Citation: Jingping Li, Suding Yan, Jiaxi Wu, Qiang Cheng, Kai Wang. Improving hydrogen peroxide photosynthesis over inorganic/organic S-scheme photocatalyst with LiFePO4[J]. Acta Physico-Chimica Sinica, ;2025, 41(9): 100104. doi: 10.1016/j.actphy.2025.100104 shu

Improving hydrogen peroxide photosynthesis over inorganic/organic S-scheme photocatalyst with LiFePO4

  • Corresponding author: Suding Yan, yansd@hbnu.edu.cn Kai Wang, wangkai@hbnu.edu.cn
  • Received Date: 1 April 2025
    Revised Date: 5 May 2025
    Accepted Date: 11 May 2025

    Fund Project: the National Natural Science Foundation of China 22378104Hubei Provincial Natural Science Foundation of China 2025AFA093Hubei Provincial Natural Science Foundation of China 2022CFB504Outstanding Youth Science and Technology Innovation Team in Hubei Province T2023021

  • With the rapid development of new energy industries, the utilization of waste batteries has attracted the attention of researchers. Developing a hydrogen peroxide photosynthesis system with battery recycling materials as photocatalysts presents a significant challenge. In this study, an ultrasonic self-assembly technique is employed to integrate LiFePO4 (LFPO) nanoparticles, derived from spent batteries, with g-C3N4 (CN) nanosheets, thereby creating an inorganic/organic S-scheme photocatalyst for the production of H2O2. In situ analyses using X-ray photoelectron spectroscopy (XPS) and Kelvin probe force microscopy (KPFM) demonstrate that the interaction between LFPO and CN facilitates the development of an internal electric field (IEF), which in turn gives rise to a distinctive S-scheme charge transfer mechanism. Combining electron spin resonance spectroscopy, radical-trapping experiments, and in situ DRIFTS spectra, three pathways for H2O2 formation are identified. Benefited from enhanced carrier separation, strong redox power, and multichannel H2O2 formation, the optimal composite shows an impressive H2O2-production rate of 3.22 mol∙g−1∙h−1 under simulated solar irradiation. This research provides a potential method to investigate a sustainable H2O2 photosynthesis pathway by designing S-scheme heterojunctions from spent battery materials.
  • 加载中
    1. [1]

      C. Shao, Q. He, M. Zhang, L. Jia, Y. Ji, Y. Hu, Y. Li, W. Huang, Y. Li, Chin. J. Catal. 46 (2023) 28, https://doi.org/10.1016/S1872-2067(22)64205-0.  doi: 10.1016/S1872-2067(22)64205-0

    2. [2]

      X. Yin, H. Shi, Y. Wang, X. Wang, P. Wang, H. Yu, Acta Phys. -Chim. Sin. 40 (2024) 2312007, https://doi.org/10.3866/PKU.WHXB202312007.  doi: 10.3866/PKU.WHXB202312007

    3. [3]

      Y. Xu, W. Tai, Z. Wang, L. Zhang, D. Wang, J. Liao, Sci. China Mater. 67 (2024) 153, https://doi.org/10.1007/s40843-023-2659-9.  doi: 10.1007/s40843-023-2659-9

    4. [4]

      C. Ai, B. Luo, C. Zhang, Y. Wang, B. Wang, L. Ma, D. Jing, J. Mater. Sci. Technol. 196 (2024) 237, https://doi.org/10.1016/j.jmst.2024.01.065.  doi: 10.1016/j.jmst.2024.01.065

    5. [5]

      T. Zhou, X. Liu, L. Zhao, M. Qiao, W. Lei, Acta Phys. -Chim. Sin. 40 (2024) 2309020, https://doi.org/10.3866/PKU.WHXB202309020.  doi: 10.3866/PKU.WHXB202309020

    6. [6]

      H. Yu, X. Zhang, Q. Chen, P. Zhou, F. Xu, H. Wang, X. Chen, Chem. Res. Chin. Univ. (2025), https://doi.org/10.1007/s40242-024-4213-3.  doi: 10.1007/s40242-024-4213-3

    7. [7]

