Citation: Jianan Hong, Chenyu Xu, Yan Liu, Changqi Li, Menglin Wang, Yanwei Zhang. Decoding the interfacial competition between hydrogen evolution and CO2 reduction via edge-active-site modulation in photothermal catalysis[J]. Acta Physico-Chimica Sinica, ;2025, 41(9): 100099. doi: 10.1016/j.actphy.2025.100099 shu

Decoding the interfacial competition between hydrogen evolution and CO2 reduction via edge-active-site modulation in photothermal catalysis

  • Corresponding author: Chenyu Xu, mrxcy@zju.edu.cn Yanwei Zhang, zhangyw@zju.edu.cn
  • Received Date: 22 March 2025
    Revised Date: 19 April 2025
    Accepted Date: 28 April 2025

    Fund Project: the Zhejiang Provincial Natural Science Foundation of China LDT23E06014E06the National Natural Science Foundation of China 52341602the Zhejiang Provincial Natural Science Foundation of China LQ24E060001the National Key Research and Development Project 2023YFC3710800the Fundamental Research Funds for the Central Universities 2022ZFJH04

  • Solar-driven photothermal catalytic CO2 conversion with H2O is a promising approach to produce sustainable fuels and chemicals. However, the competition between hydrogen evolution reaction (HER) and CO2 reduction reaction (CO2RR) results in unsatisfactory product selectivity. Noble metal nanoparticles (NMNPs) are widely used cocatalysts to introduce active sites on semiconductors, with unique active sites at the metal-semiconductor interfacial edges playing a critical role in the competitive mechanisms. Herein, we prepared a series of NMNPs loaded on Al-doped SrTiO3 with abundant interfacial edge sites for continuous photothermal catalytic CO2 and H2O conversion. Different NMNPs demonstrated distinct CO2-induced effects on hydrogen evolution. The key intermediate interactions were investigated by in situ diffuse reflectance infrared Fourier-transform spectroscopy (DRIFTS) and density functional theory (DFT) calculations. The results revealed that bidentate carbonate (b-CO32−) tended to occupy the edge sites at the metal-semiconductor interfaces, competitively consuming the active sites for *H adsorption and altering the energy barrier of hydrogen evolution. The predominant site-blocking effect of b-CO32− on Rh-loaded catalysts was verified through establishing a simplified geometric model to quantify the correlation of particle sizes, active site proportions and CO2-induced hydrogen production variations. Controlling Rh nanoparticle size can tune the proportion of edge sites, which involves a trade-off between *H coverage and CO2 activation and promotes the CO2RR process toward methane production. This work initially unravels the interfacial competitive mechanism between HER and CO2RR via edge-active-site modulation, hoping to provide valuable insights for the rational catalyst design and offer potential strategies to enhance CO2 conversion efficiency.
  • 加载中
    1. [1]

      E. Gong, S. Ali, C.B. Hiragond, H.S. Kim, N.S. Powar, D. Kim, H. Kim, S.-I. In, Energy Environ. Sci. 15 (3) (2022) 880, https://doi.org/10.1039/D1EE02714J.  doi: 10.1039/D1EE02714J

    2. [2]

      Z. Zhang, B. Rhimi, Z. Liu, M. Zhou, G. Deng, W. Wei, L. Mao, H. Li, Z. Jiang, Acta Phys. -Chim. Sin. 40(12) (2024) 2406029, https://doi.org/10.3866/PKU.WHXB202406029.  doi: 10.3866/PKU.WHXB202406029

    3. [3]

      H. Shen, T. Peppel, J. Strunk, Z. Sun, Sol. RRL 4(8) (2020) 1900546, https://doi.org/10.1002/solr.201900546.  doi: 10.1002/solr.201900546

    4. [4]

      J. Hong, C. Xu, B. Deng, Y. Gao, X. Zhu, X. Zhang, Y. Zhang, Adv. Sci. 9(3) (2021) 2103926, https://doi.org/10.1002/advs.202103926.  doi: 10.1002/advs.202103926

    5. [5]

