoxia@dlnu.edu.cn
  • Received Date: 5 March 2025
    Revised Date: 9 May 2025
    Accepted Date: 12 May 2025

    Fund Project: the Liaoning Provincial Science and Technology Program Joint Plan 2023JH2/101800001the Basic Scientific Research Fund of Liaoning Provincial Education Department LJKMZ20220396Dalian Science and Technology Talents Innovation Support Program 2024RQ056

  • g-C3N4/Bi2WO6 (MCN/BWO) heterojunction photocatalysts were synthesized via a one-step hydrothermal method for the degradation of levofloxacin (LEV). Under simulated sunlight irradiation, the degradation rate of LEV by MCN/BWO with a molar ratio of 1 : 1 reached 98.14%, which was attributed to the formation of an S-scheme heterojunction between MCN and BWO. In situ XPS analysis and surface work function measurements confirmed that the electron transfer pathway follows the S-scheme heterojunction mechanism. The internal electric field (IEF) generated by the S-scheme heterojunction in the MCN/BWO system facilitates direct transfer of photogenerated electrons (e) from the conduction band (CB) of BWO to the valence band (VB) of MCN. This process enables efficient separation of photogenerated electron-hole (e-h+) pairs, with h⁺ accumulating on the VB of BWO and e accumulating on the CB of MCN. Free radical trapping experiments demonstrated that the superoxide free radical (·O₂) and h⁺ were the primary active species. Besides exhibiting superior photocatalytic performance, the catalyst maintained excellent stability over three consecutive cycles. To elucidate the degradation mechanism, liquid chromatography-mass spectrometry (LC-MS) and quantitative structure-activity relationship (QSAR) analysis were employed to identify degradation pathways, intermediates, and potential toxicity. This study provides a theoretical foundation for wastewater treatment applications.
  • 加载中
    1. [1]

      S. Arabian, A. Gordanshekan, M. Farhadian, A.R. Solaimany Nazar, S. Tangestaninejad, H. Sabzyan, Chem. Eng. J. 488 (2024) 150686, DOI: 10.1016/j.cej.2024.150686.  doi: 10.1016/j.cej.2024.150686

    2. [2]

      Y.Y. Wang, J.H. Yang, Z.X. Zhang, P.J. Zhao, Y.Q. Chen, Y. Guo, X.G. Luo, Int. J. Biol. Macromol. 269 (2024) 131885, DOI: 10.1016/j.ijbiomac.2024.131885.  doi: 10.1016/j.ijbiomac.2024.131885

    3. [3]

      Z.X. Huang, P.F. Zhu, M. Liu, X.Y. Xin, B. He, X.L. Li, Sep. Purif. Technol. 356 (2025) 129959, DOI: 10.1016/j.seppur.2024.129959.  doi: 10.1016/j.seppur.2024.129959

    4. [4]

      F.Y. Yang, M. Du, K.L. Yin, Z. Qiu, Ing, J.W. Zhao, C.L. Liu, G.X. Zhang, Y.J. Gao, H. Pang, Small 18 (2022) 2105715, DOI: 10.1002/smll.202105715.  doi: 10.1002/smll.202105715

    5. [5]

      B. Erim, Z. Ciğeroğlu, S. Şahin, Y. Vasseghian, Chemosphere 291 (2022) 132929, DOI: 10.1016/j.chemosphere.2021.132929.  doi: 10.1016/j.chemosphere.2021.132929

    6. [6]

      S.J. Li, C.C. Wang, Y.P. Liu, B. Xue, W. Jiang, Y. Liu, L.Y. Mo, X.B. Chen, Chem. Eng. J. 415 (2021) 128991, DOI: 10.1016/j.cej.2021.128991.  doi: 10.1016/j.cej.2021.128991

    7. [7]

      J.W. Yan, L. Gong, S.Y. Chai, C. Guo, W. Zhang, H.Y. Wan, Sep. Purif. Technol. 302 (2022) 122016, DOI: 10.1016/j.seppur.2022.122016.  doi: 10.1016/j.seppur.2022.122016