      Q. Zhang, H. Miao, J. Wang, T. Sun, E. Liu, Chin. J. Catal. 63 (2024) 176, https://doi.org/10.1016/S1872-2067(24)60077-X.  doi: 10.1016/S1872-2067(24)60077-X

    8. [8]

      Y. Zhang, J. Qiu, B. Zhu, G. Sun, B. Cheng, L. Wang, Chin. J. Catal. 57 (2024) 143, https://doi.org/10.1016/S1872-2067(23)64580-2.  doi: 10.1016/S1872-2067(23)64580-2

    9. [9]

      D. Yang, Y. Li, R. Chen, X. Wang, Z. Li, T. Xing, L. Wei, S. Xu, P. Dai, M. Wu, J. Mater. Sci. Technol. 183 (2024) 23, https://doi.org/10.1016/j.jmst.2023.09.049.  doi: 10.1016/j.jmst.2023.09.049

    10. [10]

      Q. Cheng, J. Li, Y. Huang, X. Liu, B. Zhou, Q. Xiong, K. Wang, Adv. Sci. (2025) 2500218, https://doi.org/10.1002/advs.202500218.  doi: 10.1002/advs.202500218

    11. [11]

      C. Bai, L. Liu, J. Chen, F. Chen, Z. Zhang, Y. Sun, X. Chen, Q. Yang, H. Yu, Nat. Commun. 15 (2024) 4718, https://doi.org/10.1038/s41467-024-49046-x.  doi: 10.1038/s41467-024-49046-x

    12. [12]

      K. Li, C. Liu, J. Li, G. Wang, K. Wang, Acta Phys. Chim. Sin. 40 (2024) 2403009, https://doi.org/10.3866/PKU.WHXB202403009.  doi: 10.3866/PKU.WHXB202403009

    13. [13]

      H. Ling, H. Sun, L. Lu, J. Zhang, L. Liao, J. Wang, X. Zhang, Y. Lan, R. Li, W. Lu, et al., Nat. Commun. 15 (2024) 9505, https://doi.org/10.1038/s41467-024-53896-w.  doi: 10.1038/s41467-024-53896-w

    14. [14]

      X. Zhang, D. Gao, B. Zhu, B. Cheng, J. Yu, H. Yu, Nat. Commun. 15 (2024) 3212, https://doi.org/10.1038/s41467-024-47624-7.  doi: 10.1038/s41467-024-47624-7

    15. [15]

      Y. Zhao, C. Yang, S. Zhang, G. Sun, B. Zhu, L. Wang, J. Zhang, Chin. J. Catal. 63 (2024) 258, https://doi.org/10.1016/S1872-2067(24)60069-0.  doi: 10.1016/S1872-2067(24)60069-0

    16. [16]

      K. Li, J. Mei, J. Li, Y. Liu, G. Wang, D. Hu, S. Yan, K. Wang, Sci. China Mater. 67 (2024) 484, https://doi.org/10.1007/s40843-023-2717-0.  doi: 10.1007/s40843-023-2717-0

    17. [17]

      T. Shan, Y. Wang, D. Luo, Z. Huang, F. Zhang, H. Wu, L. Huang, J. Li, L. Chen, H. Xiao, Appl. Catal. B Environ. 349 (2024) 123872, https://doi.org/10.1016/j.apcatb.2024.123872.  doi: 10.1016/j.apcatb.2024.123872

    18. [18]

      F. Chen, C. Bai, P. Duan, Z. Zhang, Y. Sun, X. Chen, Q. Yang, H. Yu, Nat. Commun. 15 (2024) 7783, https://doi.org/10.1038/s41467-024-52158-z.  doi: 10.1038/s41467-024-52158-z

    19. [19]

      K. Zhang, Y. Li, S. Yuan, L. Zhang, Q. Wang, Acta Phys. Chim. Sin. 39 (2023) 2212010, https://doi.org/10.3866/PKU.WHXB202212010.  doi: 10.3866/PKU.WHXB202212010

    20. [20]

      K. Wang, J. Li, X. Liu, Q. Cheng, Y. Du, D. Li, G. Wang, B. Liu, Appl. Catal. B Environ. 342 (2024), 123349, https://doi.org/10.1016/j.apcatb.2023.123349.  doi: 10.1016/j.apcatb.2023.123349

