Citation: Shuhong Xiang, Lv Yang, Yingsheng Xu, Guoxin Cao, Hongjian Zhou. Selective electrosorption of Cs(Ⅰ) from high-salinity radioactive wastewater using CNT-interspersed potassium zinc ferrocyanide electrodes[J]. Acta Physico-Chimica Sinica, ;2025, 41(9): 100097. doi: 10.1016/j.actphy.2025.100097 shu

Selective electrosorption of Cs(Ⅰ) from high-salinity radioactive wastewater using CNT-interspersed potassium zinc ferrocyanide electrodes

  • Corresponding author: Yingsheng Xu, yinsxu@hbnu.edu.cn Guoxin Cao, guoxin.cao@midea.com Hongjian Zhou, hjzhou@issp.ac.cn
  • These authors contributed equally to this work.
  • Received Date: 28 February 2025
    Revised Date: 19 April 2025
    Accepted Date: 21 April 2025

    Fund Project: the National Key R&D Program of China 2022YFC2904303the National Natural Science Foundation of China 92463309the National Natural Science Foundation of China 52400078the Key Research and Development Projects of Anhui Province, China 202426j16020001Natural Science Foundation of Hubei Province, China 2024AFB104the HFIPS Director's Fund, China YZJJ-GGZX-2022-01

  • The management of 137Cs-containing radioactive wastewater from the Fukushima nuclear accident (FNA) has garnered significant attention due to the challenge of its safe disposal. The presence of co-existing Na+ ions severely impedes Cs+ removal, exacerbating the costs associated with radioactive wastewater treatment. Recently, capacitive deionization (CDI) technology has demonstrated significant potential in this field. However, its application is limited by the lack of suitable electrode materials that exhibit high Cs+ selectivity. In this study, we developed a composite of carbon nanotubes (CNT) interspersed potassium zinc ferrocyanide (KZnFC-CNT), which was pre-activated via an electrochemical method, to serve as a CDI cathode for the selective electrosorption of Cs+ ions from saline radioactive wastewater. The KZnFC-CNT electrodes exhibited a maximum electrosorption capacity of 392.75 mg∙g−1, with the highest electrosorption rate of 11.21 mg∙g−1∙min−1. Furthermore, these electrodes exhibited remarkable selectivity, achieving a selectivity factor of 138.2 for Cs+ over Na+ in a Na+ : Cs+ molar ratio of 100 : 1. X-ray diffraction, electrochemical analysis, and theoretical simulations revealed that the selective electrosorption of Cs+ is primarily governed by the ion exchange process between Cs+ and Na+ ions, as well as lattice phase transformations in KZnFC. This study presents an effective approach for the treatment of cesium-containing radioactive wastewater with high salinity.
  • 加载中
    1. [1]

      S. Maki, R. Chandran, M. Fujii, T. Fujita, Y. Shiraishi, S. Ashina, N. Yabe, J. Cleaner Prod. 233 (2019) 1425, https://doi.org/10.1016/j.jclepro.2019.05.331.  doi: 10.1016/j.jclepro.2019.05.331

    2. [2]

      T. Chalaux-Clergue, A. Foucher, P.-A. Chaboche, S. Hayashi, H. Tsuji, Y. Wakiyama, S. Huon, R. Vandromme, O. Cerdan, A. Nakao, Sci. Total Environ. 947 (2024) 174546, https://doi.org/10.1016/j.scitotenv.2024.174546.  doi: 10.1016/j.scitotenv.2024.174546

    3. [3]

      M. Hachinohe, S. Hamamatsu, S. Kawamoto, Food Sci. and Technol. Res. 27 (2021) 1, https://doi.org/10.3136/fstr.27.1.  doi: 10.3136/fstr.27.1

    4. [4]

      A. Konoplev, Toxics 10 (2022) 578, https://doi.org/10.3390/toxics10100578.  doi: 10.3390/toxics10100578

    5. [5]

      N. Matsuda, N. Morita, M. Miura, Yakugaku Zasshi. 134 (2014) 135, https://doi.org/10.1248/yakushi.13-00227-1.  doi: 10.1248/yakushi.13-00227-1

    6. [6]

      Y. Fakhri, M. Sarafraz, Z. Pilevar, H. Daraei, A. Rahimizadeh, S. Kazemi, K.M. Khedher, A.M. Khaneghah, Chemosphere 289 (2022) 133149, https://doi.org/10.1016/j.chemosphere.2021.133149.  doi: 10.1016/j.chemosphere.2021.133149

