Decoding the interfacial competition between hydrogen evolution and CO2 reduction via edge-active-site modulation in photothermal catalysis
- Corresponding author: Chenyu Xu, mrxcy@zju.edu.cn Yanwei Zhang, zhangyw@zju.edu.cn
Citation:
Jianan Hong, Chenyu Xu, Yan Liu, Changqi Li, Menglin Wang, Yanwei Zhang. Decoding the interfacial competition between hydrogen evolution and CO2 reduction via edge-active-site modulation in photothermal catalysis[J]. Acta Physico-Chimica Sinica,
;2025, 41(9): 100099.
doi:
10.1016/j.actphy.2025.100099
E. Gong, S. Ali, C.B. Hiragond, H.S. Kim, N.S. Powar, D. Kim, H. Kim, S.-I. In, Energy Environ. Sci. 15 (3) (2022) 880, https://doi.org/10.1039/D1EE02714J.
doi: 10.1039/D1EE02714J
Z. Zhang, B. Rhimi, Z. Liu, M. Zhou, G. Deng, W. Wei, L. Mao, H. Li, Z. Jiang, Acta Phys. -Chim. Sin. 40(12) (2024) 2406029, https://doi.org/10.3866/PKU.WHXB202406029.
doi: 10.3866/PKU.WHXB202406029
H. Shen, T. Peppel, J. Strunk, Z. Sun, Sol. RRL 4(8) (2020) 1900546, https://doi.org/10.1002/solr.201900546.
doi: 10.1002/solr.201900546
J. Hong, C. Xu, B. Deng, Y. Gao, X. Zhu, X. Zhang, Y. Zhang, Adv. Sci. 9(3) (2021) 2103926, https://doi.org/10.1002/advs.202103926.
doi: 10.1002/advs.202103926
C. Zhang, Z. Wu, J. Shen, L. He, W. Sun, Acta Phys. -Chim. Sin. 40(1) (2024) 2304004, https://doi.org/10.3866/PKU.WHXB202304004.
doi: 10.3866/PKU.WHXB202304004
Y. Li, R. Li, Z. Li, Y. Xu, H. Yuan, S. Ouyang, T. Zhang, Sol. RRL 6(10) (2022) 2200493, https://doi.org/10.1002/solr.202200493.
doi: 10.1002/solr.202200493
J. Zhao, R. Shi, G.I.N. Waterhouse, T. Zhang, Nano Energy 102 (2022) 107650, https://doi.org/10.1016/j.nanoen.2022.107650.
doi: 10.1016/j.nanoen.2022.107650
T. Takata, J. Jiang, Y. Sakata, M. Nakabayashi, N. Shibata, V. Nandal, K. Seki, T. Hisatomi, K. Domen, Nature 581 (2020) 411, https://doi.org/10.1038/s41586-020-2278-9.
doi: 10.1038/s41586-020-2278-9
Y. Goto, T. Hisatomi, Q. Wang, T. Higashi, K. Ishikiriyama, T. Maeda, Y. Sakata, S. Okunaka, H. Tokudome, M. Katayama, S. Akiyama, H. Nishiyama, Y. Inoue, T. Takewaki, T. Setoyama, T. Minegishi, T. Takata, T. Yamada, K. Domen, Joule 2(3) (2018) 509, https://doi.org/10.1016/j.joule.2017.12.009.
doi: 10.1016/j.joule.2017.12.009
Y. Xie, C. Xu, Y. Liu, E. Zhang, Z. Chen, X. Zhan, G. Deng, Y. Gao, Y. Zhang, Adv. Sci. 12 (3) (2024) 2410201, https://doi.org/10.1002/advs.202410201.
doi: 10.1002/advs.202410201
S. Wang, K. Teramura, T. Hisatomi, K. Domen, H. Asakura, S. Hosokawa, T. Tanaka, ChemistrySelect 5 (28) (2020) 8779, https://doi.org/10.1002/slct.202001693.
doi: 10.1002/slct.202001693
S. Wang, K. Teramura, T. Hisatomi, K. Domen, H. Asakura, S. Hosokawa, T. Tanaka, ACS Appl. Energy Mater. 3(2) (2020) 1468, https://doi.org/10.1021/acsaem.9b01927.
