机器学习辅助减反膜结构设计与界面修饰协同优化的高效稳定钙钛矿太阳能电池

梁英 邓羽恒 余士律 程家豪 宋嘉伟 姚俊 杨亦辰 张万雷 周文靖 张欣 沈文剑 梁桂杰 李彬 彭勇 胡润 李望南

引用本文: 梁英, 邓羽恒, 余士律, 程家豪, 宋嘉伟, 姚俊, 杨亦辰, 张万雷, 周文靖, 张欣, 沈文剑, 梁桂杰, 李彬, 彭勇, 胡润, 李望南. 机器学习辅助减反膜结构设计与界面修饰协同优化的高效稳定钙钛矿太阳能电池[J]. 物理化学学报, 2025, 41(9): 100098. doi: 10.1016/j.actphy.2025.100098 shu
Citation:  Ying Liang, Yuheng Deng, Shilv Yu, Jiahao Cheng, Jiawei Song, Jun Yao, Yichen Yang, Wanlei Zhang, Wenjing Zhou, Xin Zhang, Wenjian Shen, Guijie Liang, Bin Li, Yong Peng, Run Hu, Wangnan Li. Machine learning-guided antireflection coatings architectures and interface modification for synergistically optimizing efficient and stable perovskite solar cells[J]. Acta Physico-Chimica Sinica, 2025, 41(9): 100098. doi: 10.1016/j.actphy.2025.100098 shu

机器学习辅助减反膜结构设计与界面修饰协同优化的高效稳定钙钛矿太阳能电池

    通讯作者: 沈文剑, shenwj@hbuas.edu.cn; 胡润, hurun@hust.edu.cn; 李望南, liwangnan@hbuas.edu.cn
  • 基金项目:

    国家自然科学基金 22279031

    国家自然科学基金 52422603

    湖北省重点研发计划 2023BAB109

    湖北省自然科学基金创新发展联合基金 2023AFD032

    湖北省自然科学基金创新发展联合基金 2025AFD026

    湖北省自然科学基金创新发展联合基金 2025AFD074

    湖北省自然科学基金 2023AFB041

    湖北省自然科学基金 2023AFA072

    襄阳市隆中人才计划 

    湖北文理学院研究生质量工程建设项目 YZ3202304

    湖北隆中实验室自主创新课题 2024KF-07

    苏州实验室开放基金 SZLAB-1508-2024-TS016

    华中科技大学交叉研究支持计划项目 5003120094

摘要: 近年来,单节钙钛矿太阳电池(PSCs)通过对功能层进行多元优化策略最小化能量损失使器件效率迅速提升,逐渐逼近肖克利-奎伊瑟(S-Q)理论效率极限。作为光管理策略的重要组成部分,减反射涂层(ARC)在降低光学能量损耗实现高效率方面发挥着关键作用。开发出具有多功能的ARC,能够同时提升可见光透过率、抑制紫外光(UV)透射,并且在玻璃基底上具有优异附着性、耐磨性是目前研发的重点。本研究利用贝叶斯优化算法的机器学习方法指导超薄多层二氧化物ARC的结构设计。优化流程包括多层氧化物薄膜的参数化建模、采用传递矩阵法(TMM)的物理模拟,以及抗反射性能评估。经过优化的ARC采用100 nm SiO2-10 nm TiO2-10 nm SiO2 (STS)叠层结构,使导电玻璃基底在400–800 nm范围内的透光率提升了9.2%。该结构应用在PSCs中获得了最高96.94%的外量子效率,使短路电流密度和光电转换效率均提升了4%,紫外光照持续300 h后仍保持有初始效率的81.2%,而标样组的效率降至~69%,表明STS ARC具备有效的紫外光过滤性能。STS ARC经过国际标准测试具有超过9H的硬度和ISO 0级以及ASTM 5B级附着度,满足太阳电池户外应用需求。除光学能量损失外,钙钛矿表面缺陷态富集导致非辐射复合能量损失,同时也是晶格降解的起始位点。因此,本文采用3-脒基吡啶氢碘酸盐(3-PyADI)对界面缺陷进行钝化修饰,协同将PSCs的效率提升至24.44%,未封装的器件在大气环境下放置1000 h后保留初始效率的93%。本研究所提出的增透减反薄膜与钙钛矿界面修饰协同实现器件性能和稳定性的同步提升,为钙钛矿太阳电池的产业化发展探索出具有前景且实用的路径。

English

    1. [1]

      Best Research-Cell Efficiency Chart National Renewable Energy Laboratory (NREL), National Renewable Energy Laboratory (NREL), 2025. https://www.nrel.gov/pv/cell-efficiency.html (accessed: April 2025).