    7. [7]

      J. Riond, Schweiz. Arch. Tierheilkd. 146 (2004) 547, https://doi.org/10.1024/0036-7281.146.12.547.  doi: 10.1024/0036-7281.146.12.547

    8. [8]

      Y. Fakhri, T. Mahmudiono, V. Ranaei, M. Sarafraz, A. Nematollahi, A. Biol. Trace Elem. Res. 201 (2023) 2011, https://doi.org/10.1007/s12011-022-03289-1.  doi: 10.1007/s12011-022-03289-1

    9. [9]

      X. Zhang, P. Gu, Y. Liu, Chemosphere 215 (2019) 543, https://doi.org/10.1016/j.chemosphere.2018.10.029.  doi: 10.1016/j.chemosphere.2018.10.029

    10. [10]

      S. Zhuang, J. Wang, Front. Environ. Sci. Eng. 18 (3) (2024) 38, https://doi.org/10.1007/s11783-024-1798-1.  doi: 10.1007/s11783-024-1798-1

    11. [11]

      D. Kadadou, E.A. Said, R. Ajaj, S.W. Hasan, J. Water Process Eng. 52 (2023) 103604, https://doi.org/10.1016/j.jwpe.2023.103604.  doi: 10.1016/j.jwpe.2023.103604

    12. [12]

      R.A. Rahman, H. Ibrahium, Y.-T. Hung, Water 3 (2011) 551, https://doi.org/10.3390/w3020551.  doi: 10.3390/w3020551

    13. [13]

      J. Wang, S. Zhuang, S. Rev. Environ. Sci. Bio-Technol. 18 (2019) 231, https://doi.org/10.1007/s11157-019-09499-9.  doi: 10.1007/s11157-019-09499-9

    14. [14]

      M.E. Suss, S. Porada, X. Sun, P.M. Biesheuvel, J. Yoon, V. Presser, Energy Environ. Sci. 8 (2015) 2296, https://doi.org/10.1039/c5ee00519a.  doi: 10.1039/c5ee00519a

    15. [15]

      Z. Tang, B. Hu, P. Nie, X. Shang, J. Yang, J. Liu, Chem. Eng. J. 466 (2023) 143216, https://doi.org/10.1016/j.cej.2023.143216.  doi: 10.1016/j.cej.2023.143216

    16. [16]

      K. Wang, Y. Liu, X. Xu, Y. Jiao, L. Pan, Chem. Eng. J. 463 (2023) 142394, https://doi.org/10.1016/j.cej.2023.142394.  doi: 10.1016/j.cej.2023.142394

    17. [17]

      J. Ma, S. Xing, Y. Wang, J. Yang, F. Yu, Nano-Micro Lett. 16 (1) (2024) 143, https://doi.org/10.1007/s40820-024-01371-y.  doi: 10.1007/s40820-024-01371-y

    18. [18]

      M. Mao, T. Yan, G. Chen, J. Zhang, L. Shi, D. Zhang, Environ. Sci. Technol. 55 (1) (2020) 730, https://doi.org/10.1021/acs.est.0c06562.  doi: 10.1021/acs.est.0c06562

    19. [19]

      K. Zuo, J. Kim, A. Jain, T. Wang, R. Verduzco, M. Long, Q. Li, Environ. Sci. Technol. 52 (16) (2018) 9486, https://doi.org/10.1021/acs.est.8b01868.  doi: 10.1021/acs.est.8b01868

    20. [20]

      P. Liu, T. Yan, J. Zhang, L. Shi, D. Zhang, J. Mater. Chem. A 5 (28) (2017) 14748, https://doi.org/10.1039/c7ta03515b.  doi: 10.1039/c7ta03515b

    21. [21]

      J.G. Gamaethiralalage, K. Singh, S. Sahin, J. Yoon, M. Elimelech, M.E. Suss, P. Liang, P.M. Biesheuvel, R.L. Zornitta, L.C.P.M. de Smet, Energy Environ. Sci. 14 (2021) 1095, https://doi.org/10.1039/d0ee03145c.  doi: 10.1039/d0ee03145c

    22. [22]