    21. [21]

      F. Liu, P. Zhou, Y. Hou, H. Tan, Y. Liang, J. Liang, Q. Zhang, S. Guo, M. Tong, J. Ni, Nat. Commun. 14 (2023) 4344, https://doi.org/10.1038/s41467-023-40007-4.  doi: 10.1038/s41467-023-40007-4

    22. [22]

      W. Zou, J. Li, R. Wang, J. Ma, Z. Chen, L. Duan, H. Mi, H. Chen, J. Hazard. Mater. 431 (2022) 128590, https://doi.org/10.1016/j.jhazmat.2022.128590.  doi: 10.1016/j.jhazmat.2022.128590

    23. [23]

      P. Wang, X. Lou, Q. Chen, Y. Liu, X. Sun, Y. Guo, X. Zhang, R. Wang, Z. Wang, S. Chen, et al., J. Environ. Res. 214 (2022) 113780, https://doi.org/10.1016/j.envres.2022.113780.  doi: 10.1016/j.envres.2022.113780

    24. [24]

      X. Yue, F. Zhang, Chem. Eng. J. 450 (2022) 138388, https://doi.org/10.1016/j.cej.2022.138388.  doi: 10.1016/j.cej.2022.138388

    25. [25]

      J. Guo, J. Zhang, C. Chen, Y. Lan, J. Taiwan. Inst. Chem. Eng. 62 (2016) 187, https://doi.org/10.1016/j.jtice.2016.02.003.  doi: 10.1016/j.jtice.2016.02.003

    26. [26]

      K. Wang, H. Qin, J. Li, Q. Cheng, Y. Zhu, H. Hu, J. Peng, S. Chen, G. Wang, S. Chou, et al., Appl. Catal. B Environ. 332 (2023) 122763, https://doi.org/10.1016/j.apcatb.2023.122763.  doi: 10.1016/j.apcatb.2023.122763

    27. [27]

      K. Wang, L. Jiang, T. Xin, Y. Li, X. Wu, G. Zhang, Chem. Eng. J. 429 (2022) 132229, https://doi.org/10.1016/j.cej.2021.132229.  doi: 10.1016/j.cej.2021.132229

    28. [28]

      J. Li, Q. Chai, R. Niu, W. Pan, Z. Chen, L. Wang, K. Wang, Z. Liu, Y. Liu, Y. Xiao, et al., Carbon Energy (2024) e598, https://doi.org/10.1002/cey2.598.  doi: 10.1002/cey2.598

    29. [29]

      W. Hou, H. Guo, K. Wang, T. Han, J. Zhang, M. Wu, L. Wang, Mater. Today 84 (2025) 1, https://doi.org/10.1016/j.mattod.2025.01.016.  doi: 10.1016/j.mattod.2025.01.016

    30. [30]

      K. Wang, H. Wang, Q. Cheng, C. Gao, G. Wang, X. Wu, J. Colloid. Interface Sci. 607 (2022) 1061, https://doi.org/10.1016/j.jcis.2021.09.034.  doi: 10.1016/j.jcis.2021.09.034

    31. [31]

      K. Wang, Q. Wang, K. Zhang, G. Wang, H. Wang, J. Mater. Sci. Technol. 124 (2022) 202, https://doi.org/10.1016/j.jmst.2021.10.059.  doi: 10.1016/j.jmst.2021.10.059

    32. [32]

      H. Liao, K. Huang, W. Hou, H. Guo, C. Lian, J. Zhang, Z. Liu, L. Wang, Adv. Powder Mater. 3 (2024) 100243, https://doi.org/10.1016/j.apmate.2024.100243.  doi: 10.1016/j.apmate.2024.100243

    33. [33]

      K. Wang, Y. Hu, X. Liu, J. Li, B. Liu, Nat. Commun. 16 (2025) 2094, https://doi.org/10.1038/s41467-025-57140-x.  doi: 10.1038/s41467-025-57140-x

    34. [34]

      C. Yang, Q. Zhang, W. Wang, B. Cheng, J. Yu, S. Cao, Sci. China Mater. 67 (2024) 1830, https://doi.org/10.1007/s40843-024-2789-0.  doi: 10.1007/s40843-024-2789-0

