单原子Pd促进的Cu催化剂用于乙醇脱氢

冯乐乐 白雪莹 庞纪峰 曹宏晨 刘晓艳 罗文豪 杨小峰 吴鹏飞 郑明远

引用本文: 冯乐乐, 白雪莹, 庞纪峰, 曹宏晨, 刘晓艳, 罗文豪, 杨小峰, 吴鹏飞, 郑明远. 单原子Pd促进的Cu催化剂用于乙醇脱氢[J]. 物理化学学报, 2025, 41(9): 100100. doi: 10.1016/j.actphy.2025.100100 shu
Citation:  Lele Feng, Xueying Bai, Jifeng Pang, Hongchen Cao, Xiaoyan Liu, Wenhao Luo, Xiaofeng Yang, Pengfei Wu, Mingyuan Zheng. Single-atom Pd boosted Cu catalysts for ethanol dehydrogenation[J]. Acta Physico-Chimica Sinica, 2025, 41(9): 100100. doi: 10.1016/j.actphy.2025.100100 shu

单原子Pd促进的Cu催化剂用于乙醇脱氢

    通讯作者: 庞纪峰, jfpang@dicp.ac.cn; 杨小峰, yangxf2003@dicp.ac.cn; 郑明远, myzheng@dicp.ac.cn
  • 基金项目:

    国家自然科学基金 22378383

    国家自然科学基金 22279115

    “单原子催化”基础科学中心 22388102

摘要: 乙醇脱氢是乙醇催化转化过程中的关键基元步骤,铜(Cu)基合金催化剂是该反应最具前景的候选材料。然而,由于合金催化剂在反应条件下固有的结构复杂性和动态演变特性,阐明合金组分与主体金属间协同效应的内在机制仍具挑战性。本研究设计了结构明确的单原子钯(Pd)修饰Cu-MFI催化剂用于乙醇脱氢制乙醛和氢气。通过球差校正高角环形暗场扫描透射电子显微镜(AC-HAADF-STEM)、X射线吸收光谱(XAS)、X射线光电子能谱(XPS)等系统表征结合密度泛函理论(DFT)计算表明,Pd原子被均匀分散在Cu催化剂表面并被Cu原子隔离,该单原子位点配位数为9–10、带−0.36e电荷。在乙醇脱氢反应中,新生成的Pdδ和Cuδ+位点协同作用降低了乙醇中C—H键断裂的活化能垒,同时增强了氢吸附和H—H键耦合能力,使得Pd/Cu-MFI催化剂获得更高的乙醇转化率和乙醛产率。

English

    1. [1]

      A.E. Farrell, R.J. Plevin, B.T. Turner, A.D. Jones, M. O'Hare, D.M. Kammen, Science 311 (2006) 506, https://doi.org/10.1126/science.1121416. doi: 10.1126/science.1121416

    2. [2]

      J. Pang, M. Zheng, T. Zhang, Adv. Catal. 64 (2019) 89, https://doi.org/10.1016/bs.acat.2019.08.001. doi: 10.1016/bs.acat.2019.08.001

    3. [3]

      R. Gerardy, D.P. Debecker, J. Estager, P. Luis, J.M. Monbaliu, Chem. Rev. 120 (2020) 7219, https://doi.org/10.1021/acs.chemrev.9b00846. doi: 10.1021/acs.chemrev.9b00846

    4. [4]

      S. Periyasamy, J. Beula Isabel, S. Kavitha, V. Karthik, B.A. Mohamed, D.G. Gizaw, P. Sivashanmugam, T.M. Aminabhavi, Chem. Eng. J. 453 (2023) 139783, https://doi.org/10.1016/j.cej.2022.139783. doi: 10.1016/j.cej.2022.139783

    5. [5]

      J. Sun, Y. Wang, ACS Catal. 4 (2014) 1078, https://doi.org/10.1021/cs4011343. doi: 10.1021/cs4011343

    6. [6]

      L. Xu, Z. Zhao, R. Zhao, R. Yu, W. Zhang, Acta Phys. -Chim. Sin. 35 (2019) 92, https://doi.org/10.3866/PKU.WHXB201711101. doi: 10.3866/PKU.WHXB201711101

    7. [7]