    8. [8]

      Z.P. Xing, J.Q. Zhang, J.Y. Cui, J.W. Yin, T.Y. Zhao, J.Y. Kuang, Z.Y. Xiu, N. Wan, W. Zhou, Appl. Catal. B: Environ. 225 (2018) 452, DOI: 10.1016/j.apcatb.2017.12.005.  doi: 10.1016/j.apcatb.2017.12.005

    9. [9]

      Y.Q. Bian, H.W. He, G. Dawson, J.F. Zhang, K. Dai, Sci. China Mater. 67 (2024) 514, DOI: 10.1007/s40843-023-2725-y.  doi: 10.1007/s40843-023-2725-y

    10. [10]

      D.L. Cao, N. Su, X.Y. Wang, X.Y. Wang, C.L. Xu, Z. Liu, J.T. Li, C.Y. Lu, J. Environ. Chem. Eng. 12 (2024) 112939, DOI: 10.1016/j.jece.2024.112939.  doi: 10.1016/j.jece.2024.112939

    11. [11]

      J.T. Shen, L. Qian, J.L. Huang, Y.F. Guo, Z.Z. Zhang, Sep. Purif. Technol. 275 (2021) 119239, DOI: 10.1016/j.seppur.2021.119239.  doi: 10.1016/j.seppur.2021.119239

    12. [12]

      P. Li, Y.Y. Cui, Z.L. Wang, G. Dawson, C.F. Shao, K. Dai, Acta Phys. –Chim. Sin. 41 (2025) 100065, DOI: 10.1016/j.actphy.2025.100065.  doi: 10.1016/j.actphy.2025.100065

    13. [13]

      T.T. Yang, J. Wang, Z.L. Wang, J.F. Zhang, K. Dai, Chin. J. Catal. 58 (2024) 157, DOI: 10.1016/S1872-2067(23)64607-8.  doi: 10.1016/S1872-2067(23)64607-8

    14. [14]

      S.J. Li, K. Rong, X.Q. Wang, C.Q. Shen, F. Yang, Q.H. Zhang, Acta Phys. –Chim. Sin. 40 (2024) 2403005, DOI: 10.3866/PKU.WHXB202403005.  doi: 10.3866/PKU.WHXB202403005

    15. [15]

      C.C. Wang, K. Rong, Y.P. Liu, F. Yang, S.J. Li, Sci. China Mater. 67 (2024) 562, DOI: 10.1007/s40843-023-2764-8.  doi: 10.1007/s40843-023-2764-8

    16. [16]

      S.J. Li, R.Y. Yan, M.J. Cai, W. Jiang, M.Y. Zhang, X. Li, J. Mater. Sci. & Technol. 164 (2023) 59, DOI: 10.1016/j.jmst.2023.05.009.  doi: 10.1016/j.jmst.2023.05.009

    17. [17]

      R. Liu, C.J. Zhang, R.J. Liu, Y. Sun, B.Q. Ren, Y.H. Tong, Y. Tao, J. Environ. Sci. 150 (2025) 657, DOI: 10.1016/j.jes.2024.03.033.  doi: 10.1016/j.jes.2024.03.033

    18. [18]

      J.J. Wang, X.Y. Lian, S.H. Chen, H. Li, K.Z. Xu, J. Colloid Inter. Sci. 610 (2022) 842, DOI: 10.1016/j.jcis.2021.11.131.  doi: 10.1016/j.jcis.2021.11.131

    19. [19]

      X.B. Zhang, H.J. Liu, Y.Q. Wang, S.L. Yang, Q. Chen, Z.Y. Zhao, Y. Yang, Q. Kuang, Z.X. Xie, Chem. Eng. J. 443 (2022) 136482, DOI: 10.1016/j.cej.2022.136482.  doi: 10.1016/j.cej.2022.136482

    20. [20]

