S-scheme heterojunction g-C3N4/Bi2WO6 highly efficient degradation of levofloxacin: performance, mechanism and degradation pathway
- Corresponding author: Xiaoxia Ou, ouxiaoxia@dlnu.edu.cn
Citation:
Menglan Wei, Xiaoxia Ou, Yimeng Wang, Mengyuan Zhang, Fei Teng, Kaixuan Wang. S-scheme heterojunction g-C3N4/Bi2WO6 highly efficient degradation of levofloxacin: performance, mechanism and degradation pathway[J]. Acta Physico-Chimica Sinica,
;2025, 41(9): 100105.
doi:
10.1016/j.actphy.2025.100105
S. Arabian, A. Gordanshekan, M. Farhadian, A.R. Solaimany Nazar, S. Tangestaninejad, H. Sabzyan, Chem. Eng. J. 488 (2024) 150686, DOI: 10.1016/j.cej.2024.150686.
doi: 10.1016/j.cej.2024.150686
Y.Y. Wang, J.H. Yang, Z.X. Zhang, P.J. Zhao, Y.Q. Chen, Y. Guo, X.G. Luo, Int. J. Biol. Macromol. 269 (2024) 131885, DOI: 10.1016/j.ijbiomac.2024.131885.
doi: 10.1016/j.ijbiomac.2024.131885
Z.X. Huang, P.F. Zhu, M. Liu, X.Y. Xin, B. He, X.L. Li, Sep. Purif. Technol. 356 (2025) 129959, DOI: 10.1016/j.seppur.2024.129959.
doi: 10.1016/j.seppur.2024.129959
F.Y. Yang, M. Du, K.L. Yin, Z. Qiu, Ing, J.W. Zhao, C.L. Liu, G.X. Zhang, Y.J. Gao, H. Pang, Small 18 (2022) 2105715, DOI: 10.1002/smll.202105715.
doi: 10.1002/smll.202105715
B. Erim, Z. Ciğeroğlu, S. Şahin, Y. Vasseghian, Chemosphere 291 (2022) 132929, DOI: 10.1016/j.chemosphere.2021.132929.
doi: 10.1016/j.chemosphere.2021.132929
S.J. Li, C.C. Wang, Y.P. Liu, B. Xue, W. Jiang, Y. Liu, L.Y. Mo, X.B. Chen, Chem. Eng. J. 415 (2021) 128991, DOI: 10.1016/j.cej.2021.128991.
doi: 10.1016/j.cej.2021.128991
J.W. Yan, L. Gong, S.Y. Chai, C. Guo, W. Zhang, H.Y. Wan, Sep. Purif. Technol. 302 (2022) 122016, DOI: 10.1016/j.seppur.2022.122016.
doi: 10.1016/j.seppur.2022.122016
Z.P. Xing, J.Q. Zhang, J.Y. Cui, J.W. Yin, T.Y. Zhao, J.Y. Kuang, Z.Y. Xiu, N. Wan, W. Zhou, Appl. Catal. B: Environ. 225 (2018) 452, DOI: 10.1016/j.apcatb.2017.12.005.
doi: 10.1016/j.apcatb.2017.12.005
Y.Q. Bian, H.W. He, G. Dawson, J.F. Zhang, K. Dai, Sci. China Mater. 67 (2024) 514, DOI: 10.1007/s40843-023-2725-y.
doi: 10.1007/s40843-023-2725-y
D.L. Cao, N. Su, X.Y. Wang, X.Y. Wang, C.L. Xu, Z. Liu, J.T. Li, C.Y. Lu, J. Environ. Chem. Eng. 12 (2024) 112939, DOI: 10.1016/j.jece.2024.112939.
doi: 10.1016/j.jece.2024.112939
J.T. Shen, L. Qian, J.L. Huang, Y.F. Guo, Z.Z. Zhang, Sep. Purif. Technol. 275 (2021) 119239, DOI: 10.1016/j.seppur.2021.119239.
doi: 10.1016/j.seppur.2021.119239
P. Li, Y.Y. Cui, Z.L. Wang, G. Dawson, C.F. Shao, K. Dai, Acta Phys. –Chim. Sin. 41 (2025) 100065, DOI: 10.1016/j.actphy.2025.100065.