      L. Feng, J. Guo, J. Pang, M. Yin, Y. Zhao, P. Wu, M. Zheng, Green Chem. 26 (2024) 8564, https://doi.org/10.1039/d4gc01584c. doi: 10.1039/d4gc01584c

    8. [8]

      E.V. Makshina, M. Dusselier, W. Janssens, J. Degreve, P.A. Jacobs, B.F. Sels, Chem. Soc. Rev. 43 (2014) 7917, https://doi.org/10.1039/C4CS00105B. doi: 10.1039/C4CS00105B

    9. [9]

      T. Moteki, A.T. Rowley, D.W. Flaherty, ACS Catal. 6 (2016) 7278, https://doi.org/10.1021/acscatal.6b02475. doi: 10.1021/acscatal.6b02475

    10. [10]

      X. Wu, G. Fang, Y. Tong, D. Jiang, Z. Liang, W. Leng, L. Liu, P. Tu, H. Wang, J. Ni, X. Li, ChemSusChem 11 (2018) 71, https://doi.org/10.1002/cssc.201701590. doi: 10.1002/cssc.201701590

    11. [11]

      N.M. Eagan, M.D. Kumbhalkar, J.S. Buchanan, J.A. Dumesic, G.W. Huber, Nat. Rev. Chem. 3 (2019) 223, https://doi.org/10.1038/s41570-019-0084-4. doi: 10.1038/s41570-019-0084-4

    12. [12]

      L. He, B.C. Zhou, D.H. Sun, W.C. Li, W.L. Lv, J. Wang, Y.Q. Liang, A.H. Lu, ACS Catal. 13 (2023) 11291, https://doi.org/10.1021/acscatal.3c01481. doi: 10.1021/acscatal.3c01481

    13. [13]

      J. Gu, W. Gong, Q. Zhang, R. Long, J. Ma, X. Wang, J. Li, J. Li, Y. Fan, X. Zheng, S. Qiu, T. Wang, Y. Xiong, Nat. Commun. 14 (2023) 7935, https://doi.org/10.1038/s41467-023-43773-3. doi: 10.1038/s41467-023-43773-3

    14. [14]

      X. Yao, T. Li, S.-H. Chung, J. Ruiz-Martínez, Adv. Mater. 36 (2024) 2406472, https://doi.org/10.1002/adma.202406472. doi: 10.1002/adma.202406472

    15. [15]

      M. Yin, J. Pang, J. Guo, X. Li, Y. Zhao, P. Wu, M. Zheng, Green Energy Environ. 9 (2024) 1321, https://doi.org/10.1016/j.gee.2023.10.001. doi: 10.1016/j.gee.2023.10.001

    16. [16]

      Y. Zhou, H. Liu, H. Li, X. Song, Y. Tang, P. Zhou, Acta Phys. -Chim. Sin. 41 (2025) 100067, https://doi.org/10.1016/j.actphy.2025.100067. doi: 10.1016/j.actphy.2025.100067

    17. [17]

      M.B. Gawande, A. Goswami, F.-X. Felpin, T. Asefa, X. Huang, R. Silva, X. Zou, R. Zboril, R.S. Varma, Chem. Rev. 116 (2016) 3722, https://doi.org/10.1021/acs.chemrev.5b00482. doi: 10.1021/acs.chemrev.5b00482

    18. [18]

      D. Yu, W. Dai, G. Wu, N. Guan, L. Li, Chin. J. Catal. 40 (2019) 1375, https://doi.org/10.1016/s1872-2067(19)63378-4. doi: 10.1016/s1872-2067(19)63378-4

    19. [19]

      H. Zhang, H.-R. Tan, S. Jaenicke, G.-K. Chuah, J. Catal. 389 (2020) 19, https://doi.org/10.1016/j.jcat.2020.05.018. doi: 10.1016/j.jcat.2020.05.018

    20. [20]

      J. Pang, M. Zheng, C. Wang, X. Yang, H. Liu, X. Liu, J. Sun, Y. Wang, T. Zhang, ACS Catal. 10 (2020) 13624, https://doi.org/10.1021/acscatal.0c03860. doi: 10.1021/acscatal.0c03860

    21. [21]

