Citation: Lele Feng, Xueying Bai, Jifeng Pang, Hongchen Cao, Xiaoyan Liu, Wenhao Luo, Xiaofeng Yang, Pengfei Wu, Mingyuan Zheng. Single-atom Pd boosted Cu catalysts for ethanol dehydrogenation[J]. Acta Physico-Chimica Sinica, ;2025, 41(9): 100100. doi: 10.1016/j.actphy.2025.100100 shu

Single-atom Pd boosted Cu catalysts for ethanol dehydrogenation

  • Corresponding author: Jifeng Pang, jfpang@dicp.ac.cn Xiaofeng Yang, yangxf2003@dicp.ac.cn Mingyuan Zheng, myzheng@dicp.ac.cn
  • Received Date: 11 March 2025
    Revised Date: 29 April 2025
    Accepted Date: 30 April 2025

    Fund Project: the National Science Foundation of China 22378383the National Science Foundation of China 22279115the NSFC Center for Single-Atom Catalysis 22388102

  • Ethanol dehydrogenation is a vital elementary step in ethanol upgrading, for which Cu-based alloy catalysts are the most promising candidates. Nevertheless, elucidating the underlying reasons for the synergistic effect between alloying components and host metals remains challenging due to the intrinsic structural complexity and dynamic evolution of alloy catalysts under operational conditions. Herein, single-atom Pd modified Cu-MFI catalysts with well-defined structures were designed for ethanol dehydrogenation to acetaldehyde and hydrogen. Comprehensive characterizations using aberration-corrected high-angle annular dark-field scanning transmission electron microscopy (AC-HAADF-STEM), X-ray absorption spectroscopy (XAS), X-ray photoelectron spectroscopy (XPS) and density functional theory (DFT) calculations revealed that Pd atoms are isolated by surrounding Cu atoms with a coordination number of 9–10, forming −0.36e charged single-atom sites and being uniformly dispersed on the surface of Cu catalysts. The newly generated Pdδ and Cuδ+ sites synergistically reduced the activation energy barrier for C—H bond cleavage in ethanol. These sites simultaneously enhanced hydrogen adsorption and H—H bond coupling, leading to improved ethanol conversion and acetaldehyde productivity over Pd/Cu-MFI catalysts.
  • 加载中
    1. [1]

      A.E. Farrell, R.J. Plevin, B.T. Turner, A.D. Jones, M. O'Hare, D.M. Kammen, Science 311 (2006) 506, https://doi.org/10.1126/science.1121416.  doi: 10.1126/science.1121416

    2. [2]

      J. Pang, M. Zheng, T. Zhang, Adv. Catal. 64 (2019) 89, https://doi.org/10.1016/bs.acat.2019.08.001.  doi: 10.1016/bs.acat.2019.08.001

    3. [3]

      R. Gerardy, D.P. Debecker, J. Estager, P. Luis, J.M. Monbaliu, Chem. Rev. 120 (2020) 7219, https://doi.org/10.1021/acs.chemrev.9b00846.  doi: 10.1021/acs.chemrev.9b00846

    4. [4]

      S. Periyasamy, J. Beula Isabel, S. Kavitha, V. Karthik, B.A. Mohamed, D.G. Gizaw, P. Sivashanmugam, T.M. Aminabhavi, Chem. Eng. J. 453 (2023) 139783, https://doi.org/10.1016/j.cej.2022.139783.  doi: 10.1016/j.cej.2022.139783

    5. [5]

      J. Sun, Y. Wang, ACS Catal. 4 (2014) 1078, https://doi.org/10.1021/cs4011343.  doi: 10.1021/cs4011343

    6. [6]

      L. Xu, Z. Zhao, R. Zhao, R. Yu, W. Zhang, Acta Phys. -Chim. Sin. 35 (2019) 92, https://doi.org/10.3866/PKU.WHXB201711101.  doi: 10.3866/PKU.WHXB201711101

