通过边缘活性位点调控解析光热催化中析氢与二氧化碳还原的界面竞争

洪佳楠 许辰宇 刘烟 黎昌棋 王梦琳 张彦威

引用本文: 洪佳楠, 许辰宇, 刘烟, 黎昌棋, 王梦琳, 张彦威. 通过边缘活性位点调控解析光热催化中析氢与二氧化碳还原的界面竞争[J]. 物理化学学报, 2025, 41(9): 100099. doi: 10.1016/j.actphy.2025.100099 shu
Citation:  Jianan Hong, Chenyu Xu, Yan Liu, Changqi Li, Menglin Wang, Yanwei Zhang. Decoding the interfacial competition between hydrogen evolution and CO2 reduction via edge-active-site modulation in photothermal catalysis[J]. Acta Physico-Chimica Sinica, 2025, 41(9): 100099. doi: 10.1016/j.actphy.2025.100099 shu

通过边缘活性位点调控解析光热催化中析氢与二氧化碳还原的界面竞争

    通讯作者: 许辰宇, mrxcy@zju.edu.cn; 张彦威, zhangyw@zju.edu.cn
  • 基金项目:

    浙江省自然科学基金 LDT23E06014E06

    国家自然科学基金 52341602

    浙江省自然科学基金 LQ24E060001

    国家重点研发计划 2023YFC3710800

    中央高校基本科研业务费专项资金 2022ZFJH04

摘要: 太阳能驱动的光热催化CO2与H2O转化是生产可持续燃料和化学品的重要途径。然而,析氢反应(HER)与CO2还原反应(CO2RR)之间的竞争导致产物选择性不理想。贵金属纳米颗粒作为常用助催化剂,可在半导体上形成活性位点,其中金属-半导体界面边缘的特殊活性位点在竞争机制中起关键作用。本研究制备了具有丰富界面边缘位点的Al掺杂SrTiO3负载贵金属催化剂,用于连续光热催化CO2和H2O转化。不同贵金属纳米颗粒上CO2对析氢性能的影响表现出显著差异。通过原位漫反射红外傅里叶变换光谱(DRIFTS)和密度泛函理论(DFT)计算研究了关键中间基团的相互作用,发现双齿碳酸盐(b-CO32−)倾向于占据金属-半导体界面边缘位点,竞争性消耗*H吸附位点并改变析氢能垒。通过建立简化几何模型量化颗粒尺寸、活性位点比例与CO2引起的产氢变化之间的关系,验证了b-CO32−的位点阻塞效应在Rh负载催化剂上占主导地位。通过调控Rh纳米颗粒尺寸可优化边缘位点比例,从而实现*H覆盖度与CO2活化之间的平衡,促进CO2RR生成甲烷。本研究通过边缘活性位点调控初步揭示了HER与CO2RR的界面竞争机制,为催化剂的合理设计提供新见解,并为提升CO2转化效率提供潜在策略。

English

    1. [1]

      E. Gong, S. Ali, C.B. Hiragond, H.S. Kim, N.S. Powar, D. Kim, H. Kim, S.-I. In, Energy Environ. Sci. 15 (3) (2022) 880, https://doi.org/10.1039/D1EE02714J. doi: 10.1039/D1EE02714J

    2. [2]

      Z. Zhang, B. Rhimi, Z. Liu, M. Zhou, G. Deng, W. Wei, L. Mao, H. Li, Z. Jiang, Acta Phys. -Chim. Sin. 40(12) (2024) 2406029, https://doi.org/10.3866/PKU.WHXB202406029. doi: 10.3866/PKU.WHXB202406029

    3. [3]

      H. Shen, T. Peppel, J. Strunk, Z. Sun, Sol. RRL 4(8) (2020) 1900546, https://doi.org/10.1002/solr.201900546. doi: 10.1002/solr.201900546

    4. [4]