      L. Lin, P. Cao, J. Pang, Z. Wang, Q. Jiang, Y. Su, R. Chen, Z. Wu, M. Zheng, W. Luo, J. Catal. 413 (2022) 565, https://doi.org/10.1016/j.jcat.2022.07.014. doi: 10.1016/j.jcat.2022.07.014

    22. [22]

      J. Pang, M. Yin, P. Wu, L. Song, X. Li, T. Zhang, M. Zheng, ACS Sustain. Chem. Eng. 11 (2023) 3297, https://doi.org/10.1021/acssuschemeng.2c06058. doi: 10.1021/acssuschemeng.2c06058

    23. [23]

      B. Qiao, A. Wang, X. Yang, L. F. Allard, Z. Jiang, Y. Cui, J. Liu, J. Li, T. Zhang, Nat. Chem. 3 (2011) 634, https://doi.org/10.1038/nchem.1095. doi: 10.1038/nchem.1095

    24. [24]

      X.-F. Yang, A. Wang, B. Qiao, J. Li, J. Liu, T. Zhang, Acc. Chem. Res. 46 (2013) 1740, https://doi.org/10.1021/ar300361m. doi: 10.1021/ar300361m

    25. [25]

      T. Zhang, Acta Phys. -Chim. Sin. 33 (2017) 2115, https://doi.org/10.3866/PKU.WHXB201706155. doi: 10.3866/PKU.WHXB201706155

    26. [26]

      A. Wang, J. Li, T. Zhang, Nat. Rev. Chem. 2 (2018) 65, https://doi.org/10.1038/s41570-018-0010-1. doi: 10.1038/s41570-018-0010-1

    27. [27]

      S. Mitchell, J. Pérez-Ramírez, Nat. Commun. 11 (2020) 4302, https://doi.org/10.1038/s41467-020-18182-5. doi: 10.1038/s41467-020-18182-5

    28. [28]

      R. Zhu, L. Kang, L. Li, X. Pan, H. Wang, Y. Su, G. Li, H. Cheng, R. Li, X. Y. Liu, A. Wang, Acta Phys. -Chim. Sin. 40 (2024) 2303003, https://doi.org/10.3866/PKU.WHXB202303003. doi: 10.3866/PKU.WHXB202303003

    29. [29]

      J. Yang, J. Zheng, C. Dun, L.J. Falling, Q. Zheng, J.-L. Chen, M. Zhang, N.R. Jaegers, C. Asokan, J. Guo, M. Salmeron, D. Prendergast, J.J. Urban, G.A. Somorjai, Y. Guo, J. Su, Angew. Chem. Int. Ed. 63(2024) e202408894, https://doi.org/10.1002/anie.202408894. doi: 10.1002/anie.202408894

    30. [30]

      J. Shan, N. Janvelyan, H. Li, J. Liu, T.M. Egle, J. Ye, M.M. Biener, J. Biener, C.M. Friend, M. Flytzani-Stephanopoulos, Appl. Catal. B Environ. 205 (2017) 541, https://doi.org/10.1016/j.apcatb.2016.12.045. doi: 10.1016/j.apcatb.2016.12.045

    31. [31]

      J. Shan, J. Liu, M. Li, S. Lustig, S. Lee, M. Flytzani-Stephanopoulos, Appl. Catal. B Environ. 226 (2018) 534, https://doi.org/10.1016/j.apcatb.2017.12.059. doi: 10.1016/j.apcatb.2017.12.059

    32. [32]

      D.A. Patel, G. Giannakakis, G. Yan, H.T. Ngan, P. Yu, R.T. Hannagan, P.L. Kress, J. Shan, P. Deshlahra, P. Sautet, E.C.H. Sykes, ACS Catal. 13(2023) 4290, https://doi.org/10.1021/acscatal.3c00275.. doi: 10.1021/acscatal.3c00275

    33. [33]

      Z.-T. Wang, R.A. Hoyt, M. El-Soda, R.J. Madix, E. Kaxiras, E.C.H. Sykes, Top. Catal. 61 (2018) 328, https://doi.org/10.1007/s11244-017-0856-3. doi: 10.1007/s11244-017-0856-3

    34. [34]