    7. [7]

      L. Feng, J. Guo, J. Pang, M. Yin, Y. Zhao, P. Wu, M. Zheng, Green Chem. 26 (2024) 8564, https://doi.org/10.1039/d4gc01584c.  doi: 10.1039/d4gc01584c

    8. [8]

      E.V. Makshina, M. Dusselier, W. Janssens, J. Degreve, P.A. Jacobs, B.F. Sels, Chem. Soc. Rev. 43 (2014) 7917, https://doi.org/10.1039/C4CS00105B.  doi: 10.1039/C4CS00105B

    9. [9]

      T. Moteki, A.T. Rowley, D.W. Flaherty, ACS Catal. 6 (2016) 7278, https://doi.org/10.1021/acscatal.6b02475.  doi: 10.1021/acscatal.6b02475

    10. [10]

      X. Wu, G. Fang, Y. Tong, D. Jiang, Z. Liang, W. Leng, L. Liu, P. Tu, H. Wang, J. Ni, X. Li, ChemSusChem 11 (2018) 71, https://doi.org/10.1002/cssc.201701590.  doi: 10.1002/cssc.201701590

    11. [11]

      N.M. Eagan, M.D. Kumbhalkar, J.S. Buchanan, J.A. Dumesic, G.W. Huber, Nat. Rev. Chem. 3 (2019) 223, https://doi.org/10.1038/s41570-019-0084-4.  doi: 10.1038/s41570-019-0084-4

    12. [12]

      L. He, B.C. Zhou, D.H. Sun, W.C. Li, W.L. Lv, J. Wang, Y.Q. Liang, A.H. Lu, ACS Catal. 13 (2023) 11291, https://doi.org/10.1021/acscatal.3c01481.  doi: 10.1021/acscatal.3c01481

    13. [13]

      J. Gu, W. Gong, Q. Zhang, R. Long, J. Ma, X. Wang, J. Li, J. Li, Y. Fan, X. Zheng, S. Qiu, T. Wang, Y. Xiong, Nat. Commun. 14 (2023) 7935, https://doi.org/10.1038/s41467-023-43773-3.  doi: 10.1038/s41467-023-43773-3

    14. [14]

      X. Yao, T. Li, S.-H. Chung, J. Ruiz-Martínez, Adv. Mater. 36 (2024) 2406472, https://doi.org/10.1002/adma.202406472.  doi: 10.1002/adma.202406472

    15. [15]

      M. Yin, J. Pang, J. Guo, X. Li, Y. Zhao, P. Wu, M. Zheng, Green Energy Environ. 9 (2024) 1321, https://doi.org/10.1016/j.gee.2023.10.001.  doi: 10.1016/j.gee.2023.10.001

    16. [16]

      Y. Zhou, H. Liu, H. Li, X. Song, Y. Tang, P. Zhou, Acta Phys. -Chim. Sin. 41 (2025) 100067, https://doi.org/10.1016/j.actphy.2025.100067.  doi: 10.1016/j.actphy.2025.100067

    17. [17]

      M.B. Gawande, A. Goswami, F.-X. Felpin, T. Asefa, X. Huang, R. Silva, X. Zou, R. Zboril, R.S. Varma, Chem. Rev. 116 (2016) 3722, https://doi.org/10.1021/acs.chemrev.5b00482.  doi: 10.1021/acs.chemrev.5b00482

    18. [18]

      D. Yu, W. Dai, G. Wu, N. Guan, L. Li, Chin. J. Catal. 40 (2019) 1375, https://doi.org/10.1016/s1872-2067(19)63378-4.  doi: 10.1016/s1872-2067(19)63378-4

    19. [19]

      H. Zhang, H.-R. Tan, S. Jaenicke, G.-K. Chuah, J. Catal. 389 (2020) 19, https://doi.org/10.1016/j.jcat.2020.05.018.  doi: 10.1016/j.jcat.2020.05.018

