
Citation: Jianan Hong, Chenyu Xu, Yan Liu, Changqi Li, Menglin Wang, Yanwei Zhang. Decoding the interfacial competition between hydrogen evolution and CO2 reduction via edge-active-site modulation in photothermal catalysis[J]. Acta Physico-Chimica Sinica, 2025, 41(9): 100099. doi: 10.1016/j.actphy.2025.100099

通过边缘活性位点调控解析光热催化中析氢与二氧化碳还原的界面竞争
English
Decoding the interfacial competition between hydrogen evolution and CO2 reduction via edge-active-site modulation in photothermal catalysis
-
Key words:
- Photothermal catalysis
- / Hydrogen evolution
- / CO2 reduction
- / Active site
- / Interfacial competition
-
-
[1]
E. Gong, S. Ali, C.B. Hiragond, H.S. Kim, N.S. Powar, D. Kim, H. Kim, S.-I. In, Energy Environ. Sci. 15 (3) (2022) 880, https://doi.org/10.1039/D1EE02714J. doi: 10.1039/D1EE02714J
-
[2]
Z. Zhang, B. Rhimi, Z. Liu, M. Zhou, G. Deng, W. Wei, L. Mao, H. Li, Z. Jiang, Acta Phys. -Chim. Sin. 40(12) (2024) 2406029, https://doi.org/10.3866/PKU.WHXB202406029. doi: 10.3866/PKU.WHXB202406029
-
[3]
H. Shen, T. Peppel, J. Strunk, Z. Sun, Sol. RRL 4(8) (2020) 1900546, https://doi.org/10.1002/solr.201900546. doi: 10.1002/solr.201900546
-
[4]
J. Hong, C. Xu, B. Deng, Y. Gao, X. Zhu, X. Zhang, Y. Zhang, Adv. Sci. 9(3) (2021) 2103926, https://doi.org/10.1002/advs.202103926. doi: 10.1002/advs.202103926
-
[5]
C. Zhang, Z. Wu, J. Shen, L. He, W. Sun, Acta Phys. -Chim. Sin. 40(1) (2024) 2304004, https://doi.org/10.3866/PKU.WHXB202304004. doi: 10.3866/PKU.WHXB202304004
-
[6]
Y. Li, R. Li, Z. Li, Y. Xu, H. Yuan, S. Ouyang, T. Zhang, Sol. RRL 6(10) (2022) 2200493, https://doi.org/10.1002/solr.202200493. doi: 10.1002/solr.202200493
-
[7]
J. Zhao, R. Shi, G.I.N. Waterhouse, T. Zhang, Nano Energy 102 (2022) 107650, https://doi.org/10.1016/j.nanoen.2022.107650. doi: 10.1016/j.nanoen.2022.107650
-
[8]
T. Takata, J. Jiang, Y. Sakata, M. Nakabayashi, N. Shibata, V. Nandal, K. Seki, T. Hisatomi, K. Domen, Nature 581 (2020) 411, https://doi.org/10.1038/s41586-020-2278-9. doi: 10.1038/s41586-020-2278-9
-
[9]
Y. Goto, T. Hisatomi, Q. Wang, T. Higashi, K. Ishikiriyama, T. Maeda, Y. Sakata, S. Okunaka, H. Tokudome, M. Katayama, S. Akiyama, H. Nishiyama, Y. Inoue, T. Takewaki, T. Setoyama, T. Minegishi, T. Takata, T. Yamada, K. Domen, Joule 2(3) (2018) 509, https://doi.org/10.1016/j.joule.2017.12.009. doi: 10.1016/j.joule.2017.12.009
-
[10]
Y. Xie, C. Xu, Y. Liu, E. Zhang, Z. Chen, X. Zhan, G. Deng, Y. Gao, Y. Zhang, Adv. Sci. 12 (3) (2024) 2410201, https://doi.org/10.1002/advs.202410201. doi: 10.1002/advs.202410201
-
[11]