doi: 10.1021/acsaem.9b01927
Z. Li, B. Han, W. Bai, G. Wei, X. Li, J. Qi, D. Liu, Y. Zheng, L. Zhu, Sep. Purif. Technol. 324 (2023) 124528, https://doi.org/10.1016/j.seppur.2023.124528.
doi: 10.1016/j.seppur.2023.124528
R. Chen, Q. Wu, J. Luo, X. Zu, S. Zhu, Y. Sun, Acta Phys. -Chim. Sin. 41 (3) (2025) 100019, https://doi.org/10.3866/PKU.WHXB202308052.
doi: 10.3866/PKU.WHXB202308052
Y. Cao, R. Guo, M. Ma, Z. Huang, Y. Zhou, Acta Phys. -Chim. Sin. 40 (1) (2024) 2303029, https://doi.org/10.3866/PKU.WHXB202303029.
doi: 10.3866/PKU.WHXB202303029
X. Hu, Z. Xie, Q. Tang, H. Wang, L. Zhang, J. Wang, Appl. Catal. B 298 (2021) 120635, https://doi.org/10.1016/j.apcatb.2021.120635.
doi: 10.1016/j.apcatb.2021.120635
W. Huang, L. Zhang, Z. Li, X. Zhang, X. Dong, Y. Zhang, J. CO2 Util. 55 (2022) 101801, https://doi.org/10.1016/j.jcou.2021.101801.
doi: 10.1016/j.jcou.2021.101801
S. Guo, X. Li, J. Li, B. Wei, Nat. Commun. 12(1) (2021) 1343, https://doi.org/10.1038/s41467-021-21526-4.
doi: 10.1038/s41467-021-21526-4
M. Sun, Y. Wang, T. Dong, L. Zhou, A. Dai, J. Kou, C. Lu, Langmuir 38 (9) (2022) 2811, https://doi.org/10.1021/acs.langmuir.1c02894.
doi: 10.1021/acs.langmuir.1c02894
X. Zhu, Y. Liu, M. Wang, L. Zhang, Q. Li, E. Zhang, H. Mo, Y. Gao, C. Xu, Y. Zhang, Chem. Eng. J. 479 (2024) 147636, https://doi.org/10.1016/j.cej.2023.147636.
doi: 10.1016/j.cej.2023.147636
L. Zhang, C. Li, Y. Liu, C. Xu, Y. Zhang, npj Comput. Mater. 10 (1) (2024) 132, https://doi.org/10.1038/s41524-024-01325-3.
doi: 10.1038/s41524-024-01325-3
J. Fu, K. Jiang, X. Qiu, J. Yu, M. Liu, Mater. Today 32 (2020) 222, https://doi.org/10.1016/j.mattod.2019.06.009.
doi: 10.1016/j.mattod.2019.06.009
T. Suguro, F. Kishimoto, N. Kariya, T. Fukui, M. Nakabayashi, N. Shibata, T. Takata, K. Domen, K. Takanabe, Nat. Commun. 13 (1) (2022) 5698, https://doi.org/10.1038/s41467-022-33439-x.
doi: 10.1038/s41467-022-33439-x
W. Huang, L. Zhang, J. Hong, H. Mo, C. Xu, Y. Zhang, Waste Dispos. Sust. Energy 6 (2024) 309, https://doi.org/10.1007/s42768-023-00185-9.
doi: 10.1007/s42768-023-00185-9
F. Ye, F. Wang, C. Meng, L. Bai, J. Li, P. Xing, B. Teng, L. Zhao, S. Bai, Appl. Catal. B 230 (2018) 145, https://doi.org/10.1016/j.apcatb.2018.02.046.
doi: 10.1016/j.apcatb.2018.02.046
J.A.H. Dreyer, P. Li, L. Zhang, G.K. Beh, R. Zhang, P.H.-L. Sit, W.Y. Teoh, Appl. Catal. B 219 (2017) 715, https://doi.org/10.1016/j.apcatb.2017.08.011.
doi: 10.1016/j.apcatb.2017.08.011
Y.-J. Zhang, V. Sethuraman, R. Michalsky, A.A. Peterson, ACS Catal. 4 (10) (2014) 3742, https://doi.org/10.1021/cs5012298.