    20. [20]

      J. Pang, M. Zheng, C. Wang, X. Yang, H. Liu, X. Liu, J. Sun, Y. Wang, T. Zhang, ACS Catal. 10 (2020) 13624, https://doi.org/10.1021/acscatal.0c03860.  doi: 10.1021/acscatal.0c03860

    21. [21]

      L. Lin, P. Cao, J. Pang, Z. Wang, Q. Jiang, Y. Su, R. Chen, Z. Wu, M. Zheng, W. Luo, J. Catal. 413 (2022) 565, https://doi.org/10.1016/j.jcat.2022.07.014.  doi: 10.1016/j.jcat.2022.07.014

    22. [22]

      J. Pang, M. Yin, P. Wu, L. Song, X. Li, T. Zhang, M. Zheng, ACS Sustain. Chem. Eng. 11 (2023) 3297, https://doi.org/10.1021/acssuschemeng.2c06058.  doi: 10.1021/acssuschemeng.2c06058

    23. [23]

      B. Qiao, A. Wang, X. Yang, L. F. Allard, Z. Jiang, Y. Cui, J. Liu, J. Li, T. Zhang, Nat. Chem. 3 (2011) 634, https://doi.org/10.1038/nchem.1095.  doi: 10.1038/nchem.1095

    24. [24]

      X.-F. Yang, A. Wang, B. Qiao, J. Li, J. Liu, T. Zhang, Acc. Chem. Res. 46 (2013) 1740, https://doi.org/10.1021/ar300361m.  doi: 10.1021/ar300361m

    25. [25]

      T. Zhang, Acta Phys. -Chim. Sin. 33 (2017) 2115, https://doi.org/10.3866/PKU.WHXB201706155.  doi: 10.3866/PKU.WHXB201706155

    26. [26]

      A. Wang, J. Li, T. Zhang, Nat. Rev. Chem. 2 (2018) 65, https://doi.org/10.1038/s41570-018-0010-1.  doi: 10.1038/s41570-018-0010-1

    27. [27]

      S. Mitchell, J. Pérez-Ramírez, Nat. Commun. 11 (2020) 4302, https://doi.org/10.1038/s41467-020-18182-5.  doi: 10.1038/s41467-020-18182-5

    28. [28]

      R. Zhu, L. Kang, L. Li, X. Pan, H. Wang, Y. Su, G. Li, H. Cheng, R. Li, X. Y. Liu, A. Wang, Acta Phys. -Chim. Sin. 40 (2024) 2303003, https://doi.org/10.3866/PKU.WHXB202303003.  doi: 10.3866/PKU.WHXB202303003

    29. [29]

      J. Yang, J. Zheng, C. Dun, L.J. Falling, Q. Zheng, J.-L. Chen, M. Zhang, N.R. Jaegers, C. Asokan, J. Guo, M. Salmeron, D. Prendergast, J.J. Urban, G.A. Somorjai, Y. Guo, J. Su, Angew. Chem. Int. Ed. 63(2024) e202408894, https://doi.org/10.1002/anie.202408894.  doi: 10.1002/anie.202408894

    30. [30]

      J. Shan, N. Janvelyan, H. Li, J. Liu, T.M. Egle, J. Ye, M.M. Biener, J. Biener, C.M. Friend, M. Flytzani-Stephanopoulos, Appl. Catal. B Environ. 205 (2017) 541, https://doi.org/10.1016/j.apcatb.2016.12.045.  doi: 10.1016/j.apcatb.2016.12.045

    31. [31]

      J. Shan, J. Liu, M. Li, S. Lustig, S. Lee, M. Flytzani-Stephanopoulos, Appl. Catal. B Environ. 226 (2018) 534, https://doi.org/10.1016/j.apcatb.2017.12.059.  doi: 10.1016/j.apcatb.2017.12.059

    32. [32]