S. Wang, K. Teramura, T. Hisatomi, K. Domen, H. Asakura, S. Hosokawa, T. Tanaka, ChemistrySelect 5 (28) (2020) 8779, https://doi.org/10.1002/slct.202001693. doi: 10.1002/slct.202001693
-
[12]
S. Wang, K. Teramura, T. Hisatomi, K. Domen, H. Asakura, S. Hosokawa, T. Tanaka, ACS Appl. Energy Mater. 3(2) (2020) 1468, https://doi.org/10.1021/acsaem.9b01927. doi: 10.1021/acsaem.9b01927
-
[13]
Z. Li, B. Han, W. Bai, G. Wei, X. Li, J. Qi, D. Liu, Y. Zheng, L. Zhu, Sep. Purif. Technol. 324 (2023) 124528, https://doi.org/10.1016/j.seppur.2023.124528. doi: 10.1016/j.seppur.2023.124528
-
[14]
R. Chen, Q. Wu, J. Luo, X. Zu, S. Zhu, Y. Sun, Acta Phys. -Chim. Sin. 41 (3) (2025) 100019, https://doi.org/10.3866/PKU.WHXB202308052. doi: 10.3866/PKU.WHXB202308052
-
[15]
Y. Cao, R. Guo, M. Ma, Z. Huang, Y. Zhou, Acta Phys. -Chim. Sin. 40 (1) (2024) 2303029, https://doi.org/10.3866/PKU.WHXB202303029. doi: 10.3866/PKU.WHXB202303029
-
[16]
X. Hu, Z. Xie, Q. Tang, H. Wang, L. Zhang, J. Wang, Appl. Catal. B 298 (2021) 120635, https://doi.org/10.1016/j.apcatb.2021.120635. doi: 10.1016/j.apcatb.2021.120635
-
[17]
W. Huang, L. Zhang, Z. Li, X. Zhang, X. Dong, Y. Zhang, J. CO2 Util. 55 (2022) 101801, https://doi.org/10.1016/j.jcou.2021.101801. doi: 10.1016/j.jcou.2021.101801
-
[18]
S. Guo, X. Li, J. Li, B. Wei, Nat. Commun. 12(1) (2021) 1343, https://doi.org/10.1038/s41467-021-21526-4. doi: 10.1038/s41467-021-21526-4
-
[19]
M. Sun, Y. Wang, T. Dong, L. Zhou, A. Dai, J. Kou, C. Lu, Langmuir 38 (9) (2022) 2811, https://doi.org/10.1021/acs.langmuir.1c02894. doi: 10.1021/acs.langmuir.1c02894
-
[20]
X. Zhu, Y. Liu, M. Wang, L. Zhang, Q. Li, E. Zhang, H. Mo, Y. Gao, C. Xu, Y. Zhang, Chem. Eng. J. 479 (2024) 147636, https://doi.org/10.1016/j.cej.2023.147636. doi: 10.1016/j.cej.2023.147636
-
[21]
L. Zhang, C. Li, Y. Liu, C. Xu, Y. Zhang, npj Comput. Mater. 10 (1) (2024) 132, https://doi.org/10.1038/s41524-024-01325-3. doi: 10.1038/s41524-024-01325-3
-
[22]
J. Fu, K. Jiang, X. Qiu, J. Yu, M. Liu, Mater. Today 32 (2020) 222, https://doi.org/10.1016/j.mattod.2019.06.009. doi: 10.1016/j.mattod.2019.06.009
-
[23]
T. Suguro, F. Kishimoto, N. Kariya, T. Fukui, M. Nakabayashi, N. Shibata, T. Takata, K. Domen, K. Takanabe, Nat. Commun. 13 (1) (2022) 5698, https://doi.org/10.1038/s41467-022-33439-x. doi: 10.1038/s41467-022-33439-x
-
[24]
W. Huang, L. Zhang, J. Hong, H. Mo, C. Xu, Y. Zhang, Waste Dispos. Sust. Energy 6 (2024) 309, https://doi.org/10.1007/s42768-023-00185-9. doi: 10.1007/s42768-023-00185-9
-
[25]