      C. Zhang, Z. Wu, J. Shen, L. He, W. Sun, Acta Phys. -Chim. Sin. 40(1) (2024) 2304004, https://doi.org/10.3866/PKU.WHXB202304004.  doi: 10.3866/PKU.WHXB202304004

    6. [6]

      Y. Li, R. Li, Z. Li, Y. Xu, H. Yuan, S. Ouyang, T. Zhang, Sol. RRL 6(10) (2022) 2200493, https://doi.org/10.1002/solr.202200493.  doi: 10.1002/solr.202200493

    7. [7]

      J. Zhao, R. Shi, G.I.N. Waterhouse, T. Zhang, Nano Energy 102 (2022) 107650, https://doi.org/10.1016/j.nanoen.2022.107650.  doi: 10.1016/j.nanoen.2022.107650

    8. [8]

      T. Takata, J. Jiang, Y. Sakata, M. Nakabayashi, N. Shibata, V. Nandal, K. Seki, T. Hisatomi, K. Domen, Nature 581 (2020) 411, https://doi.org/10.1038/s41586-020-2278-9.  doi: 10.1038/s41586-020-2278-9

    9. [9]

      Y. Goto, T. Hisatomi, Q. Wang, T. Higashi, K. Ishikiriyama, T. Maeda, Y. Sakata, S. Okunaka, H. Tokudome, M. Katayama, S. Akiyama, H. Nishiyama, Y. Inoue, T. Takewaki, T. Setoyama, T. Minegishi, T. Takata, T. Yamada, K. Domen, Joule 2(3) (2018) 509, https://doi.org/10.1016/j.joule.2017.12.009.  doi: 10.1016/j.joule.2017.12.009

    10. [10]

      Y. Xie, C. Xu, Y. Liu, E. Zhang, Z. Chen, X. Zhan, G. Deng, Y. Gao, Y. Zhang, Adv. Sci. 12 (3) (2024) 2410201, https://doi.org/10.1002/advs.202410201.  doi: 10.1002/advs.202410201

    11. [11]

      S. Wang, K. Teramura, T. Hisatomi, K. Domen, H. Asakura, S. Hosokawa, T. Tanaka, ChemistrySelect 5 (28) (2020) 8779, https://doi.org/10.1002/slct.202001693.  doi: 10.1002/slct.202001693

    12. [12]

      S. Wang, K. Teramura, T. Hisatomi, K. Domen, H. Asakura, S. Hosokawa, T. Tanaka, ACS Appl. Energy Mater. 3(2) (2020) 1468, https://doi.org/10.1021/acsaem.9b01927.  doi: 10.1021/acsaem.9b01927

    13. [13]

      Z. Li, B. Han, W. Bai, G. Wei, X. Li, J. Qi, D. Liu, Y. Zheng, L. Zhu, Sep. Purif. Technol. 324 (2023) 124528, https://doi.org/10.1016/j.seppur.2023.124528.  doi: 10.1016/j.seppur.2023.124528

    14. [14]

      R. Chen, Q. Wu, J. Luo, X. Zu, S. Zhu, Y. Sun, Acta Phys. -Chim. Sin. 41 (3) (2025) 100019, https://doi.org/10.3866/PKU.WHXB202308052.  doi: 10.3866/PKU.WHXB202308052

    15. [15]

      Y. Cao, R. Guo, M. Ma, Z. Huang, Y. Zhou, Acta Phys. -Chim. Sin. 40 (1) (2024) 2303029, https://doi.org/10.3866/PKU.WHXB202303029.  doi: 10.3866/PKU.WHXB202303029

    16. [16]

      X. Hu, Z. Xie, Q. Tang, H. Wang, L. Zhang, J. Wang, Appl. Catal. B 298 (2021) 120635, https://doi.org/10.1016/j.apcatb.2021.120635.  doi: 10.1016/j.apcatb.2021.120635

    17. [17]

      W. Huang, L. Zhang, Z. Li, X. Zhang, X. Dong, Y. Zhang, J. CO2 Util. 55 (2022) 101801, https://doi.org/10.1016/j.jcou.2021.101801.  doi: 10.1016/j.jcou.2021.101801