      D.A. Patel, G. Giannakakis, G. Yan, H.T. Ngan, P. Yu, R.T. Hannagan, P.L. Kress, J. Shan, P. Deshlahra, P. Sautet, E.C.H. Sykes, ACS Catal. 13(2023) 4290, https://doi.org/10.1021/acscatal.3c00275..  doi: 10.1021/acscatal.3c00275

    33. [33]

      Z.-T. Wang, R.A. Hoyt, M. El-Soda, R.J. Madix, E. Kaxiras, E.C.H. Sykes, Top. Catal. 61 (2018) 328, https://doi.org/10.1007/s11244-017-0856-3.  doi: 10.1007/s11244-017-0856-3

    34. [34]

      G. Giannakakis, A. Trimpalis, J. Shan, Z. Qi, S. Cao, J. Liu, J. Ye, J. Biener, M. Flytzani-Stephanopoulos, Top. Catal. 61 (2018) 475, https://doi.org/10.1007/s11244-017-0883-0.  doi: 10.1007/s11244-017-0883-0

    35. [35]

      M. Ouyang, K.G. Papanikolaou, A. Boubnov, A.S. Hoffman, G. Giannakakis, S.R. Bare, M. Stamatakis, M. Flytzani-Stephanopoulos, E.C.H. Sykes, Nat. Commun. 12 (2021) 1549, https://doi.org/10.1038/s41467-021-21555-z.  doi: 10.1038/s41467-021-21555-z

    36. [36]

      G. Giannakakis, P. Kress, K. Duanmu, H.T. Ngan, G. Yan, A.S. Hoffman, Z. Qi, A. Trimpalis, L. Annamalai, M. Ouyang, J. Liu, N. Eagan, J. Biener, D. Sokaras, M. Flytzani-Stephanopoulos, S.R. Bare, P. Sautet, E.C.H. Sykes, J. Am. Chem. Soc. 143 (2021) 21567, https://doi.org/10.1021/jacs.1c09274.  doi: 10.1021/jacs.1c09274

    37. [37]

      P.L. Kress, S. Zhang, Y. Wang, V. Çınar, C.M. Friend, E.C.H. Sykes, M.M. Montemore, J. Am. Chem. Soc. 145 (2023) 8401, https://doi.org/10.1021/jacs.2c13577.  doi: 10.1021/jacs.2c13577

    38. [38]

      F.R. Lucci, J. Liu, M.D. Marcinkowski, M. Yang, L.F. Allard, M. Flytzani-Stephanopoulos, E.C.H. Sykes, Nat. Commun. 6 (2015) 8550, https://doi.org/10.1038/ncomms9550.  doi: 10.1038/ncomms9550

    39. [39]

      G. Kresse, J. Furthmuller, Phys. Rev. B (54) 1996 11169, https://doi.org/10.1103/PhysRevB.54.11169.  doi: 10.1103/PhysRevB.54.11169

    40. [40]

      G. Kresse, D. Joubert, Phys. Rev. B 59 (1999) 1758, https://doi.org/10.1103/PhysRevB.59.1758.  doi: 10.1103/PhysRevB.59.1758

    41. [41]

      J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77 (1996) 3865, https://doi.org/10.1103/PhysRevLett.77.3865.  doi: 10.1103/PhysRevLett.77.3865

    42. [42]

      G. Henkelman, B.P. Uberuaga, H. Jonsson, J. Chem. Phys. 113 (2000) 9901, https://doi.org/10.1063/1.1329672.  doi: 10.1063/1.1329672

    43. [43]

      R.T. Hannagan, G. Giannakakis, M. Flytzani-Stephanopoulos, E.C.H. Sykes, Chem. Rev. 120 (2020) 12044, https://doi.org/10.1021/acs.chemrev.0c00078.  doi: 10.1021/acs.chemrev.0c00078

    44. [44]