      G. Giannakakis, A. Trimpalis, J. Shan, Z. Qi, S. Cao, J. Liu, J. Ye, J. Biener, M. Flytzani-Stephanopoulos, Top. Catal. 61 (2018) 475, https://doi.org/10.1007/s11244-017-0883-0. doi: 10.1007/s11244-017-0883-0

    35. [35]

      M. Ouyang, K.G. Papanikolaou, A. Boubnov, A.S. Hoffman, G. Giannakakis, S.R. Bare, M. Stamatakis, M. Flytzani-Stephanopoulos, E.C.H. Sykes, Nat. Commun. 12 (2021) 1549, https://doi.org/10.1038/s41467-021-21555-z. doi: 10.1038/s41467-021-21555-z

    36. [36]

      G. Giannakakis, P. Kress, K. Duanmu, H.T. Ngan, G. Yan, A.S. Hoffman, Z. Qi, A. Trimpalis, L. Annamalai, M. Ouyang, J. Liu, N. Eagan, J. Biener, D. Sokaras, M. Flytzani-Stephanopoulos, S.R. Bare, P. Sautet, E.C.H. Sykes, J. Am. Chem. Soc. 143 (2021) 21567, https://doi.org/10.1021/jacs.1c09274. doi: 10.1021/jacs.1c09274

    37. [37]

      P.L. Kress, S. Zhang, Y. Wang, V. Çınar, C.M. Friend, E.C.H. Sykes, M.M. Montemore, J. Am. Chem. Soc. 145 (2023) 8401, https://doi.org/10.1021/jacs.2c13577. doi: 10.1021/jacs.2c13577

    38. [38]

      F.R. Lucci, J. Liu, M.D. Marcinkowski, M. Yang, L.F. Allard, M. Flytzani-Stephanopoulos, E.C.H. Sykes, Nat. Commun. 6 (2015) 8550, https://doi.org/10.1038/ncomms9550. doi: 10.1038/ncomms9550

    39. [39]

      G. Kresse, J. Furthmuller, Phys. Rev. B (54) 1996 11169, https://doi.org/10.1103/PhysRevB.54.11169. doi: 10.1103/PhysRevB.54.11169

    40. [40]

      G. Kresse, D. Joubert, Phys. Rev. B 59 (1999) 1758, https://doi.org/10.1103/PhysRevB.59.1758. doi: 10.1103/PhysRevB.59.1758

    41. [41]

      J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77 (1996) 3865, https://doi.org/10.1103/PhysRevLett.77.3865. doi: 10.1103/PhysRevLett.77.3865

    42. [42]

      G. Henkelman, B.P. Uberuaga, H. Jonsson, J. Chem. Phys. 113 (2000) 9901, https://doi.org/10.1063/1.1329672. doi: 10.1063/1.1329672

    43. [43]

      R.T. Hannagan, G. Giannakakis, M. Flytzani-Stephanopoulos, E.C.H. Sykes, Chem. Rev. 120 (2020) 12044, https://doi.org/10.1021/acs.chemrev.0c00078. doi: 10.1021/acs.chemrev.0c00078

    44. [44]

      J. Iyer, F. Jalid, T.S. Khan, M.A. Haider, React. Chem. Eng. 7 (2022) 61, https://doi.org/10.1039/D1RE00396H. doi: 10.1039/D1RE00396H

    45. [45]

      C. Pei, S. Chen, D. Fu, Z.-J. Zhao, J. Gong, Chem. Rev. 124 (2024) 2955, https://doi.org/10.1021/acs.chemrev.3c00081. doi: 10.1021/acs.chemrev.3c00081

    46. [46]

      L. Jiang, K. Liu, S.-F. Hung, L. Zhou, R. Qin, Q. Zhang, P. Liu, L. Gu, H.M. Chen, G. Fu, N. Zheng, Nat. Nanotechnol. 15 (2020) 848, https://doi.org/10.1038/s41565-020-0746-x. doi: 10.1038/s41565-020-0746-x

    47. [47]

      Q. Feng, S. Zhao, Y. Wang, J. Dong, W. Chen, D. He, D. Wang, J. Yang, Y. Zhu, H. Zhu, L. Gu, Z. Li, Y. Liu, R. Yu, J. Li, Y. Li, J. Am. Chem. Soc. 139 (2017) 7294, https://doi.org/10.1021/jacs.7b01471. doi: 10.1021/jacs.7b01471