doi: 10.1016/j.actphy.2025.100065
T.T. Yang, J. Wang, Z.L. Wang, J.F. Zhang, K. Dai, Chin. J. Catal. 58 (2024) 157, DOI: 10.1016/S1872-2067(23)64607-8.
doi: 10.1016/S1872-2067(23)64607-8
S.J. Li, K. Rong, X.Q. Wang, C.Q. Shen, F. Yang, Q.H. Zhang, Acta Phys. –Chim. Sin. 40 (2024) 2403005, DOI: 10.3866/PKU.WHXB202403005.
doi: 10.3866/PKU.WHXB202403005
C.C. Wang, K. Rong, Y.P. Liu, F. Yang, S.J. Li, Sci. China Mater. 67 (2024) 562, DOI: 10.1007/s40843-023-2764-8.
doi: 10.1007/s40843-023-2764-8
S.J. Li, R.Y. Yan, M.J. Cai, W. Jiang, M.Y. Zhang, X. Li, J. Mater. Sci. & Technol. 164 (2023) 59, DOI: 10.1016/j.jmst.2023.05.009.
doi: 10.1016/j.jmst.2023.05.009
R. Liu, C.J. Zhang, R.J. Liu, Y. Sun, B.Q. Ren, Y.H. Tong, Y. Tao, J. Environ. Sci. 150 (2025) 657, DOI: 10.1016/j.jes.2024.03.033.
doi: 10.1016/j.jes.2024.03.033
J.J. Wang, X.Y. Lian, S.H. Chen, H. Li, K.Z. Xu, J. Colloid Inter. Sci. 610 (2022) 842, DOI: 10.1016/j.jcis.2021.11.131.
doi: 10.1016/j.jcis.2021.11.131
X.B. Zhang, H.J. Liu, Y.Q. Wang, S.L. Yang, Q. Chen, Z.Y. Zhao, Y. Yang, Q. Kuang, Z.X. Xie, Chem. Eng. J. 443 (2022) 136482, DOI: 10.1016/j.cej.2022.136482.
doi: 10.1016/j.cej.2022.136482
L.H. Meng, C. Zhao, H.Y. Chu, Y.H. Li, H.F. Fu, P. Wang, C.C. Wang, H.W. Huang, Chin. J. Catal. 59 (2024) 346, DOI: 10.1016/S1872-2067(23)64629-7.
doi: 10.1016/S1872-2067(23)64629-7
K.N. Van, H.T. Huu, V.N. Nguyen Thi, T.L. Le Thi, D.H. Truong, T.T. Truong, N.N. Dao, V. Vo, D.L. Tran, Y. Vasseghian, Chemosphere 289 (2022) 133120, DOI: 10.1016/j.chemosphere.2021.133120.
doi: 10.1016/j.chemosphere.2021.133120
A. Alsulmi, N.N. Mohammed, M.M. Hassan, M.A. Eltawil, A.E. Amin, M. Fahmy, A. Sultan, M.A. Ahmed, Colloids and Surf. A: Physicochem. Eng. Asp. 689 (2024) 133683, DOI: 10.1016/j.colsurfa.2024.133683.
doi: 10.1016/j.colsurfa.2024.133683
W.W. Cao, X. Zhu, Q. Li, R. Yuan, H.J. Wang, Chem. Eng. J. 475 (2023) 146225, DOI: 10.1016/j.cej.2023.146225.
doi: 10.1016/j.cej.2023.146225
E.E. Elemike, I.C. Onunkwo, O.E. Ididama, O.E. Okorodudu, I.P. Okogbenin, O.R. Egbele, L. Hitler, S.E. Anwani, O.E. Udowa, Z.O. Ushurhe, H. Awikpe-Harrison, I. Muazu, A.E. Aziza, Int. J. Hydrogen Energy 70 (2024) 212, DOI: 10.1016/j.ijhydene.2024.05.174.
doi: 10.1016/j.ijhydene.2024.05.174
C.S. Tang, M. Cheng, C. Lai, L. Li, X.F. Yang, L. Du, G.X. Zhang, G.F. Wang, L. Yang, Coord. Chem. Rev. 474 (2023) 214846, DOI: 10.1016/j.ccr.2022.214846.