      X. Liu, J. Wang, Environ. Sci. Pollut. Res. 28 (2021) 3182, https://doi.org/10.1007/s11356-020-10691-6.  doi: 10.1007/s11356-020-10691-6

    23. [23]

      X. Liu, J. Wang, Sci. Total Environ. 749 (2020) 141524, https://doi.org/10.1016/j.scitotenv.2020.141524.  doi: 10.1016/j.scitotenv.2020.141524

    24. [24]

      S.-H. Lee, M. Choi, J.-K. Moon, S. Lee, J. Choi, S. Kim, Appl. Sci. 11 (2021) 10042, https://doi.org/10.3390/app112110042.  doi: 10.3390/app112110042

    25. [25]

      Z. Qin, Y. Li, N. Gu, Adv. Healthcare Mater. 7 (2018) 1800347, https://doi.org/10.1002/adhm.201800347.  doi: 10.1002/adhm.201800347

    26. [26]

      T. Vincent, C. Vincent, Y. Barré, Y. Guari, G. Le Saout, E. Guibal, J. Mater. Chem. A 2 (2014) 10007, https://doi.org/10.1039/c4ta01128g.  doi: 10.1039/c4ta01128g

    27. [27]

      Y. Jung, U.S. Choi, Y.G. Ko, J. Hazard. Mater. 420 (2021) 126654, https://doi.org/10.1016/j.jhazmat.2021.126654.  doi: 10.1016/j.jhazmat.2021.126654

    28. [28]

      J. Huo, G. Yu, J. Wang, Sci. Total Environ. 761 (2021) 143286, https://doi.org/10.1016/j.scitotenv.2020.143286.  doi: 10.1016/j.scitotenv.2020.143286

    29. [29]

      Z. Li, Z. Zhang, J. Cheng, Q. Li, B. Xie, Y. Li, S. Yang, J. Mol. Liq. 345 (2022) 117823, https://doi.org/10.1016/j.molliq.2021.117823.  doi: 10.1016/j.molliq.2021.117823

    30. [30]

      J. Qian, L. Zhou, X. Yang, D. Hua, N. Wu, J. Hazard. Mater. 386 (2020) 121965, https://doi.org/10.1016/j.jhazmat.2019.121965.  doi: 10.1016/j.jhazmat.2019.121965

    31. [31]

      K. Singh, G. Li, J. Lee, H. Zuilhof, B.L. Mehdi, R.L. Zornitta, L.C.P.M. de Smet, Adv. Funct. Mater. 31 (2021) 2105203, https://doi.org/10.1002/adfm.202105203.  doi: 10.1002/adfm.202105203

    32. [32]

      T.H. Chen, D.V. Cuong, Y. Jang, N.Z. Khu, E. Chung, C.H. Hou, Chemosphere 307 (2022) 135613, https://doi.org/10.1016/j.chemosphere.2022.135613.  doi: 10.1016/j.chemosphere.2022.135613

    33. [33]

      R. A. Renaud, P. Cartraud, P. Gravereau, E. Garner, Thermochim. Acta 31 (1979) 243, https://doi.org/10.1016/0040-6031(79)85013-3.  doi: 10.1016/0040-6031(79)85013-3

    34. [34]

      M. Mao, T. Yan, J. Shen, J. Zhang, D. Zhang, Environ. Sci. Technol. 55 (2021) 7665, https://doi.org/10.1021/acs.est.1c01483.  doi: 10.1021/acs.est.1c01483

    35. [35]

      V. Koleva, M. Kalapsazova, D. Marinova, S. Harizanova, R. Stoyanova, Chemsuschem 16 (2023) e202201442, https://doi.org/10.1002/cssc.202201442.  doi: 10.1002/cssc.202201442

    36. [36]

      K. Kiyohara, Y. Kawai, J. Chem. Phys. 151 (2019) 104704, https://doi.org/10.1063/1.5113738.  doi: 10.1063/1.5113738

    37. [37]

      B. Zhang, Q. Yi, W. Qu, K. Zhang, Q. Lu, T. Yan, D. Zhang, Adv. Funct. Mater. 34 (2024) 2401332, https://doi.org/10.1002/adfm.202401332.  doi: 10.1002/adfm.202401332

  • 加载中
    1. [1]