    18. [18]

      S. Guo, X. Li, J. Li, B. Wei, Nat. Commun. 12(1) (2021) 1343, https://doi.org/10.1038/s41467-021-21526-4.  doi: 10.1038/s41467-021-21526-4

    19. [19]

      M. Sun, Y. Wang, T. Dong, L. Zhou, A. Dai, J. Kou, C. Lu, Langmuir 38 (9) (2022) 2811, https://doi.org/10.1021/acs.langmuir.1c02894.  doi: 10.1021/acs.langmuir.1c02894

    20. [20]

      X. Zhu, Y. Liu, M. Wang, L. Zhang, Q. Li, E. Zhang, H. Mo, Y. Gao, C. Xu, Y. Zhang, Chem. Eng. J. 479 (2024) 147636, https://doi.org/10.1016/j.cej.2023.147636.  doi: 10.1016/j.cej.2023.147636

    21. [21]

      L. Zhang, C. Li, Y. Liu, C. Xu, Y. Zhang, npj Comput. Mater. 10 (1) (2024) 132, https://doi.org/10.1038/s41524-024-01325-3.  doi: 10.1038/s41524-024-01325-3

    22. [22]

      J. Fu, K. Jiang, X. Qiu, J. Yu, M. Liu, Mater. Today 32 (2020) 222, https://doi.org/10.1016/j.mattod.2019.06.009.  doi: 10.1016/j.mattod.2019.06.009

    23. [23]

      T. Suguro, F. Kishimoto, N. Kariya, T. Fukui, M. Nakabayashi, N. Shibata, T. Takata, K. Domen, K. Takanabe, Nat. Commun. 13 (1) (2022) 5698, https://doi.org/10.1038/s41467-022-33439-x.  doi: 10.1038/s41467-022-33439-x

    24. [24]

      W. Huang, L. Zhang, J. Hong, H. Mo, C. Xu, Y. Zhang, Waste Dispos. Sust. Energy 6 (2024) 309, https://doi.org/10.1007/s42768-023-00185-9.  doi: 10.1007/s42768-023-00185-9

    25. [25]

      F. Ye, F. Wang, C. Meng, L. Bai, J. Li, P. Xing, B. Teng, L. Zhao, S. Bai, Appl. Catal. B 230 (2018) 145, https://doi.org/10.1016/j.apcatb.2018.02.046.  doi: 10.1016/j.apcatb.2018.02.046

    26. [26]

      J.A.H. Dreyer, P. Li, L. Zhang, G.K. Beh, R. Zhang, P.H.-L. Sit, W.Y. Teoh, Appl. Catal. B 219 (2017) 715, https://doi.org/10.1016/j.apcatb.2017.08.011.  doi: 10.1016/j.apcatb.2017.08.011

    27. [27]

      Y.-J. Zhang, V. Sethuraman, R. Michalsky, A.A. Peterson, ACS Catal. 4 (10) (2014) 3742, https://doi.org/10.1021/cs5012298.  doi: 10.1021/cs5012298

    28. [28]

      Q. Wang, K. Domen, Chem. Rev. 120(2) (2020) 919-985, https://doi.org/10.1021/acs.chemrev.9b00201.  doi: 10.1021/acs.chemrev.9b00201

    29. [29]

      J. Ran, M. Jaroniec, S.-Z. Qiao, Adv. Mater. 30 (7) (2018) 1704649, https://doi.org/10.1002/adma.201704649.  doi: 10.1002/adma.201704649

    30. [30]

      Y. Liu, P.-F. Sui, Y.-C. Wang, Y. Wei, C. Xu, Y. Zhang, J.-L. Luo, Appl. Catal. B 374 (2025) 125391, https://doi.org/10.1016/j.apcatb.2025.125391.  doi: 10.1016/j.apcatb.2025.125391

    31. [31]

      C. Guo, X. Wei, H. Pang, J. Zhou, R. Ma, Appl. Surf. Sci. 686 (2025) 162086, https://doi.org/10.1016/j.apsusc.2024.162086.  doi: 10.1016/j.apsusc.2024.162086