doi: 10.1016/j.ccr.2022.214846
N.F.F. Moreira, M.J. Sampaio, A.R. Ribeiro, C.G. Silva, J.L. Faria, A.M.T. Silva, Appl. Catal. B: Environ. 248 (2019) 184, DOI: 10.1016/j.apcatb.2019.02.001.
doi: 10.1016/j.apcatb.2019.02.001
O. Aldaghri, K.H. Ibnaouf, H. Idriss, A. Modwi, M. Bououdina, G.Z. Kyzas, Sci. Total Environ. 906 (2024) 167685, DOI: 10.1016/j.scitotenv.2023.167685.
doi: 10.1016/j.scitotenv.2023.167685
Y.Y. Wang, S. Zhao, Y.W. Zhang, J.S. Fang, W.X. Chen, S.H. Yuan, Y.M. Zhou, ACS Sustain. Chem. Eng. 6 (2018) 10200, DOI: 10.1021/acssuschemeng.8b01499.
doi: 10.1021/acssuschemeng.8b01499
Y.L. Song, Z.Y. Li, C.R. Yang, X.J. Zhang, Q. Wang, X.Y. Wen, H.Z. Zhang, L. Huang, Sep. Purif. Technol. 338 (2024) 126548, DOI: 10.1016/j.seppur.2024.126548.
doi: 10.1016/j.seppur.2024.126548
H.Y. Sun, W.X. Jiang, N. Jiang, G.L. Yu, H. Guo, J. Li, Sep. Purif. Technol. 346 (2024) 127347, DOI: 10.1016/j.seppur.2024.127347.
doi: 10.1016/j.seppur.2024.127347
S.D. Sun, J. Li, P. Song, J. Cui, Q. Yang, X. Zheng, Z.M. Yang, S.H. Liang, Appl. Surf. Sci. 500 (2020) 143985, DOI: 10.1016/j.apsusc.2019.143985.
doi: 10.1016/j.apsusc.2019.143985
X.H. Cong, A.M. Li, F. Guo, H.T. Qin, X.H. Zhang, W.Z. Wang, W.L. Xu, Sci. Total Environ. 913 (2024) 169777, DOI: 10.1016/j.scitotenv.2023.169777.
doi: 10.1016/j.scitotenv.2023.169777
Y.Y. Cui, J.F. Zhang, H.L. Chu, L.X. Sun, K. Dai, Acta Phys. -Chim. Sin. 40 (2024) 2405016, DOI: 10.3866/PKU.WHXB202405016.
doi: 10.3866/PKU.WHXB202405016
H. Yang, Z.L. Wang, J.F. Zhang, K. Dai, J.X. Low, J. Materiomics 11 (2025) 100996, DOI: 10.1016/j.jmat.2024.100996.
doi: 10.1016/j.jmat.2024.100996
X.T. Xu, C.F. Shao, J.F. Zhang, Z.L. Wang, K. Dai, Acta Phys. -Chim. Sin. 40 (2024) 2309031, DOI: 10.3866/PKU.WHXB202309031.
doi: 10.3866/PKU.WHXB202309031
C.J. You, C.C. Wang, M.J. Cai, Y.P. Liu, B.K. Zhu, S.J. Li, Acta Phys. -Chim. Sin. 40 (2024) 2407014, DOI: 10.3866/PKU.WHXB202407014.
doi: 10.3866/PKU.WHXB202407014
S.J. Li, K.X. Dong, M.J. Cai, X.Y. Li, X.B. Chen, eScience 4 (2024) 100208, DOI: 10.1016/j.esci.2023.100208.
doi: 10.1016/j.esci.2023.100208
M.J. Cai, Y.P. Liu, K.X. Dong, X.B. Chen, S.J. Li, Chin. J. Catal. 52 (2023) 239, DOI: 10.1016/S1872-2067(23)64496-1.
doi: 10.1016/S1872-2067(23)64496-1
S. Mohd, T.H. Alabdulaal, U. Mohd, R.M.R. Vasudeva, Chemosphere 338 (2023) 139432, DOI: 10.1016/j.chemosphere.2023.139432.