    2. [2]

      Z. Xiao, Y. Yan, Adv. Energy Mater. 7 (2017) 1701136, https://doi.org/10.1002/aenm.201701136. doi: 10.1002/aenm.201701136

    3. [3]

      J. Huang, Y. Yuan, Y. Shao, Y. Yan, Nat. Rev. Mater. 2 (2017) 17042, https://doi.org/10.1038/natrevmats.2017.42. doi: 10.1038/natrevmats.2017.42

    4. [4]

      R. Li, H. Liu, Y. Jiao, S. Qin, J. Meng, J. Song, R. Yan, H. Su, H. Chen, Z. Shang, J. Zhao, Acta Phys. -Chim. Sin. 40 (2024) 2311011, https://doi.org/10.3866/PKU.WHXB202311011. doi: 10.3866/PKU.WHXB202311011

    5. [5]

      M. De Bastiani, V. Larini, R. Montecucco, G. Grancini, Energy Environ. Sci. 16 (2023) 421, https://doi.org/10.1039/D2EE03136A. doi: 10.1039/D2EE03136A

    6. [6]

      C. Chen, S. Zheng, H. Song, Chem. Soc. Rev. 50 (2021) 7250, https://doi.org/10.1039/D0CS01488E. doi: 10.1039/D0CS01488E

    7. [7]

      Y. Da, Y. Xuan, Q. Li, Sol. Energy Mater. Sol. Cells 174 (2018) 206, https://doi.org/10.1016/j.solmat.2017.09.002. doi: 10.1016/j.solmat.2017.09.002

    8. [8]

      Y. Zhang, X. Jia, S. Liu, B. Zhang, K. Lin, J. Zhang, G. Conibeer, Sol. Energy Mater. Sol. Cells 225 (2021) 111073, https://doi.org/10.1016/j.solmat.2021.111073. doi: 10.1016/j.solmat.2021.111073

    9. [9]

      Y. Ahmed, X. Feng, Y. Gao, Y. Ding, C. Long, M. Haider, H. Li, Z. Li, S. Huang, M.I. Saidaminov, J. Yang, Acta Phys. -Chim. Sin. 40 (2024) 2303057, https://doi.org/10.3866/PKU.WHXB202303057. doi: 10.3866/PKU.WHXB202303057

    10. [10]

      Y. Wang, Z. Zhang, Y. Lan, Q. Song, M. Li, Y. Song, Adv. Energy Mater. 10 (2020) 1902579, https://doi.org/10.1002/aenm.201902579. doi: 10.1002/aenm.201902579

    11. [11]

      C. Liu, Y. Yang, H. Chen, I. Spanopoulos, A.S.R. Bati, I.W. Gilley, J. Chen, A. Maxwell, B. Vishal, R.P. Reynolds, T.E. Wiggins, Z. Wang, C. Huang, J. Fletcher, Y. Liu, L.X. Chen, S. De Wolf, B. Chen, D. Zheng, T.J. Marks, A. Facchetti, E.H. Sargent, M.G. Kanatzidis, Nature 633 (2024) 359, https://doi.org/10.1038/s41586-024-07764-8. doi: 10.1038/s41586-024-07764-8

    12. [12]

      W.E.I. Sha, H. Zhang, Z.S. Wang, H.L. Zhu, X. Ren, F. Lin, A.K. -Y. Jen, W.C.H. Choy, Adv. Energy Mater. 8 (2018) 1701586, https://doi.org/10.1002/aenm.201701586. doi: 10.1002/aenm.201701586

    13. [13]

      Y. Liang, C. Jiao, P. Zhou, W. Li, Y. Zang, Y. Liu, G. Yang, L. Liu, J. Cheng, G. Liang, J. Wang, Z. Zhong, W. Yan, Bull. Chem. Soc. Jpn. 96 (2023) 148, https://doi.org/10.1246/bcsj.20220307. doi: 10.1246/bcsj.20220307

    14. [14]

      E. Cho, J.G. Son, C.B. Park, I. Kim, D. Yuk, J. Park, J.Y. Kim, S. Lee, Adv. Funct. Mater. 33 (2023) 2301033, https://doi.org/10.1002/adfm.202301033. doi: 10.1002/adfm.202301033

    15. [15]

      M.M. Tavakoli, K. -H. Tsui, Q. Zhang, J. He, Y. Yao, D. Li, Z. Fan, ACS Nano 9 (2015) 10287, https://doi.org/10.1021/acsnano.5b04284. doi: 10.1021/acsnano.5b04284

    16. [16]