    48. [48]

      M. Chhetri, M. Wan, Z. Jin, J. Yeager, C. Sandor, C. Rapp, H. Wang, S. Lee, C.J. Bodenschatz, M.J. Zachman, F. Che, M. Yang, Nat. Commun. 14 (2023) 3075, https://doi.org/10.1038/s41467-023-38777-y. doi: 10.1038/s41467-023-38777-y

    49. [49]

      G. Pei, X. Liu, X. Yang, L. Zhang, A. Wang, L. Li, H. Wang, X. Wang, T. Zhang, ACS Catal. 7 (2017) 1491, https://doi.org/10.1021/acscatal.6b03293. doi: 10.1021/acscatal.6b03293

    50. [50]

      J. Shan, G. Giannakakis, J. Liu, S. Cao, M. Ouyang, M. Li, S. Lee, M. Flytzani-Stephanopoulos, Top. Catal. 63 (2020) 618, https://doi.org/10.1007/s11244-020-01288-x. doi: 10.1007/s11244-020-01288-x

    51. [51]

      V. Muravev, G. Spezzati, Y.Q. Su, A. Parastaev, F.K. Chiang, A. Longo, C. Escudero, N. Kosinov, E.J.M. Hensen, Nat. Catal. 4 (2021) 469, https://doi.org/10.1038/s41929-021-00621-1. doi: 10.1038/s41929-021-00621-1

    52. [52]

      Z. Wang, M. Yin, J. Pang, X. Li, Y. Xing, Y. Su, S. Liu, X. Liu, P. Wu, M. Zheng, T. Zhang, J. Energy. Chem. 72 (2022) 306, https://doi.org/10.1016/j.jechem.2022.04.049. doi: 10.1016/j.jechem.2022.04.049

    53. [53]

      J.A. Torres-Ochoa, D. Cabrera-German, O. Cortazar-Martinez, M. Bravo-Sanchez, G. Gomez-Sosa, A. Herrera-Gomez, Appl. Surf. Sci. 622 (2023) 156960, https://doi.org/10.1016/j.apsusc.2023.156960. doi: 10.1016/j.apsusc.2023.156960

    54. [54]

      J. Guo, J. Pang, M. Yin, L. Feng, S. Liu, P. Wu, M. Zheng, ChemCatChem 16 (2024) e202400269, https://doi.org/10.1002/cctc.202400269. doi: 10.1002/cctc.202400269

    55. [55]

      S. Liu, D. Wu, F. Yang, K. Chen, Z. Luo, J. Li, Z. Zhang, J. Zhao, L. Zhang, Y. Zhang, H. Zhang, S. Wan, Y.-k. Peng, K. H. L. Zhang, H. Xiong, Chem. Eng. J. 481 (2024) 148658, https://doi.org/10.1016/j.cej.2024.148658. doi: 10.1016/j.cej.2024.148658

    56. [56]

      Y. Luo, Q. Long, B. Cheng, B. Zhu, D. Wang, Acta Phys. -Chim. Sin. 39 (2023) 2212026, https://doi.org/10.3866/PKU.WHXB202212026. doi: 10.3866/PKU.WHXB202212026

    57. [57]

      E.J. Evans, H. Li, W.-Y. Yu, G.M. Mullen, G. Henkelman, C.B. Mullins, Phys. Chem. Chem. Phys. 19 (2017) 30578, https://doi.org/10.1039/C7CP05097F. doi: 10.1039/C7CP05097F

    58. [58]

      L. Xu, Y. Qin, Q. Zhang, J. Zhou, J. Zhao, F. Feng, T. Sun, X. Xu, Y. Zhu, C. Lu, Q. Zhang, Q. Wang, X. Li, Chem. Eng. J. 495 (2024) 153632, https://doi.org/10.1016/j.cej.2024.153632. doi: 10.1016/j.cej.2024.153632

    59. [59]

      H.L. Tierney, A.E. Baber, J.R. Kitchin, E.C.H. Sykes, Phys. Rev. Lett. 103 (2009) 246102, https://doi.org/10.1103/PhysRevLett.103.246102. doi: 10.1103/PhysRevLett.103.246102