doi: 10.1016/j.chemosphere.2023.139432
J.W. Fu, Q.L. Xu, J.X. Low, C.J. Jiang, J.G. Yu, Appl. Catal. B: Environ. 243 (2019) 556, DOI: 10.1016/j.apcatb.2018.11.011.
doi: 10.1016/j.apcatb.2018.11.011
Y.J. Zhou, L.X. Zhang, W.M. Huang, Q.L. Kong, X.Q. Fan, M. Wang, J.L. Shi, Carbon 99 (2016) 111, DOI: 10.1016/j.carbon.2015.12.008.
doi: 10.1016/j.carbon.2015.12.008
Y. Hou, Z.H. Wen, S.M. Cui, X.R. Guo, J.H. Chen, Adv. Mater. 25 (2013) 6291, DOI: 10.1002/adma.201303116.
doi: 10.1002/adma.201303116
Y. Zhao, F. Zhao, X.P. Wang, C.Y. Xu, Z.P. Zhang, G.Q. Shi, L.T. Qu, Angew. Chem. Int. Ed. 53 (2014) 13934, DOI: 10.1002/anie.201409080.
doi: 10.1002/anie.201409080
P. Chen, X.X. Ou, C.J. Xia, K.X. Wang, M.Y. Zhang, M.L. Wei, Y.M. Wang, Sep. Purif. Technol. 349 (2024) 127866, DOI: 10.1016/j.seppur.2024.127866.
doi: 10.1016/j.seppur.2024.127866
L. Yan, Y.F. Wang, H.D. Shen, Y. Zhang, J. Li, D.J. Wang, Appl. Surf. Sci. 393 (2017) 496, DOI: 10.1016/j.apsusc.2016.10.039.
doi: 10.1016/j.apsusc.2016.10.039
J.J. Wang, L. Tang, G.M. Zeng, Y.C. Deng, Y.N. Liu, L.L. Wang, Y.Y. Zhou, Z. Guo, J.J. Wang, C. Zhang, Appl. Catal. B: Environ. 209 (2017) 285, DOI: 10.1016/j.apcatb.2017.03.019.
doi: 10.1016/j.apcatb.2017.03.019
A. Gordanshekan, S. Arabian, A.R. Solaimany Nazar, M. Farhadian, S. Tangestaninejad, Chem. Eng. J. 451 (2023) 139067, DOI: 10.1016/j.cej.2022.139067.
doi: 10.1016/j.cej.2022.139067
Z.Y. Chen, Y.F. Li, F. Tian, X. Chen, Z.S. Wu, Sep. Purif. Technol. 287 (2022) 120507, DOI: 10.1016/j.seppur.2022.120507.
doi: 10.1016/j.seppur.2022.120507
D.D. Zhu, Q.X. Zhou, Appl. Catal. B: Environ. 268 (2020) 118426, DOI: 10.1016/j.apcatb.2019.118426.
doi: 10.1016/j.apcatb.2019.118426
F.Y. Du, Z. Lai, H.Y. Tang, H.Y. Wang, C.X. Zhao, J. Environ. Sci. 124 (2023) 617, DOI: 10.1016/j.jes.2021.10.027.
doi: 10.1016/j.jes.2021.10.027
C.Y. Yang, H. Chai, P. Xu, P. Wang, X.J. Wang, T.Y. Shen, Q.Z. Zheng, G.S. Zhang, Sep. Purif. Technol. 288 (2022) 120609, DOI: 10.1016/j.seppur.2022.120609.
doi: 10.1016/j.seppur.2022.120609
S. Bai, F.P. Zhang, Y.F. Zhang, J. Alloy. Compd. 1005 (2024) 176137, DOI: 10.1016/j.jallcom.2024.176137.
doi: 10.1016/j.jallcom.2024.176137
H.Y. Wang, Y.F. Li, M.Y. Dou, G. Yang, R.X. Yang, X.S. Duan, L.Q. Kong, H.J. Zhu, H. Yang, J.M. Dou, J. Alloy. Compd. 1010 (2025) 177669, DOI: 10.1016/j.jallcom.2024.177669.