F. Ye, F. Wang, C. Meng, L. Bai, J. Li, P. Xing, B. Teng, L. Zhao, S. Bai, Appl. Catal. B 230 (2018) 145, https://doi.org/10.1016/j.apcatb.2018.02.046. doi: 10.1016/j.apcatb.2018.02.046
-
[26]
J.A.H. Dreyer, P. Li, L. Zhang, G.K. Beh, R. Zhang, P.H.-L. Sit, W.Y. Teoh, Appl. Catal. B 219 (2017) 715, https://doi.org/10.1016/j.apcatb.2017.08.011. doi: 10.1016/j.apcatb.2017.08.011
-
[27]
Y.-J. Zhang, V. Sethuraman, R. Michalsky, A.A. Peterson, ACS Catal. 4 (10) (2014) 3742, https://doi.org/10.1021/cs5012298. doi: 10.1021/cs5012298
-
[28]
Q. Wang, K. Domen, Chem. Rev. 120(2) (2020) 919-985, https://doi.org/10.1021/acs.chemrev.9b00201. doi: 10.1021/acs.chemrev.9b00201
-
[29]
J. Ran, M. Jaroniec, S.-Z. Qiao, Adv. Mater. 30 (7) (2018) 1704649, https://doi.org/10.1002/adma.201704649. doi: 10.1002/adma.201704649
-
[30]
Y. Liu, P.-F. Sui, Y.-C. Wang, Y. Wei, C. Xu, Y. Zhang, J.-L. Luo, Appl. Catal. B 374 (2025) 125391, https://doi.org/10.1016/j.apcatb.2025.125391. doi: 10.1016/j.apcatb.2025.125391
-
[31]
C. Guo, X. Wei, H. Pang, J. Zhou, R. Ma, Appl. Surf. Sci. 686 (2025) 162086, https://doi.org/10.1016/j.apsusc.2024.162086. doi: 10.1016/j.apsusc.2024.162086
-
[32]
Y. Zhu, C. Gao, S. Bai, S. Chen, R. Long, L. Song, Z. Li, Y. Xiong, Nano Res. 10 (2017) 3396, https://doi.org/10.1007/s12274-017-1552-0. doi: 10.1007/s12274-017-1552-0
-
[33]
H. Yang, H. Cai, D. Li, Y. Kong, S. Feng, X. Jiang, Q. Hu, C. He, Natl. Sci. Rev. 11 (12) (2024) 361, https://doi.org/10.1093/nsr/nwae361. doi: 10.1093/nsr/nwae361
-
[34]
Q. Zhai, S. Xie, W. Fan, Q. Zhang, Y. Wang, W. Deng, Y. Wang, Angew. Chem. Int. Ed. 52 (22) (2013) 5776, https://doi.org/10.1002/anie.201301473. doi: 10.1002/anie.201301473
-
[35]
J.K. Nørskov, T. Bligaard, B. Hvolbæk, F. Abild-Pedersen, I. Chorkendorff, C.H. Christensen, Chem. Soc. Rev. 37 (10) (2008) 2163, https://doi.org/10.1039/B800260F. doi: 10.1039/B800260F
-
[36]
B. Ni, X. Wang, Adv. Sci. 2 (7) (2015) 1500085, https://doi.org/10.1002/advs.201500085. doi: 10.1002/advs.201500085
-
[37]
T.F. Jaramillo, K.P. Jørgensen, J. Bonde, J.H. Nielsen, S. Horch, I. Chorkendorff, Science 317 (5834) (2007) 100, https://doi.org/10.1126/science.1141483. doi: 10.1126/science.1141483
-
[38]
J. Hu, W. Shang, C. Xin, J. Guo, X. Cheng, S. Zhang, S. Song, W. Liu, F. Ju, J. Hou, Y. Shi, Angew. Chem. Int. Ed. 62(27) (2023) e202304754, https://doi.org/10.1002/anie.202304754. doi: 10.1002/anie.202304754
-
[39]
Z. Huang, T. Cheng, A.H. Shah, G. Zhong, C. Wan, P. Wang, M. Ding, J. Huang, Z. Wan, S. Wang, J. Cai, B. Peng, H. Liu, Y. Huang, W.A. Goddard, X. Duan, Nat. Catal. 7 (2024) 678, https://doi.org/10.1038/s41929-024-01156-x. doi: 10.1038/s41929-024-01156-x