    32. [32]

      Y. Zhu, C. Gao, S. Bai, S. Chen, R. Long, L. Song, Z. Li, Y. Xiong, Nano Res. 10 (2017) 3396, https://doi.org/10.1007/s12274-017-1552-0.  doi: 10.1007/s12274-017-1552-0

    33. [33]

      H. Yang, H. Cai, D. Li, Y. Kong, S. Feng, X. Jiang, Q. Hu, C. He, Natl. Sci. Rev. 11 (12) (2024) 361, https://doi.org/10.1093/nsr/nwae361.  doi: 10.1093/nsr/nwae361

    34. [34]

      Q. Zhai, S. Xie, W. Fan, Q. Zhang, Y. Wang, W. Deng, Y. Wang, Angew. Chem. Int. Ed. 52 (22) (2013) 5776, https://doi.org/10.1002/anie.201301473.  doi: 10.1002/anie.201301473

    35. [35]

      J.K. Nørskov, T. Bligaard, B. Hvolbæk, F. Abild-Pedersen, I. Chorkendorff, C.H. Christensen, Chem. Soc. Rev. 37 (10) (2008) 2163, https://doi.org/10.1039/B800260F.  doi: 10.1039/B800260F

    36. [36]

      B. Ni, X. Wang, Adv. Sci. 2 (7) (2015) 1500085, https://doi.org/10.1002/advs.201500085.  doi: 10.1002/advs.201500085

    37. [37]

      T.F. Jaramillo, K.P. Jørgensen, J. Bonde, J.H. Nielsen, S. Horch, I. Chorkendorff, Science 317 (5834) (2007) 100, https://doi.org/10.1126/science.1141483.  doi: 10.1126/science.1141483

    38. [38]

      J. Hu, W. Shang, C. Xin, J. Guo, X. Cheng, S. Zhang, S. Song, W. Liu, F. Ju, J. Hou, Y. Shi, Angew. Chem. Int. Ed. 62(27) (2023) e202304754, https://doi.org/10.1002/anie.202304754.  doi: 10.1002/anie.202304754

    39. [39]

      Z. Huang, T. Cheng, A.H. Shah, G. Zhong, C. Wan, P. Wang, M. Ding, J. Huang, Z. Wan, S. Wang, J. Cai, B. Peng, H. Liu, Y. Huang, W.A. Goddard, X. Duan, Nat. Catal. 7 (2024) 678, https://doi.org/10.1038/s41929-024-01156-x.  doi: 10.1038/s41929-024-01156-x

    40. [40]

      W. Zhu, R. Michalsky, Ö. Metin, H. Lv, S. Guo, C.J. Wright, X. Sun, A.A. Peterson, S. Sun, J. Am. Chem. Soc. 135(45) (2013) 16833-16836, https://doi.org/10.1021/ja409445p.  doi: 10.1021/ja409445p

    41. [41]

      L. Liu, A. Corma, Chem. Rev. 118 (10) (2018) 4981, https://doi.org/10.1021/acs.chemrev.7b00776.  doi: 10.1021/acs.chemrev.7b00776

    42. [42]

      J.-J. Yang, Y. Zhang, X.-Y. Xie, W.-H. Fang, G. Cui, ACS Catal. 12(14) (2022) 8558, https://doi.org/10.1021/acscatal.2c01519.  doi: 10.1021/acscatal.2c01519

    43. [43]

      X. Zhang, Z. Li, T. Liu, M. Li, C. Zeng, H. Matsumoto, H. Han, Chinese J. Catal. 43(8) (2022) 2223, https://doi.org/10.1016/S1872-2067(21)64048-2.  doi: 10.1016/S1872-2067(21)64048-2

    44. [44]

      J. Tao, J.P. Perdew, V.N. Staroverov, G.E. Scuseria, Phys. Rev. Lett. 91(14) (2003) 146401, https://doi.org/10.1103/PhysRevLett.91.146401.  doi: 10.1103/PhysRevLett.91.146401

    45. [45]