      L.H. Meng, C. Zhao, H.Y. Chu, Y.H. Li, H.F. Fu, P. Wang, C.C. Wang, H.W. Huang, Chin. J. Catal. 59 (2024) 346, DOI: 10.1016/S1872-2067(23)64629-7.  doi: 10.1016/S1872-2067(23)64629-7

    21. [21]

      K.N. Van, H.T. Huu, V.N. Nguyen Thi, T.L. Le Thi, D.H. Truong, T.T. Truong, N.N. Dao, V. Vo, D.L. Tran, Y. Vasseghian, Chemosphere 289 (2022) 133120, DOI: 10.1016/j.chemosphere.2021.133120.  doi: 10.1016/j.chemosphere.2021.133120

    22. [22]

      A. Alsulmi, N.N. Mohammed, M.M. Hassan, M.A. Eltawil, A.E. Amin, M. Fahmy, A. Sultan, M.A. Ahmed, Colloids and Surf. A: Physicochem. Eng. Asp. 689 (2024) 133683, DOI: 10.1016/j.colsurfa.2024.133683.  doi: 10.1016/j.colsurfa.2024.133683

    23. [23]

      W.W. Cao, X. Zhu, Q. Li, R. Yuan, H.J. Wang, Chem. Eng. J. 475 (2023) 146225, DOI: 10.1016/j.cej.2023.146225.  doi: 10.1016/j.cej.2023.146225

    24. [24]

      E.E. Elemike, I.C. Onunkwo, O.E. Ididama, O.E. Okorodudu, I.P. Okogbenin, O.R. Egbele, L. Hitler, S.E. Anwani, O.E. Udowa, Z.O. Ushurhe, H. Awikpe-Harrison, I. Muazu, A.E. Aziza, Int. J. Hydrogen Energy 70 (2024) 212, DOI: 10.1016/j.ijhydene.2024.05.174.  doi: 10.1016/j.ijhydene.2024.05.174

    25. [25]

      C.S. Tang, M. Cheng, C. Lai, L. Li, X.F. Yang, L. Du, G.X. Zhang, G.F. Wang, L. Yang, Coord. Chem. Rev. 474 (2023) 214846, DOI: 10.1016/j.ccr.2022.214846.  doi: 10.1016/j.ccr.2022.214846

    26. [26]

      N.F.F. Moreira, M.J. Sampaio, A.R. Ribeiro, C.G. Silva, J.L. Faria, A.M.T. Silva, Appl. Catal. B: Environ. 248 (2019) 184, DOI: 10.1016/j.apcatb.2019.02.001.  doi: 10.1016/j.apcatb.2019.02.001

    27. [27]

      O. Aldaghri, K.H. Ibnaouf, H. Idriss, A. Modwi, M. Bououdina, G.Z. Kyzas, Sci. Total Environ. 906 (2024) 167685, DOI: 10.1016/j.scitotenv.2023.167685.  doi: 10.1016/j.scitotenv.2023.167685

    28. [28]

      Y.Y. Wang, S. Zhao, Y.W. Zhang, J.S. Fang, W.X. Chen, S.H. Yuan, Y.M. Zhou, ACS Sustain. Chem. Eng. 6 (2018) 10200, DOI: 10.1021/acssuschemeng.8b01499.  doi: 10.1021/acssuschemeng.8b01499

    29. [29]

      Y.L. Song, Z.Y. Li, C.R. Yang, X.J. Zhang, Q. Wang, X.Y. Wen, H.Z. Zhang, L. Huang, Sep. Purif. Technol. 338 (2024) 126548, DOI: 10.1016/j.seppur.2024.126548.  doi: 10.1016/j.seppur.2024.126548

    30. [30]

      H.Y. Sun, W.X. Jiang, N. Jiang, G.L. Yu, H. Guo, J. Li, Sep. Purif. Technol. 346 (2024) 127347, DOI: 10.1016/j.seppur.2024.127347.  doi: 10.1016/j.seppur.2024.127347

    31. [31]