    35. [35]

      X. Shao, K. Wang, L. Peng, K. Li, H. Wen, X. Le, X. Wu, G. Wang, Colloid Surf. A 652 (2022) 129846, https://doi.org/10.1016/j.colsurfa.2022.129846.  doi: 10.1016/j.colsurfa.2022.129846

    36. [36]

      H. Ran, X. Liu, L. Ye, J. Fan, B. Zhu, Q. Xu, Y. Wei, J. Mater. Sci. Technol. 234 (2025) 24, https://doi.org/10.1016/j.jmst.2024.12.089.  doi: 10.1016/j.jmst.2024.12.089

    37. [37]

      K. Wang, C. Liu, J. Li, Q. Cheng, B. Liu, J. Li, Appl. Catal. B Environ. 361 (2025) 124560, https://doi.org/10.1016/j.apcatb.2024.124560.  doi: 10.1016/j.apcatb.2024.124560

    38. [38]

      M. Li, J. Wang, Z. Jin, Rare Met. 43 (2024) 1999, https://doi.org/10.1007/s12598-023-02539-y.  doi: 10.1007/s12598-023-02539-y

    39. [39]

      K. Wang, Q. Cheng, W. Hou, H. Guo, X. Wu, J. Wang, J. Li, Z. Liu, L. Wang, Adv. Funct. Mater. 34 (2023) 2309603, https://doi.org/10.1002/adfm.202309603.  doi: 10.1002/adfm.202309603

    40. [40]

      S. Wan, Y. Hou, W. Wang, G. Luo, C. Wang, R. Tu, S. Cao, Rare Met. 43 (2024) 5880, https://doi.org/10.1007/s12598-024-02861-z.  doi: 10.1007/s12598-024-02861-z

    41. [41]

      K. Meng, J. Zhang, B. Cheng, X. Ren, Z. Xia, F. Xu, L. Zhang, J. Yu, Adv. Mater. 36 (2024) 2406460, https://doi.org/10.1002/adma.202406460.  doi: 10.1002/adma.202406460

    42. [42]

      J. Qiu, K. Meng, Y. Zhang, B. Cheng, J. Zhang, L. Wang, J. Yu, Adv. Mater. 36 (2024) 2400288, https://doi.org/10.1002/adma.202400288.  doi: 10.1002/adma.202400288

    43. [43]

      Y. Wu, C. Cheng, K. Qi, B. Cheng, J. Zhang, J. Yu, L. Zhang, Acta Phys. -Chim. Sin. 40 (2024) 2406027, https://doi.org/10.3866/PKU.WHXB202406027.  doi: 10.3866/PKU.WHXB202406027

    44. [44]

      W. Yang, J. Zhang, Q. Xu, Y. Yang, L. Zhang, Acta Phys. -Chim. Sin. 40 (2024) 2312014, https://doi.org/10.3866/PKU.WHXB202312014.  doi: 10.3866/PKU.WHXB202312014

    45. [45]

      S. Jing, J. Zhao, A. Wang, Q. Ji, R. Cheng, H. Liang, F. Chen, P. Kannan, A. Brouzgou, P. Tsiakaras, Chem. Eng. J. 479 (2024) 147150, https://doi.org/10.1016/j.cej.2023.147150.  doi: 10.1016/j.cej.2023.147150

    46. [46]

      Y. Chen, L. Zhang, Appl. Catal. B Environ. 347 (2024) 123768, https://doi.org/10.1016/j.apcatb.2024.123768.  doi: 10.1016/j.apcatb.2024.123768

    47. [47]

      C. Wang, K. Rong, Y. Liu, F. Yang, S. Li, Sci. China Mater. 67 (2024) 562, https://doi.org/10.1007/s40843-023-2764-8.  doi: 10.1007/s40843-023-2764-8

    48. [48]

      W. Zhao, J. Cao, J. Liao, Y. Liu, X. Zeng, J. Shen, X. Hong, Y. Guo, H. Zeng, Y. Liu, Rare Met. 43 (2024) 3118, https://doi.org/10.1007/s12598024-02653-5.  doi: 10.1007/s12598024-02653-5

    49. [49]