doi: 10.1021/cs5012298
Q. Wang, K. Domen, Chem. Rev. 120(2) (2020) 919-985, https://doi.org/10.1021/acs.chemrev.9b00201.
doi: 10.1021/acs.chemrev.9b00201
J. Ran, M. Jaroniec, S.-Z. Qiao, Adv. Mater. 30 (7) (2018) 1704649, https://doi.org/10.1002/adma.201704649.
doi: 10.1002/adma.201704649
Y. Liu, P.-F. Sui, Y.-C. Wang, Y. Wei, C. Xu, Y. Zhang, J.-L. Luo, Appl. Catal. B 374 (2025) 125391, https://doi.org/10.1016/j.apcatb.2025.125391.
doi: 10.1016/j.apcatb.2025.125391
C. Guo, X. Wei, H. Pang, J. Zhou, R. Ma, Appl. Surf. Sci. 686 (2025) 162086, https://doi.org/10.1016/j.apsusc.2024.162086.
doi: 10.1016/j.apsusc.2024.162086
Y. Zhu, C. Gao, S. Bai, S. Chen, R. Long, L. Song, Z. Li, Y. Xiong, Nano Res. 10 (2017) 3396, https://doi.org/10.1007/s12274-017-1552-0.
doi: 10.1007/s12274-017-1552-0
H. Yang, H. Cai, D. Li, Y. Kong, S. Feng, X. Jiang, Q. Hu, C. He, Natl. Sci. Rev. 11 (12) (2024) 361, https://doi.org/10.1093/nsr/nwae361.
doi: 10.1093/nsr/nwae361
Q. Zhai, S. Xie, W. Fan, Q. Zhang, Y. Wang, W. Deng, Y. Wang, Angew. Chem. Int. Ed. 52 (22) (2013) 5776, https://doi.org/10.1002/anie.201301473.
doi: 10.1002/anie.201301473
J.K. Nørskov, T. Bligaard, B. Hvolbæk, F. Abild-Pedersen, I. Chorkendorff, C.H. Christensen, Chem. Soc. Rev. 37 (10) (2008) 2163, https://doi.org/10.1039/B800260F.
doi: 10.1039/B800260F
B. Ni, X. Wang, Adv. Sci. 2 (7) (2015) 1500085, https://doi.org/10.1002/advs.201500085.
doi: 10.1002/advs.201500085
T.F. Jaramillo, K.P. Jørgensen, J. Bonde, J.H. Nielsen, S. Horch, I. Chorkendorff, Science 317 (5834) (2007) 100, https://doi.org/10.1126/science.1141483.
doi: 10.1126/science.1141483
J. Hu, W. Shang, C. Xin, J. Guo, X. Cheng, S. Zhang, S. Song, W. Liu, F. Ju, J. Hou, Y. Shi, Angew. Chem. Int. Ed. 62(27) (2023) e202304754, https://doi.org/10.1002/anie.202304754.
doi: 10.1002/anie.202304754
Z. Huang, T. Cheng, A.H. Shah, G. Zhong, C. Wan, P. Wang, M. Ding, J. Huang, Z. Wan, S. Wang, J. Cai, B. Peng, H. Liu, Y. Huang, W.A. Goddard, X. Duan, Nat. Catal. 7 (2024) 678, https://doi.org/10.1038/s41929-024-01156-x.
doi: 10.1038/s41929-024-01156-x
W. Zhu, R. Michalsky, Ö. Metin, H. Lv, S. Guo, C.J. Wright, X. Sun, A.A. Peterson, S. Sun, J. Am. Chem. Soc. 135(45) (2013) 16833-16836, https://doi.org/10.1021/ja409445p.
doi: 10.1021/ja409445p
L. Liu, A. Corma, Chem. Rev. 118 (10) (2018) 4981, https://doi.org/10.1021/acs.chemrev.7b00776.
doi: 10.1021/acs.chemrev.7b00776
J.-J. Yang, Y. Zhang, X.-Y. Xie, W.-H. Fang, G. Cui, ACS Catal. 12(14) (2022) 8558, https://doi.org/10.1021/acscatal.2c01519.