      S. Grimme, J. Antony, S. Ehrlich, H. Krieg, J. Chem. Phys. 132(15) (2010) 154104, https://doi.org/10.1063/1.3382344.  doi: 10.1063/1.3382344

    46. [46]

      C. Hartwigsen, S. Goedecker, J. Hutter, Phys. Rev. B 58(7) (1998) 3641, https://doi.org/10.1103/PhysRevB.58.3641.  doi: 10.1103/PhysRevB.58.3641

    47. [47]

      J. VandeVondele, J. Hutter, J. Chem. Phys. 127(11) (2007) 114105, https://doi.org/10.1063/1.2770708.  doi: 10.1063/1.2770708

    48. [48]

      F. Maurer, J. Jelic, J. Wang, A. Gänzler, P. Dolcet, C. Wöll, Y. Wang, F. Studt, M. Casapu, J.D. Grunwaldt, Nat. Catal. 3 (2020) 824, https://doi.org/10.1038/s41929-020-00508-7.  doi: 10.1038/s41929-020-00508-7

    49. [49]

      X. Zhou, Q. Shen, K. Yuan, W. Yang, Q. Chen, Z. Geng, J. Zhang, X. Shao, W. Chen, G. Xu, X. Yang, K. Wu, J. Am. Chem. Soc. 140(2) (2018) 554-, https://doi.org/10.1021/jacs.7b10394.  doi: 10.1021/jacs.7b10394

    50. [50]

      P. Makuła, M. Pacia, W. Macyk, J. Phys. Chem. Lett. 9 (23) (2018) 6814, https://doi.org/10.1021/acs.jpclett.8b02892.  doi: 10.1021/acs.jpclett.8b02892

    51. [51]

      X. Bian, Y. Zhao, C. Zhou, T. Zhang, Angew. Chem. Int. Ed. 62 (24) (2023) e202219340, https://doi.org/10.1002/anie.202219340.  doi: 10.1002/anie.202219340

    52. [52]

      Q. Li, X. Zhu, C. Li, J. Hong, Y. Liu, M. Wang, C. Xu, Y. Zhang, Int. J. Hydrog. Energy 91 (2024) 488, https://doi.org/10.1016/j.ijhydene.2024.10.135.  doi: 10.1016/j.ijhydene.2024.10.135

    53. [53]

      G. Baffou, I. Bordacchini, A. Baldi, R. Quidant, Light Sci. Appl. 9 (2020) 108, https://doi.org/10.1038/s41377-020-00345-0.  doi: 10.1038/s41377-020-00345-0

    54. [54]

      N. Zhumabay, J.A. Bau, R. Ahmad, L. Braic, H. Zhang, L. Cavallo, M. Rueping, Small Struct. 6 (1) (2025) 2400283, https://doi.org/10.1002/sstr.202400283.  doi: 10.1002/sstr.202400283

    55. [55]

      K.S. Finnie, D.J. Cassidy, J.R. Bartlett, J.L. Woolfrey, Langmuir 17 (3) (2001) 816, https://doi.org/10.1021/la0009240.  doi: 10.1021/la0009240

    56. [56]

      E.-M. Köck, M. Kogler, T. Bielz, B. Klötzer, S. Penner, J Phys. Chem. C 117 (34) (2013) 17666, https://doi.org/10.1021/jp405625x.  doi: 10.1021/jp405625x

    57. [57]

      C. Binet, M. Daturi, J.-C. Lavalley, Catal. Today 50 (2) (1999) 207, https://doi.org/10.1016/S0920-5861(98)00504-5.  doi: 10.1016/S0920-5861(98)00504-5

    58. [58]

      Y. Fukuda, K. Tanabe, Bull. Chem. Soc. Jpn. 46 (6) (1973) 1616, https://doi.org/10.1246/bcsj.46.1616.  doi: 10.1246/bcsj.46.1616

    59. [59]

      D. Qin, D. Xie, H. Zheng, Z. Li, J. Tang, Z. Wei, Catal. Lett. 151 (2021) 2894, https://doi.org/10.1007/s10562-021-03539-2.  doi: 10.1007/s10562-021-03539-2