      Z. Gao, G. Lin, Y. Chen, Y. Zheng, N. Sang, Y. Li, L. Chen, M. Li, Sol. Energy 205 (2020) 275, https://doi.org/10.1016/j.solener.2020.05.065. doi: 10.1016/j.solener.2020.05.065

    17. [17]

      M. Shahiduzzaman, M.I. Hossain, S. Visal, T. Kaneko, W. Qarony, S. Umezu, K. Tomita, S. Iwamori, D. Knipp, Y.H. Tsang, M. Akhtaruzzaman, J. -M. Nunzi, T. Taima, M. Isomura, Nano-Micro Lett. 13 (2021) 36, https://doi.org/10.1007/s40820-020-00559-2. doi: 10.1007/s40820-020-00559-2

    18. [18]

      J.S. Choi, Y. Jang, U. Kim, M. Choi, S.M. Kang, Adv. Energy Mater. 12 (2022) 2201520, https://doi.org/10.1002/aenm.202201520. doi: 10.1002/aenm.202201520

    19. [19]

      H.K. Raut, A.S. Nair, S.S. Dinachali, V.A. Ganesh, T.M. Walsh, S. Ramakrishna, Sol. Energy Mater. Sol. Cells 111 (2013) 9, https://doi.org/10.1016/j.solmat.2012.12.023. doi: 10.1016/j.solmat.2012.12.023

    20. [20]

      L. Ye, Y. Zhang, X. Zhang, T. Hu, R. Ji, B. Ding, B. Jiang, Energy Mater. Sol. Cells 111 (2013) 160, https://doi.org/10.1016/j.solmat.2012.12.037. doi: 10.1016/j.solmat.2012.12.037

    21. [21]

      İ. Kavakil, K. Kantarli, Turk. J. Phys. 26 (2002) 349.

    22. [22]

      Y. Wang, H. Wang, M. Chen, P. Wang, Y. Mao, W. Han, T. Wang, D. Liu, Sci. China Mater. 64 (2020) 789, https://doi.org/10.1007/s40843-020-1478-5. doi: 10.1007/s40843-020-1478-5

    23. [23]

      Y. Liu, X. Tan, J. Liang, H. Han, P. Xiang, W. Yan, Adv. Funct. Mater. 33 (2023) 2214271, https://doi.org/10.1002/adfm.202214271. doi: 10.1002/adfm.202214271

    24. [24]

      Z. Liu, N. Rolston, A.C. Flick, T.W. Colburn, Z. Ren, R.H. Dauskardt, T. Buonassisi, Joule 6 (2022) 834, https://doi.org/10.1016/j.joule.2022.03.003. doi: 10.1016/j.joule.2022.03.003

    25. [25]

      W. Yan, Y. Liu, Y. Zang, J. Cheng, Y. Wang, L. Chu, X. Tan, L. Liu, P. Zhou, W. Li, Nano Energy 99 (2022) 107394, https://doi.org/10.1016/j.nanoen.2022.107394. doi: 10.1016/j.nanoen.2022.107394

    26. [26]

      E.D. Palik, Handbook of Optical Constants of Solids, first ed., Academic Press, Burlington, USA, 1998, pp. 795–798, 719-721.

    27. [27]

      T. Siefke, S. Kroker, K. Pfeiffer, O. Puffky, K. Dietrich, D. Franta, I. Ohlídal, A. Szeghalmi, E. Kley, A. Tünnermann, Adv. Opt. Mater. 4 (2016) 1780, https://doi.org/10.1002/adom.201600250. doi: 10.1002/adom.201600250

    28. [28]

      R. Wasielewski, J. Domaradzki, D. Wojcieszak, D. Kaczmarek, A. Borkowska, E.L. Prociow, A. Ciszewski, Appl. Surf. Sci. 254 (2008) 4396, https://doi.org/10.1016/j.apsusc.2008.01.017. doi: 10.1016/j.apsusc.2008.01.017

    29. [29]

      S.-H. Jeong, J.-K. Kim, B.-S. Kim, S.-H. Shim, B.-T. Lee, Vacuum 76 (2004) 507, https://doi.org/10.1016/j.vacuum.2004.06.003. doi: 10.1016/j.vacuum.2004.06.003

    30. [30]

      H.-S. Wei, K.-T. Liu, Y.-C. Chang, C.-H. Chan, C.-C. Lee, C.-C. Kuo, Surf. Coat. Technol. 320 (2017) 377, https://doi.org/10.1016/j.surfcoat.2016.12.025. doi: 10.1016/j.surfcoat.2016.12.025

    31. [31]

      T. Chen, J. Xie, P. Gao, Adv. Energy Sustain. Res. 3 (2022) 2100218, https://doi.org/10.1002/aesr.202100218. doi: 10.1002/aesr.202100218

    32. [32]