doi: 10.1021/acscatal.2c01519
X. Zhang, Z. Li, T. Liu, M. Li, C. Zeng, H. Matsumoto, H. Han, Chinese J. Catal. 43(8) (2022) 2223, https://doi.org/10.1016/S1872-2067(21)64048-2.
doi: 10.1016/S1872-2067(21)64048-2
J. Tao, J.P. Perdew, V.N. Staroverov, G.E. Scuseria, Phys. Rev. Lett. 91(14) (2003) 146401, https://doi.org/10.1103/PhysRevLett.91.146401.
doi: 10.1103/PhysRevLett.91.146401
S. Grimme, J. Antony, S. Ehrlich, H. Krieg, J. Chem. Phys. 132(15) (2010) 154104, https://doi.org/10.1063/1.3382344.
doi: 10.1063/1.3382344
C. Hartwigsen, S. Goedecker, J. Hutter, Phys. Rev. B 58(7) (1998) 3641, https://doi.org/10.1103/PhysRevB.58.3641.
doi: 10.1103/PhysRevB.58.3641
J. VandeVondele, J. Hutter, J. Chem. Phys. 127(11) (2007) 114105, https://doi.org/10.1063/1.2770708.
doi: 10.1063/1.2770708
F. Maurer, J. Jelic, J. Wang, A. Gänzler, P. Dolcet, C. Wöll, Y. Wang, F. Studt, M. Casapu, J.D. Grunwaldt, Nat. Catal. 3 (2020) 824, https://doi.org/10.1038/s41929-020-00508-7.
doi: 10.1038/s41929-020-00508-7
X. Zhou, Q. Shen, K. Yuan, W. Yang, Q. Chen, Z. Geng, J. Zhang, X. Shao, W. Chen, G. Xu, X. Yang, K. Wu, J. Am. Chem. Soc. 140(2) (2018) 554-, https://doi.org/10.1021/jacs.7b10394.
doi: 10.1021/jacs.7b10394
P. Makuła, M. Pacia, W. Macyk, J. Phys. Chem. Lett. 9 (23) (2018) 6814, https://doi.org/10.1021/acs.jpclett.8b02892.
doi: 10.1021/acs.jpclett.8b02892
X. Bian, Y. Zhao, C. Zhou, T. Zhang, Angew. Chem. Int. Ed. 62 (24) (2023) e202219340, https://doi.org/10.1002/anie.202219340.
doi: 10.1002/anie.202219340
Q. Li, X. Zhu, C. Li, J. Hong, Y. Liu, M. Wang, C. Xu, Y. Zhang, Int. J. Hydrog. Energy 91 (2024) 488, https://doi.org/10.1016/j.ijhydene.2024.10.135.
doi: 10.1016/j.ijhydene.2024.10.135
G. Baffou, I. Bordacchini, A. Baldi, R. Quidant, Light Sci. Appl. 9 (2020) 108, https://doi.org/10.1038/s41377-020-00345-0.
doi: 10.1038/s41377-020-00345-0
N. Zhumabay, J.A. Bau, R. Ahmad, L. Braic, H. Zhang, L. Cavallo, M. Rueping, Small Struct. 6 (1) (2025) 2400283, https://doi.org/10.1002/sstr.202400283.
doi: 10.1002/sstr.202400283
K.S. Finnie, D.J. Cassidy, J.R. Bartlett, J.L. Woolfrey, Langmuir 17 (3) (2001) 816, https://doi.org/10.1021/la0009240.
doi: 10.1021/la0009240
E.-M. Köck, M. Kogler, T. Bielz, B. Klötzer, S. Penner, J Phys. Chem. C 117 (34) (2013) 17666, https://doi.org/10.1021/jp405625x.
doi: 10.1021/jp405625x
C. Binet, M. Daturi, J.-C. Lavalley, Catal. Today 50 (2) (1999) 207, https://doi.org/10.1016/S0920-5861(98)00504-5.
doi: 10.1016/S0920-5861(98)00504-5
Y. Fukuda, K. Tanabe, Bull. Chem. Soc. Jpn. 46 (6) (1973) 1616, https://doi.org/10.1246/bcsj.46.1616.
doi: 10.1246/bcsj.46.1616
D. Qin, D. Xie, H. Zheng, Z. Li, J. Tang, Z. Wei, Catal. Lett. 151 (2021) 2894, https://doi.org/10.1007/s10562-021-03539-2.