      J. Hong, C. Xu, B. Deng, Y. Gao, X. Zhu, X. Zhang, Y. Zhang, Adv. Sci. 9(3) (2021) 2103926, https://doi.org/10.1002/advs.202103926. doi: 10.1002/advs.202103926

    5. [5]

      C. Zhang, Z. Wu, J. Shen, L. He, W. Sun, Acta Phys. -Chim. Sin. 40(1) (2024) 2304004, https://doi.org/10.3866/PKU.WHXB202304004. doi: 10.3866/PKU.WHXB202304004

    6. [6]

      Y. Li, R. Li, Z. Li, Y. Xu, H. Yuan, S. Ouyang, T. Zhang, Sol. RRL 6(10) (2022) 2200493, https://doi.org/10.1002/solr.202200493. doi: 10.1002/solr.202200493

    7. [7]

      J. Zhao, R. Shi, G.I.N. Waterhouse, T. Zhang, Nano Energy 102 (2022) 107650, https://doi.org/10.1016/j.nanoen.2022.107650. doi: 10.1016/j.nanoen.2022.107650

    8. [8]

      T. Takata, J. Jiang, Y. Sakata, M. Nakabayashi, N. Shibata, V. Nandal, K. Seki, T. Hisatomi, K. Domen, Nature 581 (2020) 411, https://doi.org/10.1038/s41586-020-2278-9. doi: 10.1038/s41586-020-2278-9

    9. [9]

      Y. Goto, T. Hisatomi, Q. Wang, T. Higashi, K. Ishikiriyama, T. Maeda, Y. Sakata, S. Okunaka, H. Tokudome, M. Katayama, S. Akiyama, H. Nishiyama, Y. Inoue, T. Takewaki, T. Setoyama, T. Minegishi, T. Takata, T. Yamada, K. Domen, Joule 2(3) (2018) 509, https://doi.org/10.1016/j.joule.2017.12.009. doi: 10.1016/j.joule.2017.12.009

    10. [10]

      Y. Xie, C. Xu, Y. Liu, E. Zhang, Z. Chen, X. Zhan, G. Deng, Y. Gao, Y. Zhang, Adv. Sci. 12 (3) (2024) 2410201, https://doi.org/10.1002/advs.202410201. doi: 10.1002/advs.202410201

    11. [11]

      S. Wang, K. Teramura, T. Hisatomi, K. Domen, H. Asakura, S. Hosokawa, T. Tanaka, ChemistrySelect 5 (28) (2020) 8779, https://doi.org/10.1002/slct.202001693. doi: 10.1002/slct.202001693

    12. [12]

      S. Wang, K. Teramura, T. Hisatomi, K. Domen, H. Asakura, S. Hosokawa, T. Tanaka, ACS Appl. Energy Mater. 3(2) (2020) 1468, https://doi.org/10.1021/acsaem.9b01927. doi: 10.1021/acsaem.9b01927

    13. [13]

      Z. Li, B. Han, W. Bai, G. Wei, X. Li, J. Qi, D. Liu, Y. Zheng, L. Zhu, Sep. Purif. Technol. 324 (2023) 124528, https://doi.org/10.1016/j.seppur.2023.124528. doi: 10.1016/j.seppur.2023.124528

    14. [14]

      R. Chen, Q. Wu, J. Luo, X. Zu, S. Zhu, Y. Sun, Acta Phys. -Chim. Sin. 41 (3) (2025) 100019, https://doi.org/10.3866/PKU.WHXB202308052. doi: 10.3866/PKU.WHXB202308052

    15. [15]

      Y. Cao, R. Guo, M. Ma, Z. Huang, Y. Zhou, Acta Phys. -Chim. Sin. 40 (1) (2024) 2303029, https://doi.org/10.3866/PKU.WHXB202303029. doi: 10.3866/PKU.WHXB202303029

    16. [16]

      X. Hu, Z. Xie, Q. Tang, H. Wang, L. Zhang, J. Wang, Appl. Catal. B 298 (2021) 120635, https://doi.org/10.1016/j.apcatb.2021.120635. doi: 10.1016/j.apcatb.2021.120635