      S.D. Sun, J. Li, P. Song, J. Cui, Q. Yang, X. Zheng, Z.M. Yang, S.H. Liang, Appl. Surf. Sci. 500 (2020) 143985, DOI: 10.1016/j.apsusc.2019.143985.  doi: 10.1016/j.apsusc.2019.143985

    32. [32]

      X.H. Cong, A.M. Li, F. Guo, H.T. Qin, X.H. Zhang, W.Z. Wang, W.L. Xu, Sci. Total Environ. 913 (2024) 169777, DOI: 10.1016/j.scitotenv.2023.169777.  doi: 10.1016/j.scitotenv.2023.169777

    33. [33]

      Y.Y. Cui, J.F. Zhang, H.L. Chu, L.X. Sun, K. Dai, Acta Phys. -Chim. Sin. 40 (2024) 2405016, DOI: 10.3866/PKU.WHXB202405016.  doi: 10.3866/PKU.WHXB202405016

    34. [34]

      H. Yang, Z.L. Wang, J.F. Zhang, K. Dai, J.X. Low, J. Materiomics 11 (2025) 100996, DOI: 10.1016/j.jmat.2024.100996.  doi: 10.1016/j.jmat.2024.100996

    35. [35]

      X.T. Xu, C.F. Shao, J.F. Zhang, Z.L. Wang, K. Dai, Acta Phys. -Chim. Sin. 40 (2024) 2309031, DOI: 10.3866/PKU.WHXB202309031.  doi: 10.3866/PKU.WHXB202309031

    36. [36]

      C.J. You, C.C. Wang, M.J. Cai, Y.P. Liu, B.K. Zhu, S.J. Li, Acta Phys. -Chim. Sin. 40 (2024) 2407014, DOI: 10.3866/PKU.WHXB202407014.  doi: 10.3866/PKU.WHXB202407014

    37. [37]

      S.J. Li, K.X. Dong, M.J. Cai, X.Y. Li, X.B. Chen, eScience 4 (2024) 100208, DOI: 10.1016/j.esci.2023.100208.  doi: 10.1016/j.esci.2023.100208

    38. [38]

      M.J. Cai, Y.P. Liu, K.X. Dong, X.B. Chen, S.J. Li, Chin. J. Catal. 52 (2023) 239, DOI: 10.1016/S1872-2067(23)64496-1.  doi: 10.1016/S1872-2067(23)64496-1

    39. [39]

      S. Mohd, T.H. Alabdulaal, U. Mohd, R.M.R. Vasudeva, Chemosphere 338 (2023) 139432, DOI: 10.1016/j.chemosphere.2023.139432.  doi: 10.1016/j.chemosphere.2023.139432

    40. [40]

      J.W. Fu, Q.L. Xu, J.X. Low, C.J. Jiang, J.G. Yu, Appl. Catal. B: Environ. 243 (2019) 556, DOI: 10.1016/j.apcatb.2018.11.011.  doi: 10.1016/j.apcatb.2018.11.011

    41. [41]

      Y.J. Zhou, L.X. Zhang, W.M. Huang, Q.L. Kong, X.Q. Fan, M. Wang, J.L. Shi, Carbon 99 (2016) 111, DOI: 10.1016/j.carbon.2015.12.008.  doi: 10.1016/j.carbon.2015.12.008

    42. [42]

      Y. Hou, Z.H. Wen, S.M. Cui, X.R. Guo, J.H. Chen, Adv. Mater. 25 (2013) 6291, DOI: 10.1002/adma.201303116.  doi: 10.1002/adma.201303116

    43. [43]

      Y. Zhao, F. Zhao, X.P. Wang, C.Y. Xu, Z.P. Zhang, G.Q. Shi, L.T. Qu, Angew. Chem. Int. Ed. 53 (2014) 13934, DOI: 10.1002/anie.201409080.  doi: 10.1002/anie.201409080

    44. [44]

      P. Chen, X.X. Ou, C.J. Xia, K.X. Wang, M.Y. Zhang, M.L. Wei, Y.M. Wang, Sep. Purif. Technol. 349 (2024) 127866, DOI: 10.1016/j.seppur.2024.127866.  doi: 10.1016/j.seppur.2024.127866