doi: 10.1016/j.jallcom.2024.177669
Y.Y. Zhao, X.H. Liang, Y.B. Wang, H.X. Shi, E.Z. Liu, J. Fan, X.Y. Hu, J. Colloid Inter. Sci. 523 (2018) 7, DOI: 10.1016/j.jcis.2018.03.078.
doi: 10.1016/j.jcis.2018.03.078
Y. Jing, A.D. Fan, J.X. Guo, T. Shen, S.D. Yuan, Y.H. Chu, Chem. Eng. J. 429 (2022) 132193, DOI: 10.1016/j.cej.2021.132193.
doi: 10.1016/j.cej.2021.132193
Z.F. Jiang, W.M. Wan, H.M. Li, S.Q. Yuan, H.J. Zhao, P.K. Wong, Adv. Mater. 30 (2018) 1706108, DOI: 10.1002/adma.201706108.(accessed2024/09/18).
doi: 10.1002/adma.201706108.(accessed2024/09/18)
Y.P. Li, H. Wang, L.Y. Huang, C.B. Wang, Q. Wang, F. Zhang, X.H. Fan, M. Xie, H.M. Li, J. Alloy. Compd. 816 (2020) 152665, DOI: 10.1016/j.jallcom.2019.152665.
doi: 10.1016/j.jallcom.2019.152665
L.Y. Huang, H. Xu, R.X. Zhang, X.N. Cheng, J.X. Xia, Y.G. Xu, H.M. Li, Appl. Surf. Sci. 283 (2013) 25, DOI: 10.1016/j.apsusc.2013.05.106.
doi: 10.1016/j.apsusc.2013.05.106
H.W. He, Z.L. Wang, J.F. Zhang, C.F. Shao, K. Dai, K. Fan, Adv. Funct. Mater. 34 (2024) 2315426, DOI: 10.1002/adfm.202315426.(accessed2025/03/24).
doi: 10.1002/adfm.202315426.(accessed2025/03/24)
Q.M. Qiao, Y.L. Xu, D.J. Zhong, X.H. Ke, Y.Q. Yang, H.L. Zeng, J. Mol. Liq. 414 (2024) 126208, DOI: 10.1016/j.molliq.2024.126208.
doi: 10.1016/j.molliq.2024.126208
D.D. Chen, Z.L. Wang, J.W. Fu, J.F. Zhang, K. Dai, Sci. China Mater. 67 (2024) 541, DOI: 10.1007/s40843-023-2770-8.
doi: 10.1007/s40843-023-2770-8
Y.Z. Hong, Y.H. Jiang, C.S. Li, W.Q. Fan, X. Yan, M. Yan, W.D. Shi, Appl. Catal. B: Environ. 180 (2016) 663, DOI: 10.1016/j.apcatb.2015.06.057.
doi: 10.1016/j.apcatb.2015.06.057
R.A. Rather, M. Khan, I.M.C. Lo, J. Catal. 366 (2018) 28, DOI: 10.1016/j.jcat.2018.07.027.
doi: 10.1016/j.jcat.2018.07.027
L.K. Ge, J.W. Chen, X.X. Wei, S.Y. Zhang, X.L. Qiao, X.Y. Cai, Q. Xie, Environ. Sci. Technol. 44 (2010) 2400, DOI: 10.1021/es902852v.
doi: 10.1021/es902852v
J. Rashid, A. Abbas, L.C. Chang, A. Iqbal, I.U. Haq, A. Rehman, S.U. Awan, M. Arshad, M. Rafique, M.A. Barakat, Sci. Total Environ. 665 (2019) 668, DOI: 10.1016/j.scitotenv.2019.02.145.
doi: 10.1016/j.scitotenv.2019.02.145
L.X. Wang, C.B. Bie, J.G. Yu, Trend Chem. 4 (2022) 973, DOI: 10.1016/j.trechm.2022.08.008.
doi: 10.1016/j.trechm.2022.08.008
Q.L. Xu, R.A. He, Y.J. Li, Acta Phys. Chim. Sin. 39 (2022) 2211009, DOI: 10.3866/pku.whxb202211009.