      J. Iyer, F. Jalid, T.S. Khan, M.A. Haider, React. Chem. Eng. 7 (2022) 61, https://doi.org/10.1039/D1RE00396H.  doi: 10.1039/D1RE00396H

    45. [45]

      C. Pei, S. Chen, D. Fu, Z.-J. Zhao, J. Gong, Chem. Rev. 124 (2024) 2955, https://doi.org/10.1021/acs.chemrev.3c00081.  doi: 10.1021/acs.chemrev.3c00081

    46. [46]

      L. Jiang, K. Liu, S.-F. Hung, L. Zhou, R. Qin, Q. Zhang, P. Liu, L. Gu, H.M. Chen, G. Fu, N. Zheng, Nat. Nanotechnol. 15 (2020) 848, https://doi.org/10.1038/s41565-020-0746-x.  doi: 10.1038/s41565-020-0746-x

    47. [47]

      Q. Feng, S. Zhao, Y. Wang, J. Dong, W. Chen, D. He, D. Wang, J. Yang, Y. Zhu, H. Zhu, L. Gu, Z. Li, Y. Liu, R. Yu, J. Li, Y. Li, J. Am. Chem. Soc. 139 (2017) 7294, https://doi.org/10.1021/jacs.7b01471.  doi: 10.1021/jacs.7b01471

    48. [48]

      M. Chhetri, M. Wan, Z. Jin, J. Yeager, C. Sandor, C. Rapp, H. Wang, S. Lee, C.J. Bodenschatz, M.J. Zachman, F. Che, M. Yang, Nat. Commun. 14 (2023) 3075, https://doi.org/10.1038/s41467-023-38777-y.  doi: 10.1038/s41467-023-38777-y

    49. [49]

      G. Pei, X. Liu, X. Yang, L. Zhang, A. Wang, L. Li, H. Wang, X. Wang, T. Zhang, ACS Catal. 7 (2017) 1491, https://doi.org/10.1021/acscatal.6b03293.  doi: 10.1021/acscatal.6b03293

    50. [50]

      J. Shan, G. Giannakakis, J. Liu, S. Cao, M. Ouyang, M. Li, S. Lee, M. Flytzani-Stephanopoulos, Top. Catal. 63 (2020) 618, https://doi.org/10.1007/s11244-020-01288-x.  doi: 10.1007/s11244-020-01288-x

    51. [51]

      V. Muravev, G. Spezzati, Y.Q. Su, A. Parastaev, F.K. Chiang, A. Longo, C. Escudero, N. Kosinov, E.J.M. Hensen, Nat. Catal. 4 (2021) 469, https://doi.org/10.1038/s41929-021-00621-1.  doi: 10.1038/s41929-021-00621-1

    52. [52]

      Z. Wang, M. Yin, J. Pang, X. Li, Y. Xing, Y. Su, S. Liu, X. Liu, P. Wu, M. Zheng, T. Zhang, J. Energy. Chem. 72 (2022) 306, https://doi.org/10.1016/j.jechem.2022.04.049.  doi: 10.1016/j.jechem.2022.04.049

    53. [53]

      J.A. Torres-Ochoa, D. Cabrera-German, O. Cortazar-Martinez, M. Bravo-Sanchez, G. Gomez-Sosa, A. Herrera-Gomez, Appl. Surf. Sci. 622 (2023) 156960, https://doi.org/10.1016/j.apsusc.2023.156960.  doi: 10.1016/j.apsusc.2023.156960

    54. [54]

      J. Guo, J. Pang, M. Yin, L. Feng, S. Liu, P. Wu, M. Zheng, ChemCatChem 16 (2024) e202400269, https://doi.org/10.1002/cctc.202400269.  doi: 10.1002/cctc.202400269

    55. [55]

      S. Liu, D. Wu, F. Yang, K. Chen, Z. Luo, J. Li, Z. Zhang, J. Zhao, L. Zhang, Y. Zhang, H. Zhang, S. Wan, Y.-k. Peng, K. H. L. Zhang, H. Xiong, Chem. Eng. J. 481 (2024) 148658, https://doi.org/10.1016/j.cej.2024.148658.  doi: 10.1016/j.cej.2024.148658