    17. [17]

      W. Huang, L. Zhang, Z. Li, X. Zhang, X. Dong, Y. Zhang, J. CO2 Util. 55 (2022) 101801, https://doi.org/10.1016/j.jcou.2021.101801. doi: 10.1016/j.jcou.2021.101801

    18. [18]

      S. Guo, X. Li, J. Li, B. Wei, Nat. Commun. 12(1) (2021) 1343, https://doi.org/10.1038/s41467-021-21526-4. doi: 10.1038/s41467-021-21526-4

    19. [19]

      M. Sun, Y. Wang, T. Dong, L. Zhou, A. Dai, J. Kou, C. Lu, Langmuir 38 (9) (2022) 2811, https://doi.org/10.1021/acs.langmuir.1c02894. doi: 10.1021/acs.langmuir.1c02894

    20. [20]

      X. Zhu, Y. Liu, M. Wang, L. Zhang, Q. Li, E. Zhang, H. Mo, Y. Gao, C. Xu, Y. Zhang, Chem. Eng. J. 479 (2024) 147636, https://doi.org/10.1016/j.cej.2023.147636. doi: 10.1016/j.cej.2023.147636

    21. [21]

      L. Zhang, C. Li, Y. Liu, C. Xu, Y. Zhang, npj Comput. Mater. 10 (1) (2024) 132, https://doi.org/10.1038/s41524-024-01325-3. doi: 10.1038/s41524-024-01325-3

    22. [22]

      J. Fu, K. Jiang, X. Qiu, J. Yu, M. Liu, Mater. Today 32 (2020) 222, https://doi.org/10.1016/j.mattod.2019.06.009. doi: 10.1016/j.mattod.2019.06.009

    23. [23]

      T. Suguro, F. Kishimoto, N. Kariya, T. Fukui, M. Nakabayashi, N. Shibata, T. Takata, K. Domen, K. Takanabe, Nat. Commun. 13 (1) (2022) 5698, https://doi.org/10.1038/s41467-022-33439-x. doi: 10.1038/s41467-022-33439-x

    24. [24]

      W. Huang, L. Zhang, J. Hong, H. Mo, C. Xu, Y. Zhang, Waste Dispos. Sust. Energy 6 (2024) 309, https://doi.org/10.1007/s42768-023-00185-9. doi: 10.1007/s42768-023-00185-9

    25. [25]

      F. Ye, F. Wang, C. Meng, L. Bai, J. Li, P. Xing, B. Teng, L. Zhao, S. Bai, Appl. Catal. B 230 (2018) 145, https://doi.org/10.1016/j.apcatb.2018.02.046. doi: 10.1016/j.apcatb.2018.02.046

    26. [26]

      J.A.H. Dreyer, P. Li, L. Zhang, G.K. Beh, R. Zhang, P.H.-L. Sit, W.Y. Teoh, Appl. Catal. B 219 (2017) 715, https://doi.org/10.1016/j.apcatb.2017.08.011. doi: 10.1016/j.apcatb.2017.08.011

    27. [27]

      Y.-J. Zhang, V. Sethuraman, R. Michalsky, A.A. Peterson, ACS Catal. 4 (10) (2014) 3742, https://doi.org/10.1021/cs5012298. doi: 10.1021/cs5012298

    28. [28]

      Q. Wang, K. Domen, Chem. Rev. 120(2) (2020) 919-985, https://doi.org/10.1021/acs.chemrev.9b00201. doi: 10.1021/acs.chemrev.9b00201

    29. [29]

      J. Ran, M. Jaroniec, S.-Z. Qiao, Adv. Mater. 30 (7) (2018) 1704649, https://doi.org/10.1002/adma.201704649. doi: 10.1002/adma.201704649

    30. [30]