    60. [60]

      B. Hu, Y. Yin, G. Liu, S. Chen, X. Hong, S.C.E. Tsang, J. Catal. 359 (2018) 17, https://doi.org/10.1016/j.jcat.2017.12.029. doi: 10.1016/j.jcat.2017.12.029

    61. [61]

      M.J. Islam, M. Granollers Mesa, A. Osatiashtiani, J.C. Manayil, M.A. Isaacs, M.J. Taylor, S. Tsatsos, G. Kyriakou, Appl. Catal. B Environ. 299 (2021) 120652, https://doi.org/10.1016/j.apcatb.2021.120652. doi: 10.1016/j.apcatb.2021.120652

    62. [62]

      P. Zhu, M. Shi, B. Wu, X. Liao, M. Ding, L. Li, Y. Chen, ACS Catal. 15 (2025) 1341, https://doi.org/10.1039/D5CC01152C. doi: 10.1039/D5CC01152C

    63. [63]

      G. Kyriakou, M.B. Boucher, A.D. Jewell, E.A. Lewis, T.J. Lawton, A.E. Baber, H.L. Tierney, M. Flytzani-Stephanopoulos, E.C.H. Sykes, Science 335 (2012) 1209, https://doi.org/10.1126/science.1215864 doi: 10.1126/science.1215864

    64. [64]

      X. Cao, Q. Fu, Y. Luo, Phys. Chem. Chem. Phys. 16 (2014) 8367, https://doi.org/10.1039/C4CP00399C. doi: 10.1039/C4CP00399C

    65. [65]

      W. Osada, S. Tanaka, K. Mukai, M. Kawamura, Y. Choi, F. Ozaki, T. Ozaki, J. Yoshinobu, Phys. Chem. Chem. Phys. 24 (2022) 21705, https://doi.org/10.1039/D2CP01652D. doi: 10.1039/D2CP01652D

    66. [66]

      J. V. Ochoa, C. Trevisanut, J.-M. M. Millet, G. Busca, F. Cavani, J. Phys. Chem. C 117 (2013) 23908, https://doi.org/10.1021/jp409831t. doi: 10.1021/jp409831t

    67. [67]

      H. Liu, Y. Jiang, R. Zhou, Z. Chang, Z. Hou, Fuel 321 (2022) 123980, https://doi.org/10.1016/j.fuel.2022.123980. doi: 10.1016/j.fuel.2022.123980

    68. [68]

      Z.D. Young, S. Hanspal, R.J. Davis, ACS Catal. 6 (2016) 3193, https://doi.org/10.1021/acscatal.6b00264. doi: 10.1021/acscatal.6b00264

    69. [69]

      G. Grzybek, O. Wasiłek, M. Greluk, G. Słowik, A. Davó-Quiñonero, A. Bueno-López, D. Lozano-Castelló, P. Stelmachowski, F. Zasada, W. Piskorz, A. Kotarba, ACS Appl. Mater. Inter. 17 (2025) 7697, https://doi.org/10.1021/acsami.4c18402. doi: 10.1021/acsami.4c18402

    70. [70]

      R. Li, M. Zhang, Y. Yu, Appl. Surf. Sci. 258 (2012) 6777, https://doi.org/10.1016/j.apsusc.2012.01.171. doi: 10.1016/j.apsusc.2012.01.171

    71. [71]

      Q. Fu, Y. Luo, J. Phys. Chem. C 117 (2013) 14618, https://doi.org/10.1021/jp403902g. doi: 10.1021/jp403902g

    72. [72]

      X. Li, J. Pang, Y. Zhao, P. Wu, W. Yu, P. Yan, Y. Su, M. Zheng, Chin. J. Catal. 49 (2023) 91, https://doi.org/10.1016/S1872-2067(23)64431-6. doi: 10.1016/S1872-2067(23)64431-6

  • 加载中
计量
  • PDF下载量:  0
  • 文章访问数:  28
  • HTML全文浏览量:  5
文章相关
  • 发布日期:  2025-09-15
  • 收稿日期:  2025-03-11
  • 接受日期:  2025-04-30
  • 修回日期:  2025-04-29
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章