    56. [56]

      Y. Luo, Q. Long, B. Cheng, B. Zhu, D. Wang, Acta Phys. -Chim. Sin. 39 (2023) 2212026, https://doi.org/10.3866/PKU.WHXB202212026.  doi: 10.3866/PKU.WHXB202212026

    57. [57]

      E.J. Evans, H. Li, W.-Y. Yu, G.M. Mullen, G. Henkelman, C.B. Mullins, Phys. Chem. Chem. Phys. 19 (2017) 30578, https://doi.org/10.1039/C7CP05097F.  doi: 10.1039/C7CP05097F

    58. [58]

      L. Xu, Y. Qin, Q. Zhang, J. Zhou, J. Zhao, F. Feng, T. Sun, X. Xu, Y. Zhu, C. Lu, Q. Zhang, Q. Wang, X. Li, Chem. Eng. J. 495 (2024) 153632, https://doi.org/10.1016/j.cej.2024.153632.  doi: 10.1016/j.cej.2024.153632

    59. [59]

      H.L. Tierney, A.E. Baber, J.R. Kitchin, E.C.H. Sykes, Phys. Rev. Lett. 103 (2009) 246102, https://doi.org/10.1103/PhysRevLett.103.246102.  doi: 10.1103/PhysRevLett.103.246102

    60. [60]

      B. Hu, Y. Yin, G. Liu, S. Chen, X. Hong, S.C.E. Tsang, J. Catal. 359 (2018) 17, https://doi.org/10.1016/j.jcat.2017.12.029.  doi: 10.1016/j.jcat.2017.12.029

    61. [61]

      M.J. Islam, M. Granollers Mesa, A. Osatiashtiani, J.C. Manayil, M.A. Isaacs, M.J. Taylor, S. Tsatsos, G. Kyriakou, Appl. Catal. B Environ. 299 (2021) 120652, https://doi.org/10.1016/j.apcatb.2021.120652.  doi: 10.1016/j.apcatb.2021.120652

    62. [62]

      P. Zhu, M. Shi, B. Wu, X. Liao, M. Ding, L. Li, Y. Chen, ACS Catal. 15 (2025) 1341, https://doi.org/10.1039/D5CC01152C.  doi: 10.1039/D5CC01152C

    63. [63]

      G. Kyriakou, M.B. Boucher, A.D. Jewell, E.A. Lewis, T.J. Lawton, A.E. Baber, H.L. Tierney, M. Flytzani-Stephanopoulos, E.C.H. Sykes, Science 335 (2012) 1209, https://doi.org/10.1126/science.1215864  doi: 10.1126/science.1215864

    64. [64]

      X. Cao, Q. Fu, Y. Luo, Phys. Chem. Chem. Phys. 16 (2014) 8367, https://doi.org/10.1039/C4CP00399C.  doi: 10.1039/C4CP00399C

    65. [65]

      W. Osada, S. Tanaka, K. Mukai, M. Kawamura, Y. Choi, F. Ozaki, T. Ozaki, J. Yoshinobu, Phys. Chem. Chem. Phys. 24 (2022) 21705, https://doi.org/10.1039/D2CP01652D.  doi: 10.1039/D2CP01652D

    66. [66]

      J. V. Ochoa, C. Trevisanut, J.-M. M. Millet, G. Busca, F. Cavani, J. Phys. Chem. C 117 (2013) 23908, https://doi.org/10.1021/jp409831t.  doi: 10.1021/jp409831t

    67. [67]

      H. Liu, Y. Jiang, R. Zhou, Z. Chang, Z. Hou, Fuel 321 (2022) 123980, https://doi.org/10.1016/j.fuel.2022.123980.  doi: 10.1016/j.fuel.2022.123980