doi: 10.1007/s10562-021-03539-2
X. Jiao, X. Li, X. Jin, Y. Sun, J. Xu, L. Liang, H. Ju, J. Zhu, Y. Pan, W. Yan, Y. Lin, Y. Xie, J. Am. Chem. Soc. 139 (49) (2017) 18044, https://doi.org/10.1021/jacs.7b10287.
doi: 10.1021/jacs.7b10287
A. Li, Q. Cao, G. Zhou, B.V.K.J. Schmidt, W. Zhu, X. Yuan, H. Huo, J. Gong, M. Antonietti, Angew. Chem. Int. Ed. 58 (41) (2019) 14549, https://doi.org/10.1002/anie.201908058.
doi: 10.1002/anie.201908058
L. Wang, E. Guan, Y. Wang, L. Wang, Z. Gong, Y. Cui, X. Meng, B.C. Gates, F.-S. Xiao, Nat. Commun. 11 (2020) 1033, https://doi.org/10.1038/s41467-020-14817-9.
doi: 10.1038/s41467-020-14817-9
S. Kattel, B. Yan, Y. Yang, J.G. Chen, P. Liu, J. Am. Chem. Soc. 138 (38) (2016) 12440, https://doi.org/10.1021/jacs.6b05791.
doi: 10.1021/jacs.6b05791
Y. Cao, Z. Sui, Y. Zhu, X. Zhou, D. Chen, ACS Catal. 7 (11) (2017) 7835, https://doi.org/10.1021/acscatal.7b01745.
doi: 10.1021/acscatal.7b01745
Y. Wang, M. Peng, C. Ye, C. Gan, J. Zhang, C. Guo, Appl. Organomet. Chem. 33 (9) (2019) e5076, https://doi.org/10.1002/aoc.5076.
doi: 10.1002/aoc.5076
Y. Wang, H. Arandiyan, J. Scott, K.-F. Aguey-Zinsou, R. Amal, ACS Appl. Energy Mater. 1 (12) (2018) 6781, https://doi.org/10.1021/acsaem.8b00817.
doi: 10.1021/acsaem.8b00817
A. Bagger, K.D. Jensen, M. Rashedi, R. Luo, J. Du, D. Zhang, I.J. Pereira, M. Escudero-Escribano, M. Arenz, J. Rossmeisl, Chem. Sci. 13 (45) (2022) 13409, https://doi.org/10.1039/D2SC05160E.
doi: 10.1039/D2SC05160E
W. Chen, J. Cao, W. Fu, J. Zhang, G. Qian, J. Yang, D. Chen, X. Zhou, W. Yuan, X. Duan, Angew. Chem. Int. Ed. 61 (16) (2022) e202200190, https://doi.org/10.1002/anie.202200190.