      X. Shao, K. Li, J. Li, Q. Cheng, G. Wang, K. Wang, Chin. J. Catal. 51 (2023) 193, https://doi.org/10.1016/S1872-2067(23)64478-X.  doi: 10.1016/S1872-2067(23)64478-X

    50. [50]

      H. Ran, X. Liu, J. Fan, Y. Yang, L. Zhang, Q. Guo, B. Zhu, Q. Xu, J. Materiomics 11 (2025) 100918, https://doi.org/10.1016/j.jmat.2024.07.004.  doi: 10.1016/j.jmat.2024.07.004

    51. [51]

      K. Wang, H. Qin, X. Shao, L. Jiang, K. Li, J. Wang, L. Zhou, Q. Cheng, G. Wang, H. Wang, Sol. RRL 7 (2022) 2200963, https://doi.org/10.1002/solr.202200963.  doi: 10.1002/solr.202200963

    52. [52]

      R. Shen, C. Huang, L. Hao, G. Liang, P. Zhang, Q. Yue, X. Li, Nat. Commun. 16 (2025) 2457, https://doi.org/10.1038/s41467-025-57662-4.  doi: 10.1038/s41467-025-57662-4

    53. [53]

      B. Qi, R. Shen, Z. Ren, Y. Teng, H. Ding, X. Zhang, Y. Zhang, L. Hao, X. Li, J. Mater. Sci. Technol. 232 (2025) 65, https://doi.org/10.1016/j.jmst.2025.03.003.  doi: 10.1016/j.jmst.2025.03.003

    54. [54]

      R. Gao, R. Shen, C. Huang, K. Huang, G. Liang, P. Zhang, X. Li, Angew. Chem. Int. Ed. 64 (2025) e202414229, https://doi.org/10.1002/anie.202414229.  doi: 10.1002/anie.202414229

    55. [55]

      K. Huang, G. Liang, S. Sun, H. Hu, X. Peng, R. Shen, X. Li, J. Mater. Sci. Technol. 193 (2024) 98, https://doi.org/10.1016/j.jmst.2024.01.034.  doi: 10.1016/j.jmst.2024.01.034

    56. [56]

      K. Huang, D. Chen, X. Zhang, R. Shen, P. Zhang, D. Xu, X. Li, Acta Phys. -Chim. Sin. 40 (2024) 2407020, https://doi.org/10.3866/PKU.WHXB202407020.  doi: 10.3866/PKU.WHXB202407020

    57. [57]

      L. Hao, R. Shen, C. Qin, N. Li, H. Hu, G. Liang, X. Li, Sci. China Mater. 67 (2024) 504, https://doi.org/10.1007/s40843-023-2747-6.  doi: 10.1007/s40843-023-2747-6

    58. [58]

      H. Ding, R. Shen, K. Huang, C. Huang, G. Liang, P. Zhang, X. Li, Adv. Funct. Mater. 34 (2024) 2400065, https://doi.org/10.1002/adfm.202400065.  doi: 10.1002/adfm.202400065

    59. [59]

      R. Shen, C. Qin, L. Hao, X. Li, P. Zhang, X. Li, Adv. Mater. 35 (2023) 2305397, https://doi.org/10.1002/adma.202305397.  doi: 10.1002/adma.202305397

    60. [60]

      R. Shen, G. Liang, L. Hao, P. Zhang, X. Li, Adv. Mater. 35 (2023) 2303649, https://doi.org/10.1002/adma.202303649.  doi: 10.1002/adma.202303649

    61. [61]

      Y. Ma, S. Wang, Y. Zhang, B. Cheng, L. Zhang, J. Materiomics 11 (2025) 100978, https://doi.org/10.1016/j.jmat.2024.100978.  doi: 10.1016/j.jmat.2024.100978

    62. [62]

      Y. Zhang, Y. Wang, Y. Liu, S. Zhang, Y. Zhao, J. Zhang, J. Materiomics 11 (2025) 100985, https://doi.org/10.1016/j.jmat.2024.100985.  doi: 10.1016/j.jmat.2024.100985

    63. [63]