    68. [68]

      Z.D. Young, S. Hanspal, R.J. Davis, ACS Catal. 6 (2016) 3193, https://doi.org/10.1021/acscatal.6b00264.  doi: 10.1021/acscatal.6b00264

    69. [69]

      G. Grzybek, O. Wasiłek, M. Greluk, G. Słowik, A. Davó-Quiñonero, A. Bueno-López, D. Lozano-Castelló, P. Stelmachowski, F. Zasada, W. Piskorz, A. Kotarba, ACS Appl. Mater. Inter. 17 (2025) 7697, https://doi.org/10.1021/acsami.4c18402.  doi: 10.1021/acsami.4c18402

    70. [70]

      R. Li, M. Zhang, Y. Yu, Appl. Surf. Sci. 258 (2012) 6777, https://doi.org/10.1016/j.apsusc.2012.01.171.  doi: 10.1016/j.apsusc.2012.01.171

    71. [71]

      Q. Fu, Y. Luo, J. Phys. Chem. C 117 (2013) 14618, https://doi.org/10.1021/jp403902g.  doi: 10.1021/jp403902g

    72. [72]

      X. Li, J. Pang, Y. Zhao, P. Wu, W. Yu, P. Yan, Y. Su, M. Zheng, Chin. J. Catal. 49 (2023) 91, https://doi.org/10.1016/S1872-2067(23)64431-6.  doi: 10.1016/S1872-2067(23)64431-6

  • 加载中
    1. [1]

      Tong Zhou Liyi Xie Chuyu Liu Xiyan Zheng Bao Li . Between Sobriety and Intoxication: The Fascinating Journey of Sauce-Flavored Latte. University Chemistry, 2024, 39(9): 55-58. doi: 10.12461/PKU.DXHX202312048

    2. [2]

      Siwei Lv Tantian Tan Xinyue Li Siyan Zhang Mingyuan Zhang Minghao Li Hangshuo Guo Zhaorong Li Liangjie Dong Fengshuo Zhang Junlong Zhao . Competition of the “King of Transboundary Medicine”. University Chemistry, 2024, 39(9): 102-108. doi: 10.12461/PKU.DXHX202403034

    3. [3]

      Xuejie Wang Guoqing Cui Congkai Wang Yang Yang Guiyuan Jiang Chunming Xu . 碳基催化剂催化有机液体氢载体脱氢研究进展. Acta Physico-Chimica Sinica, 2025, 41(5): 100044-. doi: 10.1016/j.actphy.2024.100044

    4. [4]

      Yuchen ZhouHuanmin LiuHongxing LiXinyu SongYonghua TangPeng Zhou . Designing thermodynamically stable noble metal single-atom photocatalysts for highly efficient non-oxidative conversion of ethanol into high-purity hydrogen and value-added acetaldehyde. Acta Physico-Chimica Sinica, 2025, 41(6): 100067-0. doi: 10.1016/j.actphy.2025.100067

    5. [5]

      Qingqing SHENXiangbowen DUKaicheng QIANZhikang JINZheng FANGTong WEIRenhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028

    6. [6]

      Xue Liu Lipeng Wang Luling Li Kai Wang Wenju Liu Biao Hu Daofan Cao Fenghao Jiang Junguo Li Ke Liu . Cu基和Pt基甲醇水蒸气重整制氢催化剂研究进展. Acta Physico-Chimica Sinica, 2025, 41(5): 100049-. doi: 10.1016/j.actphy.2025.100049

    7. [7]

      Yi YangXin ZhouMiaoli GuBei ChengZhen WuJianjun Zhang . Femtosecond transient absorption spectroscopy investigation on ultrafast electron transfer in S-scheme ZnO/CdIn2S4 photocatalyst for H2O2 production and benzylamine oxidation. Acta Physico-Chimica Sinica, 2025, 41(6): 100064-0. doi: 10.1016/j.actphy.2025.100064