    45. [45]

      L. Yan, Y.F. Wang, H.D. Shen, Y. Zhang, J. Li, D.J. Wang, Appl. Surf. Sci. 393 (2017) 496, DOI: 10.1016/j.apsusc.2016.10.039.  doi: 10.1016/j.apsusc.2016.10.039

    46. [46]

      J.J. Wang, L. Tang, G.M. Zeng, Y.C. Deng, Y.N. Liu, L.L. Wang, Y.Y. Zhou, Z. Guo, J.J. Wang, C. Zhang, Appl. Catal. B: Environ. 209 (2017) 285, DOI: 10.1016/j.apcatb.2017.03.019.  doi: 10.1016/j.apcatb.2017.03.019

    47. [47]

      A. Gordanshekan, S. Arabian, A.R. Solaimany Nazar, M. Farhadian, S. Tangestaninejad, Chem. Eng. J. 451 (2023) 139067, DOI: 10.1016/j.cej.2022.139067.  doi: 10.1016/j.cej.2022.139067

    48. [48]

      Z.Y. Chen, Y.F. Li, F. Tian, X. Chen, Z.S. Wu, Sep. Purif. Technol. 287 (2022) 120507, DOI: 10.1016/j.seppur.2022.120507.  doi: 10.1016/j.seppur.2022.120507

    49. [49]

      D.D. Zhu, Q.X. Zhou, Appl. Catal. B: Environ. 268 (2020) 118426, DOI: 10.1016/j.apcatb.2019.118426.  doi: 10.1016/j.apcatb.2019.118426

    50. [50]

      F.Y. Du, Z. Lai, H.Y. Tang, H.Y. Wang, C.X. Zhao, J. Environ. Sci. 124 (2023) 617, DOI: 10.1016/j.jes.2021.10.027.  doi: 10.1016/j.jes.2021.10.027

    51. [51]

      C.Y. Yang, H. Chai, P. Xu, P. Wang, X.J. Wang, T.Y. Shen, Q.Z. Zheng, G.S. Zhang, Sep. Purif. Technol. 288 (2022) 120609, DOI: 10.1016/j.seppur.2022.120609.  doi: 10.1016/j.seppur.2022.120609

    52. [52]

      S. Bai, F.P. Zhang, Y.F. Zhang, J. Alloy. Compd. 1005 (2024) 176137, DOI: 10.1016/j.jallcom.2024.176137.  doi: 10.1016/j.jallcom.2024.176137

    53. [53]

      H.Y. Wang, Y.F. Li, M.Y. Dou, G. Yang, R.X. Yang, X.S. Duan, L.Q. Kong, H.J. Zhu, H. Yang, J.M. Dou, J. Alloy. Compd. 1010 (2025) 177669, DOI: 10.1016/j.jallcom.2024.177669.  doi: 10.1016/j.jallcom.2024.177669

    54. [54]

      Y.Y. Zhao, X.H. Liang, Y.B. Wang, H.X. Shi, E.Z. Liu, J. Fan, X.Y. Hu, J. Colloid Inter. Sci. 523 (2018) 7, DOI: 10.1016/j.jcis.2018.03.078.  doi: 10.1016/j.jcis.2018.03.078

    55. [55]

      Y. Jing, A.D. Fan, J.X. Guo, T. Shen, S.D. Yuan, Y.H. Chu, Chem. Eng. J. 429 (2022) 132193, DOI: 10.1016/j.cej.2021.132193.  doi: 10.1016/j.cej.2021.132193

    56. [56]

      Z.F. Jiang, W.M. Wan, H.M. Li, S.Q. Yuan, H.J. Zhao, P.K. Wong, Adv. Mater. 30 (2018) 1706108, DOI: 10.1002/adma.201706108.(accessed2024/09/18).  doi: 10.1002/adma.201706108.(accessed2024/09/18)

    57. [57]