      Y. Liu, P.-F. Sui, Y.-C. Wang, Y. Wei, C. Xu, Y. Zhang, J.-L. Luo, Appl. Catal. B 374 (2025) 125391, https://doi.org/10.1016/j.apcatb.2025.125391. doi: 10.1016/j.apcatb.2025.125391

    31. [31]

      C. Guo, X. Wei, H. Pang, J. Zhou, R. Ma, Appl. Surf. Sci. 686 (2025) 162086, https://doi.org/10.1016/j.apsusc.2024.162086. doi: 10.1016/j.apsusc.2024.162086

    32. [32]

      Y. Zhu, C. Gao, S. Bai, S. Chen, R. Long, L. Song, Z. Li, Y. Xiong, Nano Res. 10 (2017) 3396, https://doi.org/10.1007/s12274-017-1552-0. doi: 10.1007/s12274-017-1552-0

    33. [33]

      H. Yang, H. Cai, D. Li, Y. Kong, S. Feng, X. Jiang, Q. Hu, C. He, Natl. Sci. Rev. 11 (12) (2024) 361, https://doi.org/10.1093/nsr/nwae361. doi: 10.1093/nsr/nwae361

    34. [34]

      Q. Zhai, S. Xie, W. Fan, Q. Zhang, Y. Wang, W. Deng, Y. Wang, Angew. Chem. Int. Ed. 52 (22) (2013) 5776, https://doi.org/10.1002/anie.201301473. doi: 10.1002/anie.201301473

    35. [35]

      J.K. Nørskov, T. Bligaard, B. Hvolbæk, F. Abild-Pedersen, I. Chorkendorff, C.H. Christensen, Chem. Soc. Rev. 37 (10) (2008) 2163, https://doi.org/10.1039/B800260F. doi: 10.1039/B800260F

    36. [36]

      B. Ni, X. Wang, Adv. Sci. 2 (7) (2015) 1500085, https://doi.org/10.1002/advs.201500085. doi: 10.1002/advs.201500085

    37. [37]

      T.F. Jaramillo, K.P. Jørgensen, J. Bonde, J.H. Nielsen, S. Horch, I. Chorkendorff, Science 317 (5834) (2007) 100, https://doi.org/10.1126/science.1141483. doi: 10.1126/science.1141483

    38. [38]

      J. Hu, W. Shang, C. Xin, J. Guo, X. Cheng, S. Zhang, S. Song, W. Liu, F. Ju, J. Hou, Y. Shi, Angew. Chem. Int. Ed. 62(27) (2023) e202304754, https://doi.org/10.1002/anie.202304754. doi: 10.1002/anie.202304754

    39. [39]

      Z. Huang, T. Cheng, A.H. Shah, G. Zhong, C. Wan, P. Wang, M. Ding, J. Huang, Z. Wan, S. Wang, J. Cai, B. Peng, H. Liu, Y. Huang, W.A. Goddard, X. Duan, Nat. Catal. 7 (2024) 678, https://doi.org/10.1038/s41929-024-01156-x. doi: 10.1038/s41929-024-01156-x

    40. [40]

      W. Zhu, R. Michalsky, Ö. Metin, H. Lv, S. Guo, C.J. Wright, X. Sun, A.A. Peterson, S. Sun, J. Am. Chem. Soc. 135(45) (2013) 16833-16836, https://doi.org/10.1021/ja409445p. doi: 10.1021/ja409445p

    41. [41]

      L. Liu, A. Corma, Chem. Rev. 118 (10) (2018) 4981, https://doi.org/10.1021/acs.chemrev.7b00776. doi: 10.1021/acs.chemrev.7b00776

    42. [42]

      J.-J. Yang, Y. Zhang, X.-Y. Xie, W.-H. Fang, G. Cui, ACS Catal. 12(14) (2022) 8558, https://doi.org/10.1021/acscatal.2c01519. doi: 10.1021/acscatal.2c01519

    43. [43]