      T. Bu, J. Li, H. Li, C. Tian, J. Su, G. Tong, L.K. Ono, C. Wang, Z. Lin, N. Chai, X.-L. Zhang, J. Chang, J. Lu, J. Zhong, W. Huang, Y. Qi, Y.-B. Cheng, F. Huang, Science 372 (2021) 1327, https://doi.org/10.1126/science.abh1035. doi: 10.1126/science.abh1035

    33. [33]

      Y. Gao, C. Liu, M. He, C. Zhang, L. Liu, Q. Luo, Y. Wu, H. Zhang, X. Zhong, R. Guo, Y. Xie, S. Wu, R.E.I. Schropp, Y. Mai, Adv. Mater. 36 (2024) 2309310, https://doi.org/10.1002/adma.202309310. doi: 10.1002/adma.202309310

    34. [34]

      T. Kim, S. Park, V. Iyer, B. Shaheen, U. Choudhry, Q. Jiang, G. Eichman, R. Gnabasik, K. Kelley, B. Lawrie, K. Zhu, B. Liao, Nat. Commun. 14 (2023) 1846, https://doi.org/10.1038/s41467-023-37486-w. doi: 10.1038/s41467-023-37486-w

    35. [35]

      S. Kim, K. Zhu, Adv. Energy Mater. 13 (2023) 2300603, https://doi.org/10.1002/aenm.202300603. doi: 10.1002/aenm.202300603

    36. [36]

      S. Teale, M. Degani, B. Chen, E.H. Sargent, G. Grancini, Nat. Energy 9 (2024) 779, https://doi.org/10.1038/s41560-024-01529-3. doi: 10.1038/s41560-024-01529-3

    37. [37]

      Y. Yang, H. Chen, C. Liu, J. Xu, C. Huang, C.D. Malliakas, H. Wan, A.S.R. Bati, Z. Wang, R.P. Reynolds, I.W. Gilley, S. Kitade, T.E. Wiggins, S. Zeiske, S. Suragtkhuu, M. Batmunkh, L.X. Chen, B. Chen, M.G. Kanatzidis, E.H. Sargent, Science 386 (2024) 898, https://doi.org/10.1126/science.adr2091. doi: 10.1126/science.adr2091

    38. [38]

      B. Chen, P.N. Rudd, S. Yang, Y. Yuan, J. Huang, Chem. Soc. Rev. 48 (2019) 3842, https://doi.org/10.1039/C8CS00853A. doi: 10.1039/C8CS00853A

    39. [39]

      L. Liu, W.-H. Fang, R. Long, O.V. Prezhdo, J. Phys. Chem. Lett. 9 (2018) 1164, https://doi.org/10.1021/acs.jpclett.8b00177. doi: 10.1021/acs.jpclett.8b00177

    40. [40]

      G. Kim, H. Min, K.S. Lee, D.Y. Lee, S.M. Yoon, S.I. Seok, Science 370 (2020) 108, https://doi.org/10.1126/science.abc4417. doi: 10.1126/science.abc4417

    41. [41]

      B. Yang, D. Bogachuk, J. Suo, L. Wagner, H. Kim, J. Lim, A. Hinsch, G. Boschloo, M.K. Nazeeruddin, A. Hagfeldt, Chem. Soc. Rev. 51 (2022) 7509, https://doi.org/10.1039/D2CS00278G. doi: 10.1039/D2CS00278G

    42. [42]

      Y. Kong, W. Shen, H. Cai, W. Dong, C. Bai, J. Zhao, F. Huang, Y.-B. Cheng, J. Zhong, Adv. Funct. Mater. 33 (2023) 2300932, https://doi.org/10.1002/adfm.202300932. doi: 10.1002/adfm.202300932

    43. [43]

      W. Shen, H. Cai, Y. Kong, W. Dong, C. Bai, G. Liang, W. Li, J. Zhao, F. Huang, Y. Cheng, J. Zhong, Small 19 (2023) 2302194, https://doi.org/10.1002/smll.202302194. doi: 10.1002/smll.202302194

    44. [44]

      J. Zhou, M. Li, S. Wang, L. Tan, Y. Liu, C. Jiang, X. Zhao, L. Ding, C. Yi, Nano Energy 95 (2022) 107036, https://doi.org/10.1016/j.nanoen.2022.107036. doi: 10.1016/j.nanoen.2022.107036

  • 加载中
计量
  • PDF下载量:  0
  • 文章访问数:  34
  • HTML全文浏览量:  12
文章相关
  • 发布日期:  2025-09-15
  • 收稿日期:  2025-02-12
  • 接受日期:  2025-04-28
  • 修回日期:  2025-04-03
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章