      Y.P. Li, H. Wang, L.Y. Huang, C.B. Wang, Q. Wang, F. Zhang, X.H. Fan, M. Xie, H.M. Li, J. Alloy. Compd. 816 (2020) 152665, DOI: 10.1016/j.jallcom.2019.152665.  doi: 10.1016/j.jallcom.2019.152665

    58. [58]

      L.Y. Huang, H. Xu, R.X. Zhang, X.N. Cheng, J.X. Xia, Y.G. Xu, H.M. Li, Appl. Surf. Sci. 283 (2013) 25, DOI: 10.1016/j.apsusc.2013.05.106.  doi: 10.1016/j.apsusc.2013.05.106

    59. [59]

      H.W. He, Z.L. Wang, J.F. Zhang, C.F. Shao, K. Dai, K. Fan, Adv. Funct. Mater. 34 (2024) 2315426, DOI: 10.1002/adfm.202315426.(accessed2025/03/24).  doi: 10.1002/adfm.202315426.(accessed2025/03/24)

    60. [60]

      Q.M. Qiao, Y.L. Xu, D.J. Zhong, X.H. Ke, Y.Q. Yang, H.L. Zeng, J. Mol. Liq. 414 (2024) 126208, DOI: 10.1016/j.molliq.2024.126208.  doi: 10.1016/j.molliq.2024.126208

    61. [61]

      D.D. Chen, Z.L. Wang, J.W. Fu, J.F. Zhang, K. Dai, Sci. China Mater. 67 (2024) 541, DOI: 10.1007/s40843-023-2770-8.  doi: 10.1007/s40843-023-2770-8

    62. [62]

      Y.Z. Hong, Y.H. Jiang, C.S. Li, W.Q. Fan, X. Yan, M. Yan, W.D. Shi, Appl. Catal. B: Environ. 180 (2016) 663, DOI: 10.1016/j.apcatb.2015.06.057.  doi: 10.1016/j.apcatb.2015.06.057

    63. [63]

      R.A. Rather, M. Khan, I.M.C. Lo, J. Catal. 366 (2018) 28, DOI: 10.1016/j.jcat.2018.07.027.  doi: 10.1016/j.jcat.2018.07.027

    64. [64]

      L.K. Ge, J.W. Chen, X.X. Wei, S.Y. Zhang, X.L. Qiao, X.Y. Cai, Q. Xie, Environ. Sci. Technol. 44 (2010) 2400, DOI: 10.1021/es902852v.  doi: 10.1021/es902852v

    65. [65]

      J. Rashid, A. Abbas, L.C. Chang, A. Iqbal, I.U. Haq, A. Rehman, S.U. Awan, M. Arshad, M. Rafique, M.A. Barakat, Sci. Total Environ. 665 (2019) 668, DOI: 10.1016/j.scitotenv.2019.02.145.  doi: 10.1016/j.scitotenv.2019.02.145

    66. [66]

      L.X. Wang, C.B. Bie, J.G. Yu, Trend Chem. 4 (2022) 973, DOI: 10.1016/j.trechm.2022.08.008.  doi: 10.1016/j.trechm.2022.08.008

    67. [67]

      Q.L. Xu, R.A. He, Y.J. Li, Acta Phys. Chim. Sin. 39 (2022) 2211009, DOI: 10.3866/pku.whxb202211009.  doi: 10.3866/pku.whxb202211009

    68. [68]

      J.W. Yan, L. Gong, S.Y. Chai, C. Guo, W. Zhang, H.Y. Wan, Chem. Eng. J. 458 (2023) 141456, DOI: 10.1016/j.cej.2023.141456.  doi: 10.1016/j.cej.2023.141456

    69. [69]

      Y.X. Tian, S.C. Luo, E.H. Dawolo, B.F. Chen, N. Ding, H. Liu, J. Environ. Chem. Eng. 12 (2024) 114150, DOI: 10.1016/j.jece.2024.114150.  doi: 10.1016/j.jece.2024.114150

    70. [70]