      X. Zhang, Z. Li, T. Liu, M. Li, C. Zeng, H. Matsumoto, H. Han, Chinese J. Catal. 43(8) (2022) 2223, https://doi.org/10.1016/S1872-2067(21)64048-2. doi: 10.1016/S1872-2067(21)64048-2

    44. [44]

      J. Tao, J.P. Perdew, V.N. Staroverov, G.E. Scuseria, Phys. Rev. Lett. 91(14) (2003) 146401, https://doi.org/10.1103/PhysRevLett.91.146401. doi: 10.1103/PhysRevLett.91.146401

    45. [45]

      S. Grimme, J. Antony, S. Ehrlich, H. Krieg, J. Chem. Phys. 132(15) (2010) 154104, https://doi.org/10.1063/1.3382344. doi: 10.1063/1.3382344

    46. [46]

      C. Hartwigsen, S. Goedecker, J. Hutter, Phys. Rev. B 58(7) (1998) 3641, https://doi.org/10.1103/PhysRevB.58.3641. doi: 10.1103/PhysRevB.58.3641

    47. [47]

      J. VandeVondele, J. Hutter, J. Chem. Phys. 127(11) (2007) 114105, https://doi.org/10.1063/1.2770708. doi: 10.1063/1.2770708

    48. [48]

      F. Maurer, J. Jelic, J. Wang, A. Gänzler, P. Dolcet, C. Wöll, Y. Wang, F. Studt, M. Casapu, J.D. Grunwaldt, Nat. Catal. 3 (2020) 824, https://doi.org/10.1038/s41929-020-00508-7. doi: 10.1038/s41929-020-00508-7

    49. [49]

      X. Zhou, Q. Shen, K. Yuan, W. Yang, Q. Chen, Z. Geng, J. Zhang, X. Shao, W. Chen, G. Xu, X. Yang, K. Wu, J. Am. Chem. Soc. 140(2) (2018) 554-, https://doi.org/10.1021/jacs.7b10394. doi: 10.1021/jacs.7b10394

    50. [50]

      P. Makuła, M. Pacia, W. Macyk, J. Phys. Chem. Lett. 9 (23) (2018) 6814, https://doi.org/10.1021/acs.jpclett.8b02892. doi: 10.1021/acs.jpclett.8b02892

    51. [51]

      X. Bian, Y. Zhao, C. Zhou, T. Zhang, Angew. Chem. Int. Ed. 62 (24) (2023) e202219340, https://doi.org/10.1002/anie.202219340. doi: 10.1002/anie.202219340

    52. [52]

      Q. Li, X. Zhu, C. Li, J. Hong, Y. Liu, M. Wang, C. Xu, Y. Zhang, Int. J. Hydrog. Energy 91 (2024) 488, https://doi.org/10.1016/j.ijhydene.2024.10.135. doi: 10.1016/j.ijhydene.2024.10.135

    53. [53]

      G. Baffou, I. Bordacchini, A. Baldi, R. Quidant, Light Sci. Appl. 9 (2020) 108, https://doi.org/10.1038/s41377-020-00345-0. doi: 10.1038/s41377-020-00345-0

    54. [54]

      N. Zhumabay, J.A. Bau, R. Ahmad, L. Braic, H. Zhang, L. Cavallo, M. Rueping, Small Struct. 6 (1) (2025) 2400283, https://doi.org/10.1002/sstr.202400283. doi: 10.1002/sstr.202400283

    55. [55]

      K.S. Finnie, D.J. Cassidy, J.R. Bartlett, J.L. Woolfrey, Langmuir 17 (3) (2001) 816, https://doi.org/10.1021/la0009240. doi: 10.1021/la0009240

    56. [56]

      E.-M. Köck, M. Kogler, T. Bielz, B. Klötzer, S. Penner, J Phys. Chem. C 117 (34) (2013) 17666, https://doi.org/10.1021/jp405625x. doi: 10.1021/jp405625x

    57. [57]