-
[40]
W. Zhu, R. Michalsky, Ö. Metin, H. Lv, S. Guo, C.J. Wright, X. Sun, A.A. Peterson, S. Sun, J. Am. Chem. Soc. 135(45) (2013) 16833-16836, https://doi.org/10.1021/ja409445p. doi: 10.1021/ja409445p
-
[41]
L. Liu, A. Corma, Chem. Rev. 118 (10) (2018) 4981, https://doi.org/10.1021/acs.chemrev.7b00776. doi: 10.1021/acs.chemrev.7b00776
-
[42]
J.-J. Yang, Y. Zhang, X.-Y. Xie, W.-H. Fang, G. Cui, ACS Catal. 12(14) (2022) 8558, https://doi.org/10.1021/acscatal.2c01519. doi: 10.1021/acscatal.2c01519
-
[43]
X. Zhang, Z. Li, T. Liu, M. Li, C. Zeng, H. Matsumoto, H. Han, Chinese J. Catal. 43(8) (2022) 2223, https://doi.org/10.1016/S1872-2067(21)64048-2. doi: 10.1016/S1872-2067(21)64048-2
-
[44]
J. Tao, J.P. Perdew, V.N. Staroverov, G.E. Scuseria, Phys. Rev. Lett. 91(14) (2003) 146401, https://doi.org/10.1103/PhysRevLett.91.146401. doi: 10.1103/PhysRevLett.91.146401
-
[45]
S. Grimme, J. Antony, S. Ehrlich, H. Krieg, J. Chem. Phys. 132(15) (2010) 154104, https://doi.org/10.1063/1.3382344. doi: 10.1063/1.3382344
-
[46]
C. Hartwigsen, S. Goedecker, J. Hutter, Phys. Rev. B 58(7) (1998) 3641, https://doi.org/10.1103/PhysRevB.58.3641. doi: 10.1103/PhysRevB.58.3641
-
[47]
J. VandeVondele, J. Hutter, J. Chem. Phys. 127(11) (2007) 114105, https://doi.org/10.1063/1.2770708. doi: 10.1063/1.2770708
-
[48]
F. Maurer, J. Jelic, J. Wang, A. Gänzler, P. Dolcet, C. Wöll, Y. Wang, F. Studt, M. Casapu, J.D. Grunwaldt, Nat. Catal. 3 (2020) 824, https://doi.org/10.1038/s41929-020-00508-7. doi: 10.1038/s41929-020-00508-7
-
[49]
X. Zhou, Q. Shen, K. Yuan, W. Yang, Q. Chen, Z. Geng, J. Zhang, X. Shao, W. Chen, G. Xu, X. Yang, K. Wu, J. Am. Chem. Soc. 140(2) (2018) 554-, https://doi.org/10.1021/jacs.7b10394. doi: 10.1021/jacs.7b10394
-
[50]
P. Makuła, M. Pacia, W. Macyk, J. Phys. Chem. Lett. 9 (23) (2018) 6814, https://doi.org/10.1021/acs.jpclett.8b02892. doi: 10.1021/acs.jpclett.8b02892
-
[51]
X. Bian, Y. Zhao, C. Zhou, T. Zhang, Angew. Chem. Int. Ed. 62 (24) (2023) e202219340, https://doi.org/10.1002/anie.202219340. doi: 10.1002/anie.202219340
-
[52]
Q. Li, X. Zhu, C. Li, J. Hong, Y. Liu, M. Wang, C. Xu, Y. Zhang, Int. J. Hydrog. Energy 91 (2024) 488, https://doi.org/10.1016/j.ijhydene.2024.10.135. doi: 10.1016/j.ijhydene.2024.10.135
-
[53]
G. Baffou, I. Bordacchini, A. Baldi, R. Quidant, Light Sci. Appl. 9 (2020) 108, https://doi.org/10.1038/s41377-020-00345-0. doi: 10.1038/s41377-020-00345-0
-
[54]
N. Zhumabay, J.A. Bau, R. Ahmad, L. Braic, H. Zhang, L. Cavallo, M. Rueping, Small Struct. 6 (1) (2025) 2400283, https://doi.org/10.1002/sstr.202400283. doi: 10.1002/sstr.202400283