doi: 10.1002/anie.202200190
Wenxiu Yang , Jinfeng Zhang , Quanlong Xu , Yun Yang , Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014
Runhua Chen , Qiong Wu , Jingchen Luo , Xiaolong Zu , Shan Zhu , Yongfu Sun . 缺陷态二维超薄材料用于光/电催化CO2还原的基础与展望. Acta Physico-Chimica Sinica, 2025, 41(3): 2308052-. doi: 10.3866/PKU.WHXB202308052
Qin Li , Huihui Zhang , Huajun Gu , Yuanyuan Cui , Ruihua Gao , Wei-Lin Dai . In situ Growth of Cd0.5Zn0.5S Nanorods on Ti3C2 MXene Nanosheet for Efficient Visible-Light-Driven Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2025, 41(4): 100031-. doi: 10.3866/PKU.WHXB202402016
Lina Guo , Ruizhe Li , Chuang Sun , Xiaoli Luo , Yiqiu Shi , Hong Yuan , Shuxin Ouyang , Tierui Zhang . 层状双金属氢氧化物的层间阴离子对衍生的Ni-Al2O3催化剂光热催化CO2甲烷化反应的影响. Acta Physico-Chimica Sinica, 2025, 41(1): 2309002-. doi: 10.3866/PKU.WHXB202309002
Asif Hassan Raza , Shumail Farhan , Zhixian Yu , Yan Wu . 用于高效制氢的双S型ZnS/ZnO/CdS异质结构光催化剂. Acta Physico-Chimica Sinica, 2024, 40(11): 2406020-. doi: 10.3866/PKU.WHXB202406020
Xue Liu , Lipeng Wang , Luling Li , Kai Wang , Wenju Liu , Biao Hu , Daofan Cao , Fenghao Jiang , Junguo Li , Ke Liu . Cu基和Pt基甲醇水蒸气重整制氢催化剂研究进展. Acta Physico-Chimica Sinica, 2025, 41(5): 100049-. doi: 10.1016/j.actphy.2025.100049
Zhuoyan Lv , Yangming Ding , Leilei Kang , Lin Li , Xiao Yan Liu , Aiqin Wang , Tao Zhang . Light-Enhanced Direct Epoxidation of Propylene by Molecular Oxygen over CuOx/TiO2 Catalyst. Acta Physico-Chimica Sinica, 2025, 41(4): 100038-. doi: 10.3866/PKU.WHXB202408015
Xiaofeng Zhu , Bingbing Xiao , Jiaxin Su , Shuai Wang , Qingran Zhang , Jun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-. doi: 10.3866/PKU.WHXB202407005
Wenlong LI , Xinyu JIA , Jie LING , Mengdan MA , Anning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421
Bing WEI , Jianfan ZHANG , Zhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201
Zhiquan Zhang , Baker Rhimi , Zheyang Liu , Min Zhou , Guowei Deng , Wei Wei , Liang Mao , Huaming Li , Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029
Haodong JIN , Qingqing LIU , Chaoyang SHI , Danyang WEI , Jie YU , Xuhui XU , Mingli XU . NiCu/ZnO heterostructure photothermal electrocatalyst for efficient hydrogen evolution reaction. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1068-1082. doi: 10.11862/CJIC.20250048
Kai CHEN , Fengshun WU , Shun XIAO , Jinbao ZHANG , Lihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350
Hao XU , Ruopeng LI , Peixia YANG , Anmin LIU , Jie BAI . Regulation mechanism of halogen axial coordination atoms on the oxygen reduction activity of Fe-N4 site: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 695-701. doi: 10.11862/CJIC.20240302
Fanpeng Meng , Fei Zhao , Jingkai Lin , Jinsheng Zhao , Huayang Zhang , Shaobin Wang . Optimizing interfacial electric fields in carbon nitride nanosheet/spherical conjugated polymer S-scheme heterojunction for hydrogen evolution. Acta Physico-Chimica Sinica, 2025, 41(8): 100095-0. doi: 10.1016/j.actphy.2025.100095
Jie ZHAO , Huili ZHANG , Xiaoqing LU , Zhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213
Wei HE , Jing XI , Tianpei HE , Na CHEN , Quan YUAN . Application of solar-driven inorganic semiconductor-microbe hybrids in carbon dioxide fixation and biomanufacturing. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 35-44. doi: 10.11862/CJIC.20240364
Wenjiang LI , Pingli GUAN , Rui YU , Yuansheng CHENG , Xianwen WEI . C60-MoP-C nanoflowers van der Waals heterojunctions and its electrocatalytic hydrogen evolution performance. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 771-781. doi: 10.11862/CJIC.20230289
Zhengyu Zhou , Huiqin Yao , Youlin Wu , Teng Li , Noritatsu Tsubaki , Zhiliang Jin . Synergistic Effect of Cu-Graphdiyne/Transition Bimetallic Tungstate Formed S-Scheme Heterojunction for Enhanced Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(10): 2312010-. doi: 10.3866/PKU.WHXB202312010
Xi YANG , Chunxiang CHANG , Yingpeng XIE , Yang LI , Yuhui CHEN , Borao WANG , Ludong YI , Zhonghao HAN . Co-catalyst Ni3N supported Al-doped SrTiO3: Synthesis and application to hydrogen evolution from photocatalytic water splitting. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 440-452. doi: 10.11862/CJIC.20240371