      X. Zhou, C. Ai, X. Wang, Z. Wu, J. Zhang, J. Materiomics 11 (2025) 100974, https://doi.org/10.1016/j.jmat.2024.100974.  doi: 10.1016/j.jmat.2024.100974

    64. [64]

      M. Gu, J. Zhang, I. Kurganskii, A. Poryvaev, M. Fedin, B. Cheng, J. Yu, L. Zhang, Adv. Mater. 37 (2025) 2414803, https://doi.org/10.1002/adma.202414803.  doi: 10.1002/adma.202414803

    65. [65]

      Y. Zhao, Y. Zhang, H. Tan, C. Ai, J. Zhang, J. Materiomics 11 (2025) 100970, https://doi.org/10.1016/j.jmat.2024.100970.  doi: 10.1016/j.jmat.2024.100970

    66. [66]

      Y. Yang, X. Zhou, M. Gu, B. Cheng, Z. Wu, J. Zhang, Acta Phys. -Chim. Sin. 41 (2025) 100064, https://doi.org/10.1016/j.actphy.2025.100064.  doi: 10.1016/j.actphy.2025.100064

    67. [67]

      C. Cheng, J. Yu, D. Xu, L. Wang, G. Liang, L. Zhang, M. Jaroniec, Nat. Commun. 15 (2024) 1313, https://doi.org/10.1038/s41467-024-45604-5.  doi: 10.1038/s41467-024-45604-5

    68. [68]

      M. Gu, Y. Yang, B. Cheng, L. Zhang, P. Xiao, T. Chen, Chin. J. Catal. 59 (2024) 185, https://doi.org/10.1016/S1872-2067(23)64610-8.  doi: 10.1016/S1872-2067(23)64610-8

    69. [69]

      J. Yan, L. Wei, Acta Phys. -Chim. Sin. 40 (2024) 2312024, https://doi.org/10.3866/PKU.WHXB202312024.  doi: 10.3866/PKU.WHXB202312024

    70. [70]

      L. Zhang, J. Zhang, J. Yu, H. García, Nat. Rev. Chem. 2025, https://doi.org/10.1038/s41570-025-00698-3.  doi: 10.1038/s41570-025-00698-3

    71. [71]

      B. Zhu, C. Jiang, J. Xu, Z. Zhang, J. Fu, J. Yu, Mater. Today 82 (2025) 251, https://doi.org/10.1016/j.mattod.2024.11.012.  doi: 10.1016/j.mattod.2024.11.012

    72. [72]

      W. Zhong, A. Meng, Y. Su, H. Yu, P. Han, J. Yu, Angew. Chem. Int. Ed. 64 (2025) e202425038, https://doi.org/10.1002/anie.202425038.  doi: 10.1002/anie.202425038

  • 加载中
    1. [1]

      Ke Li Chuang Liu Jingping Li Guohong Wang Kai Wang . 钛酸铋/氮化碳无机有机复合S型异质结纯水光催化产过氧化氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-. doi: 10.3866/PKU.WHXB202403009

    2. [2]

      Xinyu Yin Haiyang Shi Yu Wang Xuefei Wang Ping Wang Huogen Yu . Spontaneously Improved Adsorption of H2O and Its Intermediates on Electron-Deficient Mn(3+δ)+ for Efficient Photocatalytic H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312007-. doi: 10.3866/PKU.WHXB202312007

    3. [3]

      Jianyin He Liuyun Chen Xinling Xie Zuzeng Qin Hongbing Ji Tongming Su . ZnCoP/CdLa2S4肖特基异质结的构建促进光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2404030-. doi: 10.3866/PKU.WHXB202404030

    4. [4]

      Jingzhuo TianChaohong GuanHaobin HuEnzhou LiuDongyuan Yang . Waste plastics promoted photocatalytic H2 evolution over S-scheme NiCr2O4/twinned-Cd0.5Zn0.5S homo-heterojunction. Acta Physico-Chimica Sinica, 2025, 41(6): 100068-0. doi: 10.1016/j.actphy.2025.100068

    5. [5]

      Yang Xia Kangyan Zhang Heng Yang Lijuan Shi Qun Yi . 构建双通道路径增强iCOF/Bi2O3 S型异质结在纯水体系中光催化合成H2O2性能. Acta Physico-Chimica Sinica, 2024, 40(11): 2407012-. doi: 10.3866/PKU.WHXB202407012