-
[55]
K.S. Finnie, D.J. Cassidy, J.R. Bartlett, J.L. Woolfrey, Langmuir 17 (3) (2001) 816, https://doi.org/10.1021/la0009240. doi: 10.1021/la0009240
-
[56]
E.-M. Köck, M. Kogler, T. Bielz, B. Klötzer, S. Penner, J Phys. Chem. C 117 (34) (2013) 17666, https://doi.org/10.1021/jp405625x. doi: 10.1021/jp405625x
-
[57]
C. Binet, M. Daturi, J.-C. Lavalley, Catal. Today 50 (2) (1999) 207, https://doi.org/10.1016/S0920-5861(98)00504-5. doi: 10.1016/S0920-5861(98)00504-5
-
[58]
Y. Fukuda, K. Tanabe, Bull. Chem. Soc. Jpn. 46 (6) (1973) 1616, https://doi.org/10.1246/bcsj.46.1616. doi: 10.1246/bcsj.46.1616
-
[59]
D. Qin, D. Xie, H. Zheng, Z. Li, J. Tang, Z. Wei, Catal. Lett. 151 (2021) 2894, https://doi.org/10.1007/s10562-021-03539-2. doi: 10.1007/s10562-021-03539-2
-
[60]
X. Jiao, X. Li, X. Jin, Y. Sun, J. Xu, L. Liang, H. Ju, J. Zhu, Y. Pan, W. Yan, Y. Lin, Y. Xie, J. Am. Chem. Soc. 139 (49) (2017) 18044, https://doi.org/10.1021/jacs.7b10287. doi: 10.1021/jacs.7b10287
-
[61]
A. Li, Q. Cao, G. Zhou, B.V.K.J. Schmidt, W. Zhu, X. Yuan, H. Huo, J. Gong, M. Antonietti, Angew. Chem. Int. Ed. 58 (41) (2019) 14549, https://doi.org/10.1002/anie.201908058. doi: 10.1002/anie.201908058
-
[62]
L. Wang, E. Guan, Y. Wang, L. Wang, Z. Gong, Y. Cui, X. Meng, B.C. Gates, F.-S. Xiao, Nat. Commun. 11 (2020) 1033, https://doi.org/10.1038/s41467-020-14817-9. doi: 10.1038/s41467-020-14817-9
-
[63]
S. Kattel, B. Yan, Y. Yang, J.G. Chen, P. Liu, J. Am. Chem. Soc. 138 (38) (2016) 12440, https://doi.org/10.1021/jacs.6b05791. doi: 10.1021/jacs.6b05791
-
[64]
Y. Cao, Z. Sui, Y. Zhu, X. Zhou, D. Chen, ACS Catal. 7 (11) (2017) 7835, https://doi.org/10.1021/acscatal.7b01745. doi: 10.1021/acscatal.7b01745
-
[65]
Y. Wang, M. Peng, C. Ye, C. Gan, J. Zhang, C. Guo, Appl. Organomet. Chem. 33 (9) (2019) e5076, https://doi.org/10.1002/aoc.5076. doi: 10.1002/aoc.5076
-
[66]
Y. Wang, H. Arandiyan, J. Scott, K.-F. Aguey-Zinsou, R. Amal, ACS Appl. Energy Mater. 1 (12) (2018) 6781, https://doi.org/10.1021/acsaem.8b00817. doi: 10.1021/acsaem.8b00817
-
[67]
A. Bagger, K.D. Jensen, M. Rashedi, R. Luo, J. Du, D. Zhang, I.J. Pereira, M. Escudero-Escribano, M. Arenz, J. Rossmeisl, Chem. Sci. 13 (45) (2022) 13409, https://doi.org/10.1039/D2SC05160E. doi: 10.1039/D2SC05160E
-
[68]
W. Chen, J. Cao, W. Fu, J. Zhang, G. Qian, J. Yang, D. Chen, X. Zhou, W. Yuan, X. Duan, Angew. Chem. Int. Ed. 61 (16) (2022) e202200190, https://doi.org/10.1002/anie.202200190. doi: 10.1002/anie.202200190
-
[1]
-

计量
- PDF下载量: 0
- 文章访问数: 10
- HTML全文浏览量: 2