    60. [60]

      X. Jiao, X. Li, X. Jin, Y. Sun, J. Xu, L. Liang, H. Ju, J. Zhu, Y. Pan, W. Yan, Y. Lin, Y. Xie, J. Am. Chem. Soc. 139 (49) (2017) 18044, https://doi.org/10.1021/jacs.7b10287.  doi: 10.1021/jacs.7b10287

    61. [61]

      A. Li, Q. Cao, G. Zhou, B.V.K.J. Schmidt, W. Zhu, X. Yuan, H. Huo, J. Gong, M. Antonietti, Angew. Chem. Int. Ed. 58 (41) (2019) 14549, https://doi.org/10.1002/anie.201908058.  doi: 10.1002/anie.201908058

    62. [62]

      L. Wang, E. Guan, Y. Wang, L. Wang, Z. Gong, Y. Cui, X. Meng, B.C. Gates, F.-S. Xiao, Nat. Commun. 11 (2020) 1033, https://doi.org/10.1038/s41467-020-14817-9.  doi: 10.1038/s41467-020-14817-9

    63. [63]

      S. Kattel, B. Yan, Y. Yang, J.G. Chen, P. Liu, J. Am. Chem. Soc. 138 (38) (2016) 12440, https://doi.org/10.1021/jacs.6b05791.  doi: 10.1021/jacs.6b05791

    64. [64]

      Y. Cao, Z. Sui, Y. Zhu, X. Zhou, D. Chen, ACS Catal. 7 (11) (2017) 7835, https://doi.org/10.1021/acscatal.7b01745.  doi: 10.1021/acscatal.7b01745

    65. [65]

      Y. Wang, M. Peng, C. Ye, C. Gan, J. Zhang, C. Guo, Appl. Organomet. Chem. 33 (9) (2019) e5076, https://doi.org/10.1002/aoc.5076.  doi: 10.1002/aoc.5076

    66. [66]

      Y. Wang, H. Arandiyan, J. Scott, K.-F. Aguey-Zinsou, R. Amal, ACS Appl. Energy Mater. 1 (12) (2018) 6781, https://doi.org/10.1021/acsaem.8b00817.  doi: 10.1021/acsaem.8b00817

    67. [67]

      A. Bagger, K.D. Jensen, M. Rashedi, R. Luo, J. Du, D. Zhang, I.J. Pereira, M. Escudero-Escribano, M. Arenz, J. Rossmeisl, Chem. Sci. 13 (45) (2022) 13409, https://doi.org/10.1039/D2SC05160E.  doi: 10.1039/D2SC05160E

    68. [68]

      W. Chen, J. Cao, W. Fu, J. Zhang, G. Qian, J. Yang, D. Chen, X. Zhou, W. Yuan, X. Duan, Angew. Chem. Int. Ed. 61 (16) (2022) e202200190, https://doi.org/10.1002/anie.202200190.  doi: 10.1002/anie.202200190

  • 加载中
    1. [1]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    2. [2]

      Runhua Chen Qiong Wu Jingchen Luo Xiaolong Zu Shan Zhu Yongfu Sun . 缺陷态二维超薄材料用于光/电催化CO2还原的基础与展望. Acta Physico-Chimica Sinica, 2025, 41(3): 2308052-. doi: 10.3866/PKU.WHXB202308052

    3. [3]

      Qin Li Huihui Zhang Huajun Gu Yuanyuan Cui Ruihua Gao Wei-Lin DaiIn situ Growth of Cd0.5Zn0.5S Nanorods on Ti3C2 MXene Nanosheet for Efficient Visible-Light-Driven Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2025, 41(4): 100031-. doi: 10.3866/PKU.WHXB202402016

    4. [4]

      Lina Guo Ruizhe Li Chuang Sun Xiaoli Luo Yiqiu Shi Hong Yuan Shuxin Ouyang Tierui Zhang . 层状双金属氢氧化物的层间阴离子对衍生的Ni-Al2O3催化剂光热催化CO2甲烷化反应的影响. Acta Physico-Chimica Sinica, 2025, 41(1): 2309002-. doi: 10.3866/PKU.WHXB202309002