doi: 10.3866/pku.whxb202211009
J.W. Yan, L. Gong, S.Y. Chai, C. Guo, W. Zhang, H.Y. Wan, Chem. Eng. J. 458 (2023) 141456, DOI: 10.1016/j.cej.2023.141456.
doi: 10.1016/j.cej.2023.141456
Y.X. Tian, S.C. Luo, E.H. Dawolo, B.F. Chen, N. Ding, H. Liu, J. Environ. Chem. Eng. 12 (2024) 114150, DOI: 10.1016/j.jece.2024.114150.
doi: 10.1016/j.jece.2024.114150
W.K. Pei, Y. Wang, Y.J. Liu, L. Zhou, J.Y. Lei, J.L. Zhang, Sep. Purif. Technol. 344 (2024) 127157, DOI: 10.1016/j.seppur.2024.127157.
doi: 10.1016/j.seppur.2024.127157
L. Li, C.G. Niu, H. Guo, J. Wang, M. Ruan, L. Zhang, C. Liang, H.Y. Liu, Y.Y. Yang, Chem. Eng. J. 383 (2020) 123192, DOI: 10.1016/j.cej.2019.123192.
doi: 10.1016/j.cej.2019.123192
C.F. Gao, Y. Sun, S.S. Yu, L.F. Liu, C.Y. Liu, Y.H. Li, H.B. Wang, X.B. Chang, Chem. Eng. J. 500 (2024) 156944, DOI: 10.1016/j.cej.2024.156944.
doi: 10.1016/j.cej.2024.156944
C.S. Ding, Y.Q. Lu, J. Guo, W. Gan, S.H. Qi, Z.Z. Yin, M. Zhang, Z.Q. Sun, Chem. Eng. J. 450 (2022) 138271, DOI:10.1016/j.cej.2022.138271.
doi: 10.1016/j.cej.2022.138271
Shijie Li , Ke Rong , Xiaoqin Wang , Chuqi Shen , Fang Yang , Qinghong Zhang . Design of Carbon Quantum Dots/CdS/Ta3N5 S-Scheme Heterojunction Nanofibers for Efficient Photocatalytic Antibiotic Removal. Acta Physico-Chimica Sinica, 2024, 40(12): 2403005-. doi: 10.3866/PKU.WHXB202403005
Changjun You , Chunchun Wang , Mingjie Cai , Yanping Liu , Baikang Zhu , Shijie Li . 引入内建电场强化BiOBr/C3N5 S型异质结中光载流子分离以实现高效催化降解微污染物. Acta Physico-Chimica Sinica, 2024, 40(11): 2407014-. doi: 10.3866/PKU.WHXB202407014
Kexin Dong , Chuqi Shen , Ruyu Yan , Yanping Liu , Chunqiang Zhuang , Shijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-. doi: 10.3866/PKU.WHXB202310013
Yang Xia , Kangyan Zhang , Heng Yang , Lijuan Shi , Qun Yi . 构建双通道路径增强iCOF/Bi2O3 S型异质结在纯水体系中光催化合成H2O2性能. Acta Physico-Chimica Sinica, 2024, 40(11): 2407012-. doi: 10.3866/PKU.WHXB202407012
Chenye An , Abiduweili Sikandaier , Xue Guo , Yukun Zhu , Hua Tang , Dongjiang Yang . 红磷纳米颗粒嵌入花状CeO2分级S型异质结高效光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2405019-. doi: 10.3866/PKU.WHXB202405019
Jiajie Cai , Chang Cheng , Bowen Liu , Jianjun Zhang , Chuanjia Jiang , Bei Cheng . CdS/DBTSO-BDTO S-scheme photocatalyst for H2 production and its charge transfer dynamics. Acta Physico-Chimica Sinica, 2025, 41(8): 100084-0. doi: 10.1016/j.actphy.2025.100084
Jinwang Wu , Qijing Xie , Chengliang Zhang , Haifeng Shi . 自旋极化增强ZnFe1.2Co0.8O4/BiVO4 S型异质结光催化性能降解四环素. Acta Physico-Chimica Sinica, 2025, 41(5): 100050-. doi: 10.1016/j.actphy.2025.100050
Xuejiao Wang , Suiying Dong , Kezhen Qi , Vadim Popkov , Xianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-. doi: 10.3866/PKU.WHXB202408005
Yuejiao An , Wenxuan Liu , Yanfeng Zhang , Jianjun Zhang , Zhansheng Lu . Revealing Photoinduced Charge Transfer Mechanism of SnO2/BiOBr S-Scheme Heterostructure for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2407021-. doi: 10.3866/PKU.WHXB202407021