      C. Binet, M. Daturi, J.-C. Lavalley, Catal. Today 50 (2) (1999) 207, https://doi.org/10.1016/S0920-5861(98)00504-5. doi: 10.1016/S0920-5861(98)00504-5

    58. [58]

      Y. Fukuda, K. Tanabe, Bull. Chem. Soc. Jpn. 46 (6) (1973) 1616, https://doi.org/10.1246/bcsj.46.1616. doi: 10.1246/bcsj.46.1616

    59. [59]

      D. Qin, D. Xie, H. Zheng, Z. Li, J. Tang, Z. Wei, Catal. Lett. 151 (2021) 2894, https://doi.org/10.1007/s10562-021-03539-2. doi: 10.1007/s10562-021-03539-2

    60. [60]

      X. Jiao, X. Li, X. Jin, Y. Sun, J. Xu, L. Liang, H. Ju, J. Zhu, Y. Pan, W. Yan, Y. Lin, Y. Xie, J. Am. Chem. Soc. 139 (49) (2017) 18044, https://doi.org/10.1021/jacs.7b10287. doi: 10.1021/jacs.7b10287

    61. [61]

      A. Li, Q. Cao, G. Zhou, B.V.K.J. Schmidt, W. Zhu, X. Yuan, H. Huo, J. Gong, M. Antonietti, Angew. Chem. Int. Ed. 58 (41) (2019) 14549, https://doi.org/10.1002/anie.201908058. doi: 10.1002/anie.201908058

    62. [62]

      L. Wang, E. Guan, Y. Wang, L. Wang, Z. Gong, Y. Cui, X. Meng, B.C. Gates, F.-S. Xiao, Nat. Commun. 11 (2020) 1033, https://doi.org/10.1038/s41467-020-14817-9. doi: 10.1038/s41467-020-14817-9

    63. [63]

      S. Kattel, B. Yan, Y. Yang, J.G. Chen, P. Liu, J. Am. Chem. Soc. 138 (38) (2016) 12440, https://doi.org/10.1021/jacs.6b05791. doi: 10.1021/jacs.6b05791

    64. [64]

      Y. Cao, Z. Sui, Y. Zhu, X. Zhou, D. Chen, ACS Catal. 7 (11) (2017) 7835, https://doi.org/10.1021/acscatal.7b01745. doi: 10.1021/acscatal.7b01745

    65. [65]

      Y. Wang, M. Peng, C. Ye, C. Gan, J. Zhang, C. Guo, Appl. Organomet. Chem. 33 (9) (2019) e5076, https://doi.org/10.1002/aoc.5076. doi: 10.1002/aoc.5076

    66. [66]

      Y. Wang, H. Arandiyan, J. Scott, K.-F. Aguey-Zinsou, R. Amal, ACS Appl. Energy Mater. 1 (12) (2018) 6781, https://doi.org/10.1021/acsaem.8b00817. doi: 10.1021/acsaem.8b00817

    67. [67]

      A. Bagger, K.D. Jensen, M. Rashedi, R. Luo, J. Du, D. Zhang, I.J. Pereira, M. Escudero-Escribano, M. Arenz, J. Rossmeisl, Chem. Sci. 13 (45) (2022) 13409, https://doi.org/10.1039/D2SC05160E. doi: 10.1039/D2SC05160E

    68. [68]

      W. Chen, J. Cao, W. Fu, J. Zhang, G. Qian, J. Yang, D. Chen, X. Zhou, W. Yuan, X. Duan, Angew. Chem. Int. Ed. 61 (16) (2022) e202200190, https://doi.org/10.1002/anie.202200190. doi: 10.1002/anie.202200190

  • 加载中
计量
  • PDF下载量:  0
  • 文章访问数:  10
  • HTML全文浏览量:  2
文章相关
  • 发布日期:  2025-09-15
  • 收稿日期:  2025-03-22
  • 接受日期:  2025-04-28
  • 修回日期:  2025-04-19
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章