      W.K. Pei, Y. Wang, Y.J. Liu, L. Zhou, J.Y. Lei, J.L. Zhang, Sep. Purif. Technol. 344 (2024) 127157, DOI: 10.1016/j.seppur.2024.127157.  doi: 10.1016/j.seppur.2024.127157

    71. [71]

      L. Li, C.G. Niu, H. Guo, J. Wang, M. Ruan, L. Zhang, C. Liang, H.Y. Liu, Y.Y. Yang, Chem. Eng. J. 383 (2020) 123192, DOI: 10.1016/j.cej.2019.123192.  doi: 10.1016/j.cej.2019.123192

    72. [72]

      C.F. Gao, Y. Sun, S.S. Yu, L.F. Liu, C.Y. Liu, Y.H. Li, H.B. Wang, X.B. Chang, Chem. Eng. J. 500 (2024) 156944, DOI: 10.1016/j.cej.2024.156944.  doi: 10.1016/j.cej.2024.156944

    73. [73]

      C.S. Ding, Y.Q. Lu, J. Guo, W. Gan, S.H. Qi, Z.Z. Yin, M. Zhang, Z.Q. Sun, Chem. Eng. J. 450 (2022) 138271, DOI:10.1016/j.cej.2022.138271.  doi: 10.1016/j.cej.2022.138271

  • 加载中
    1. [1]

      Shijie Li Ke Rong Xiaoqin Wang Chuqi Shen Fang Yang Qinghong Zhang . Design of Carbon Quantum Dots/CdS/Ta3N5 S-Scheme Heterojunction Nanofibers for Efficient Photocatalytic Antibiotic Removal. Acta Physico-Chimica Sinica, 2024, 40(12): 2403005-. doi: 10.3866/PKU.WHXB202403005

    2. [2]

      Changjun You Chunchun Wang Mingjie Cai Yanping Liu Baikang Zhu Shijie Li . 引入内建电场强化BiOBr/C3N5 S型异质结中光载流子分离以实现高效催化降解微污染物. Acta Physico-Chimica Sinica, 2024, 40(11): 2407014-. doi: 10.3866/PKU.WHXB202407014

    3. [3]

      Kexin Dong Chuqi Shen Ruyu Yan Yanping Liu Chunqiang Zhuang Shijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-. doi: 10.3866/PKU.WHXB202310013

    4. [4]

      Yang Xia Kangyan Zhang Heng Yang Lijuan Shi Qun Yi . 构建双通道路径增强iCOF/Bi2O3 S型异质结在纯水体系中光催化合成H2O2性能. Acta Physico-Chimica Sinica, 2024, 40(11): 2407012-. doi: 10.3866/PKU.WHXB202407012

    5. [5]

      Chenye An Abiduweili Sikandaier Xue Guo Yukun Zhu Hua Tang Dongjiang Yang . 红磷纳米颗粒嵌入花状CeO2分级S型异质结高效光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2405019-. doi: 10.3866/PKU.WHXB202405019

    6. [6]

      Jiajie CaiChang ChengBowen LiuJianjun ZhangChuanjia JiangBei Cheng . CdS/DBTSO-BDTO S-scheme photocatalyst for H2 production and its charge transfer dynamics. Acta Physico-Chimica Sinica, 2025, 41(8): 100084-0. doi: 10.1016/j.actphy.2025.100084

    7. [7]

      Jinwang Wu Qijing Xie Chengliang Zhang Haifeng Shi . 自旋极化增强ZnFe1.2Co0.8O4/BiVO4 S型异质结光催化性能降解四环素. Acta Physico-Chimica Sinica, 2025, 41(5): 100050-. doi: 10.1016/j.actphy.2025.100050

    8. [8]

      Xuejiao Wang Suiying Dong Kezhen Qi Vadim Popkov Xianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-. doi: 10.3866/PKU.WHXB202408005

    9. [9]