Yingqi BAI , Hua ZHAO , Huipeng LI , Xinran REN , Jun LI . Perovskite LaCoO3/g-C3N4 heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 480-490. doi: 10.11862/CJIC.20240259
Xinyu Miao , Hao Yang , Jie He , Jing Wang , Zhiliang Jin . Adjusting the electronic structure of Keggin-type polyoxometalates to construct S-scheme heterojunction for photocatalytic hydrogen evolution. Acta Physico-Chimica Sinica, 2025, 41(6): 100051-0. doi: 10.1016/j.actphy.2025.100051
Xiutao Xu , Chunfeng Shao , Jinfeng Zhang , Zhongliao Wang , Kai Dai . Rational Design of S-Scheme CeO2/Bi2MoO6 Microsphere Heterojunction for Efficient Photocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309031-. doi: 10.3866/PKU.WHXB202309031
Kaihui Huang , Dejun Chen , Xin Zhang , Rongchen Shen , Peng Zhang , Difa Xu , Xin Li . Constructing Covalent Triazine Frameworks/N-Doped Carbon-Coated Cu2O S-Scheme Heterojunctions for Boosting Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(12): 2407020-. doi: 10.3866/PKU.WHXB202407020
Wenlong Wang , Wentao Hao , Lang He , Jia Qiao , Ning Li , Chaoqiu Chen , Yong Qin . Bandgap and adsorption engineering of carbon dots/TiO2 S-scheme heterojunctions for enhanced photocatalytic CO2 methanation. Acta Physico-Chimica Sinica, 2025, 41(9): 100116-0. doi: 10.1016/j.actphy.2025.100116
Yadan Luo , Hao Zheng , Xin Li , Fengmin Li , Hua Tang , Xilin She . Modulating reactive oxygen species in O, S co-doped C3N4 to enhance photocatalytic degradation of microplastics. Acta Physico-Chimica Sinica, 2025, 41(6): 100052-0. doi: 10.1016/j.actphy.2025.100052
Jiaxing Cai , Wendi Xu , Haoqiang Chi , Qian Liu , Wa Gao , Li Shi , Jingxiang Low , Zhigang Zou , Yong Zhou . 具有0D/2D界面的InOOH/ZnIn2S4空心球S型异质结用于增强光催化CO2转化性能. Acta Physico-Chimica Sinica, 2024, 40(11): 2407002-. doi: 10.3866/PKU.WHXB202407002
Peng Li , Yuanying Cui , Zhongliao Wang , Graham Dawson , Chunfeng Shao , Kai Dai . Efficient interfacial charge transfer of CeO2/Bi19Br3S27 S-scheme heterojunction for boosted photocatalytic CO2 reduction. Acta Physico-Chimica Sinica, 2025, 41(6): 100065-0. doi: 10.1016/j.actphy.2025.100065
You Wu , Chang Cheng , Kezhen Qi , Bei Cheng , Jianjun Zhang , Jiaguo Yu , Liuyang Zhang . ZnO/D-A共轭聚合物S型异质结高效光催化产H2O2及其电荷转移动力学研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-. doi: 10.3866/PKU.WHXB202406027
Tieping CAO , Yuejun LI , Dawei SUN . Surface plasmon resonance effect enhanced photocatalytic CO2 reduction performance of S-scheme Bi2S3/TiO2 heterojunction. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 903-912. doi: 10.11862/CJIC.20240366
Yifan ZHAO , Qiyun MAO , Meijing GUO , Guoying ZHANG , Tongliang HU . Z-scheme bismuth-based multi-site heterojunction: Synthesis and hydrogen production from photocatalytic hydrogen production. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1318-1330. doi: 10.11862/CJIC.20250001