    5. [5]

      Asif Hassan Raza Shumail Farhan Zhixian Yu Yan Wu . 用于高效制氢的双S型ZnS/ZnO/CdS异质结构光催化剂. Acta Physico-Chimica Sinica, 2024, 40(11): 2406020-. doi: 10.3866/PKU.WHXB202406020

    6. [6]

      Xue Liu Lipeng Wang Luling Li Kai Wang Wenju Liu Biao Hu Daofan Cao Fenghao Jiang Junguo Li Ke Liu . Cu基和Pt基甲醇水蒸气重整制氢催化剂研究进展. Acta Physico-Chimica Sinica, 2025, 41(5): 100049-. doi: 10.1016/j.actphy.2025.100049

    7. [7]

      Zhuoyan Lv Yangming Ding Leilei Kang Lin Li Xiao Yan Liu Aiqin Wang Tao Zhang . Light-Enhanced Direct Epoxidation of Propylene by Molecular Oxygen over CuOx/TiO2 Catalyst. Acta Physico-Chimica Sinica, 2025, 41(4): 100038-. doi: 10.3866/PKU.WHXB202408015

    8. [8]

      Xiaofeng Zhu Bingbing Xiao Jiaxin Su Shuai Wang Qingran Zhang Jun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-. doi: 10.3866/PKU.WHXB202407005

    9. [9]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    10. [10]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    11. [11]

      Zhiquan Zhang Baker Rhimi Zheyang Liu Min Zhou Guowei Deng Wei Wei Liang Mao Huaming Li Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029

    12. [12]

      Haodong JINQingqing LIUChaoyang SHIDanyang WEIJie YUXuhui XUMingli XU . NiCu/ZnO heterostructure photothermal electrocatalyst for efficient hydrogen evolution reaction. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1068-1082. doi: 10.11862/CJIC.20250048

    13. [13]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    14. [14]

      Hao XURuopeng LIPeixia YANGAnmin LIUJie BAI . Regulation mechanism of halogen axial coordination atoms on the oxygen reduction activity of Fe-N4 site: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 695-701. doi: 10.11862/CJIC.20240302

    15. [15]

      Fanpeng MengFei ZhaoJingkai LinJinsheng ZhaoHuayang ZhangShaobin Wang . Optimizing interfacial electric fields in carbon nitride nanosheet/spherical conjugated polymer S-scheme heterojunction for hydrogen evolution. Acta Physico-Chimica Sinica, 2025, 41(8): 100095-0. doi: 10.1016/j.actphy.2025.100095

    16. [16]

      Jie ZHAOHuili ZHANGXiaoqing LUZhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213

    17. [17]

      Wei HEJing XITianpei HENa CHENQuan YUAN . Application of solar-driven inorganic semiconductor-microbe hybrids in carbon dioxide fixation and biomanufacturing. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 35-44. doi: 10.11862/CJIC.20240364

    18. [18]

      Wenjiang LIPingli GUANRui YUYuansheng CHENGXianwen WEI . C60-MoP-C nanoflowers van der Waals heterojunctions and its electrocatalytic hydrogen evolution performance. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 771-781. doi: 10.11862/CJIC.20230289

    19. [19]

      Zhengyu Zhou Huiqin Yao Youlin Wu Teng Li Noritatsu Tsubaki Zhiliang Jin . Synergistic Effect of Cu-Graphdiyne/Transition Bimetallic Tungstate Formed S-Scheme Heterojunction for Enhanced Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(10): 2312010-. doi: 10.3866/PKU.WHXB202312010

    20. [20]

      Xi YANGChunxiang CHANGYingpeng XIEYang LIYuhui CHENBorao WANGLudong YIZhonghao HAN . Co-catalyst Ni3N supported Al-doped SrTiO3: Synthesis and application to hydrogen evolution from photocatalytic water splitting. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 440-452. doi: 10.11862/CJIC.20240371

Metrics
  • PDF Downloads(0)
  • Abstract views(4)
  • HTML views(1)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return