    6. [6]

      Chenye An Abiduweili Sikandaier Xue Guo Yukun Zhu Hua Tang Dongjiang Yang . 红磷纳米颗粒嵌入花状CeO2分级S型异质结高效光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2405019-. doi: 10.3866/PKU.WHXB202405019

    7. [7]

      Yu WangHaiyang ShiZihan ChenFeng ChenPing WangXuefei Wang . Hollow AgPt@Pt core-shell cocatalyst with electron-rich Ptδ shell for boosting selectivity of photocatalytic H2O2 production for faceted BiVO4. Acta Physico-Chimica Sinica, 2025, 41(7): 100081-0. doi: 10.1016/j.actphy.2025.100081

    8. [8]

      Tong Zhou Xue Liu Liang Zhao Mingtao Qiao Wanying Lei . Efficient Photocatalytic H2O2 Production and Cr(VI) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309020-. doi: 10.3866/PKU.WHXB202309020

    9. [9]

      Yifan ZHAOQiyun MAOMeijing GUOGuoying ZHANGTongliang HU . Z-scheme bismuth-based multi-site heterojunction: Synthesis and hydrogen production from photocatalytic hydrogen production. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1318-1330. doi: 10.11862/CJIC.20250001

    10. [10]

      Shijie Li Ke Rong Xiaoqin Wang Chuqi Shen Fang Yang Qinghong Zhang . Design of Carbon Quantum Dots/CdS/Ta3N5 S-Scheme Heterojunction Nanofibers for Efficient Photocatalytic Antibiotic Removal. Acta Physico-Chimica Sinica, 2024, 40(12): 2403005-. doi: 10.3866/PKU.WHXB202403005

    11. [11]

      Jiajie CaiChang ChengBowen LiuJianjun ZhangChuanjia JiangBei Cheng . CdS/DBTSO-BDTO S-scheme photocatalyst for H2 production and its charge transfer dynamics. Acta Physico-Chimica Sinica, 2025, 41(8): 100084-0. doi: 10.1016/j.actphy.2025.100084

    12. [12]

      Yingqi BAIHua ZHAOHuipeng LIXinran RENJun LI . Perovskite LaCoO3/g-C3N4 heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 480-490. doi: 10.11862/CJIC.20240259

    13. [13]

      Yadan LuoHao ZhengXin LiFengmin LiHua TangXilin She . Modulating reactive oxygen species in O, S co-doped C3N4 to enhance photocatalytic degradation of microplastics. Acta Physico-Chimica Sinica, 2025, 41(6): 100052-0. doi: 10.1016/j.actphy.2025.100052

    14. [14]

      Qin Li Huihui Zhang Huajun Gu Yuanyuan Cui Ruihua Gao Wei-Lin DaiIn situ Growth of Cd0.5Zn0.5S Nanorods on Ti3C2 MXene Nanosheet for Efficient Visible-Light-Driven Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2025, 41(4): 100031-. doi: 10.3866/PKU.WHXB202402016

    15. [15]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    16. [16]

      Changjun You Chunchun Wang Mingjie Cai Yanping Liu Baikang Zhu Shijie Li . 引入内建电场强化BiOBr/C3N5 S型异质结中光载流子分离以实现高效催化降解微污染物. Acta Physico-Chimica Sinica, 2024, 40(11): 2407014-. doi: 10.3866/PKU.WHXB202407014

    17. [17]

      Guoqiang Chen Zixuan Zheng Wei Zhong Guohong Wang Xinhe Wu . 熔融中间体运输导向合成富氨基g-C3N4纳米片用于高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406021-. doi: 10.3866/PKU.WHXB202406021

    18. [18]

      Lewang YuanYaoyao PengZong-Jie GuanYu Fang . Insights into the development of 2D covalent organic frameworks as photocatalysts in organic synthesis. Acta Physico-Chimica Sinica, 2025, 41(8): 100086-0. doi: 10.1016/j.actphy.2025.100086

    19. [19]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    20. [20]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

Metrics
  • PDF Downloads(0)
  • Abstract views(11)
  • HTML views(5)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return