      Yuejiao An Wenxuan Liu Yanfeng Zhang Jianjun Zhang Zhansheng Lu . Revealing Photoinduced Charge Transfer Mechanism of SnO2/BiOBr S-Scheme Heterostructure for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2407021-. doi: 10.3866/PKU.WHXB202407021

    10. [10]

      Yingqi BAIHua ZHAOHuipeng LIXinran RENJun LI . Perovskite LaCoO3/g-C3N4 heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 480-490. doi: 10.11862/CJIC.20240259

    11. [11]

      Xinyu MiaoHao YangJie HeJing WangZhiliang Jin . Adjusting the electronic structure of Keggin-type polyoxometalates to construct S-scheme heterojunction for photocatalytic hydrogen evolution. Acta Physico-Chimica Sinica, 2025, 41(6): 100051-0. doi: 10.1016/j.actphy.2025.100051

    12. [12]

      Xiutao Xu Chunfeng Shao Jinfeng Zhang Zhongliao Wang Kai Dai . Rational Design of S-Scheme CeO2/Bi2MoO6 Microsphere Heterojunction for Efficient Photocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309031-. doi: 10.3866/PKU.WHXB202309031

    13. [13]

      Kaihui Huang Dejun Chen Xin Zhang Rongchen Shen Peng Zhang Difa Xu Xin Li . Constructing Covalent Triazine Frameworks/N-Doped Carbon-Coated Cu2O S-Scheme Heterojunctions for Boosting Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(12): 2407020-. doi: 10.3866/PKU.WHXB202407020

    14. [14]

      Wenlong WangWentao HaoLang HeJia QiaoNing LiChaoqiu ChenYong Qin . Bandgap and adsorption engineering of carbon dots/TiO2 S-scheme heterojunctions for enhanced photocatalytic CO2 methanation. Acta Physico-Chimica Sinica, 2025, 41(9): 100116-0. doi: 10.1016/j.actphy.2025.100116

    15. [15]

      Yadan LuoHao ZhengXin LiFengmin LiHua TangXilin She . Modulating reactive oxygen species in O, S co-doped C3N4 to enhance photocatalytic degradation of microplastics. Acta Physico-Chimica Sinica, 2025, 41(6): 100052-0. doi: 10.1016/j.actphy.2025.100052

    16. [16]

      Jiaxing Cai Wendi Xu Haoqiang Chi Qian Liu Wa Gao Li Shi Jingxiang Low Zhigang Zou Yong Zhou . 具有0D/2D界面的InOOH/ZnIn2S4空心球S型异质结用于增强光催化CO2转化性能. Acta Physico-Chimica Sinica, 2024, 40(11): 2407002-. doi: 10.3866/PKU.WHXB202407002

    17. [17]

      Peng LiYuanying CuiZhongliao WangGraham DawsonChunfeng ShaoKai Dai . Efficient interfacial charge transfer of CeO2/Bi19Br3S27 S-scheme heterojunction for boosted photocatalytic CO2 reduction. Acta Physico-Chimica Sinica, 2025, 41(6): 100065-0. doi: 10.1016/j.actphy.2025.100065

    18. [18]

      You Wu Chang Cheng Kezhen Qi Bei Cheng Jianjun Zhang Jiaguo Yu Liuyang Zhang . ZnO/D-A共轭聚合物S型异质结高效光催化产H2O2及其电荷转移动力学研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-. doi: 10.3866/PKU.WHXB202406027

    19. [19]

      Tieping CAOYuejun LIDawei SUN . Surface plasmon resonance effect enhanced photocatalytic CO2 reduction performance of S-scheme Bi2S3/TiO2 heterojunction. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 903-912. doi: 10.11862/CJIC.20240366

    20. [20]

      Yifan ZHAOQiyun MAOMeijing GUOGuoying ZHANGTongliang HU . Z-scheme bismuth-based multi-site heterojunction: Synthesis and hydrogen production from photocatalytic hydrogen production. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1318-1330. doi: 10.11862/CJIC.20250001

Metrics
  • PDF Downloads(0)
  • Abstract views(11)
  • HTML views(2)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return