    8. [8]

      Jiajie CaiChang ChengBowen LiuJianjun ZhangChuanjia JiangBei Cheng . CdS/DBTSO-BDTO S-scheme photocatalyst for H2 production and its charge transfer dynamics. Acta Physico-Chimica Sinica, 2025, 41(8): 100084-0. doi: 10.1016/j.actphy.2025.100084

    9. [9]

      Qin Hu Liuyun Chen Xinling Xie Zuzeng Qin Hongbing Ji Tongming Su . Ni掺杂构建电子桥及激活MoS2惰性基面增强光催化分解水产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2406024-. doi: 10.3866/PKU.WHXB202406024

    10. [10]

      Xinyu MiaoHao YangJie HeJing WangZhiliang Jin . Adjusting the electronic structure of Keggin-type polyoxometalates to construct S-scheme heterojunction for photocatalytic hydrogen evolution. Acta Physico-Chimica Sinica, 2025, 41(6): 100051-0. doi: 10.1016/j.actphy.2025.100051

    11. [11]

      Haodong JINQingqing LIUChaoyang SHIDanyang WEIJie YUXuhui XUMingli XU . NiCu/ZnO heterostructure photothermal electrocatalyst for efficient hydrogen evolution reaction. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1068-1082. doi: 10.11862/CJIC.20250048

    12. [12]

      Qi WuChanghua WangYingying LiXintong Zhang . Enhanced photocatalytic synthesis of H2O2 by triplet electron transfer at g-C3N4@BN van der Waals heterojunction interface. Acta Physico-Chimica Sinica, 2025, 41(9): 100107-0. doi: 10.1016/j.actphy.2025.100107

    13. [13]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    14. [14]

      Asif Hassan Raza Shumail Farhan Zhixian Yu Yan Wu . 用于高效制氢的双S型ZnS/ZnO/CdS异质结构光催化剂. Acta Physico-Chimica Sinica, 2024, 40(11): 2406020-. doi: 10.3866/PKU.WHXB202406020

    15. [15]

      Shuang Yang Qun Wang Caiqin Miao Ziqi Geng Xinran Li Yang Li Xiaohong Wu . Ideological and Political Education Design for Research-Oriented Experimental Course of Highly Efficient Hydrogen Production from Water Electrolysis in Aerospace Perspective. University Chemistry, 2024, 39(11): 269-277. doi: 10.12461/PKU.DXHX202403044

    16. [16]

      Yang WANGXiaoqin ZHENGYang LIUKai ZHANGJiahui KOULinbing SUN . Mn single-atom catalysts based on confined space: Fabrication and the electrocatalytic oxygen evolution reaction performance. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2175-2185. doi: 10.11862/CJIC.20240165

    17. [17]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    18. [18]

      Xi YANGChunxiang CHANGYingpeng XIEYang LIYuhui CHENBorao WANGLudong YIZhonghao HAN . Co-catalyst Ni3N supported Al-doped SrTiO3: Synthesis and application to hydrogen evolution from photocatalytic water splitting. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 440-452. doi: 10.11862/CJIC.20240371

    19. [19]

      Jingzhao Cheng Shiyu Gao Bei Cheng Kai Yang Wang Wang Shaowen Cao . 4-氨基-1H-咪唑-5-甲腈修饰供体-受体型氮化碳光催化剂的构建及其高效光催化产氢研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406026-. doi: 10.3866/PKU.WHXB202406026

    20. [20]

      Jinfu Ma Hui Lu Jiandong Wu Zhongli Zou . Teaching Design of Electrochemical Principles Course Based on “Cognitive Laws”: Kinetics of Electron Transfer Steps. University Chemistry, 2024, 39(3): 174-177. doi: 10.3866/PKU.DXHX202309052

Metrics
  • PDF Downloads(0)
  • Abstract views(10)
  • HTML views(3)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return