      Jun HuangPengfei NieYongchao LuJiayang LiYiwen WangJianyun Liu . Efficient adsorption of hardness ions by a mordenite-loaded, nitrogen-doped porous carbon nanofiber cathode in capacitive deionization. Acta Physico-Chimica Sinica, 2025, 41(7): 100066-0. doi: 10.1016/j.actphy.2025.100066

    2. [2]

      Ping Ye Lingshuang Qin Mengyao He Fangfang Wu Zengye Chen Mingxing Liang Libo Deng . 荷叶衍生多孔碳的零电荷电位调节实现废水中电化学捕集镉离子. Acta Physico-Chimica Sinica, 2025, 41(3): 2311032-. doi: 10.3866/PKU.WHXB202311032

    3. [3]

      Guoze Yan Bin Zuo Shaoqing Liu Tao Wang Ruoyu Wang Jinyang Bao Zhongzhou Zhao Feifei Chu Zhengtong Li Yusuke Yamauchi Saad Melhi Xingtao Xu . Opportunities and Challenges of Capacitive Deionization for Uranium Extraction from Seawater. Acta Physico-Chimica Sinica, 2025, 41(4): 100032-. doi: 10.3866/PKU.WHXB202404006

    4. [4]

      Xiaochen Zhang Fei Yu Jie Ma . 多角度数理模拟在电容去离子中的前沿应用. Acta Physico-Chimica Sinica, 2024, 40(11): 2311026-. doi: 10.3866/PKU.WHXB202311026

    5. [5]

      Zeqiu ChenLimiao CaiJie GuanZhanyang LiHao WangYaoguang GuoXingtao XuLikun Pan . Advanced electrode materials in capacitive deionization for efficient lithium extraction. Acta Physico-Chimica Sinica, 2025, 41(8): 100089-0. doi: 10.1016/j.actphy.2025.100089

    6. [6]

      Zhuo Wang Xue Bai Kexin Zhang Hongzhi Wang Jiabao Dong Yuan Gao Bin Zhao . MOF模板法合成氮掺杂碳材料用于增强电化学钠离子储存和去除. Acta Physico-Chimica Sinica, 2025, 41(3): 2405002-. doi: 10.3866/PKU.WHXB202405002

    7. [7]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    8. [8]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    9. [9]

      Shihui Shi Haoyu Li Shaojie Han Yifan Yao Siqi Liu . Regioselectively Synthesis of Halogenated Arenes via Self-Assembly and Synergistic Catalysis Strategy. University Chemistry, 2024, 39(5): 336-344. doi: 10.3866/PKU.DXHX202312002

    10. [10]

      Yunhao Zhang Yinuo Wang Siran Wang Dazhen Xu . Progress in Selective Construction of Functional Aromatics from Nitrogenous Cycloalkanes. University Chemistry, 2024, 39(11): 136-145. doi: 10.3866/PKU.DXHX202401083

    11. [11]

      Xilin Zhao Xingyu Tu Zongxuan Li Rui Dong Bo Jiang Zhiwei Miao . Research Progress in Enantioselective Synthesis of Axial Chiral Compounds. University Chemistry, 2024, 39(11): 158-173. doi: 10.12461/PKU.DXHX202403106

    12. [12]

      Jiakun BAITing XULu ZHANGJiang PENGYuqiang LIJunhui JIA . A red-emitting fluorescent probe with a large Stokes shift for selective detection of hypochlorous acid. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1095-1104. doi: 10.11862/CJIC.20240002

    13. [13]

      CCS Chemistry | 超分子活化底物自由基促进高效选择性光催化氧化

      . CCS Chemistry, 2025, 7(10.31635/ccschem.025.202405229): -.

    14. [14]

      Jun LUOBaoshu LIUYunchang ZHANGBingkai WANGBeibei GUOLan SHETianheng CHEN . Europium(Ⅲ) metal-organic framework as a fluorescent probe for selectively and sensitively sensing Pb2+ in aqueous solution. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2438-2444. doi: 10.11862/CJIC.20240240

    15. [15]

      Lei Shi . Nucleophilicity and Electrophilicity of Radicals. University Chemistry, 2024, 39(11): 131-135. doi: 10.3866/PKU.DXHX202402018

    16. [16]

      Junjie Zhang Yue Wang Qiuhan Wu Ruquan Shen Han Liu Xinhua Duan . Preparation and Selective Separation of Lightweight Magnetic Molecularly Imprinted Polymers for Trace Tetracycline Detection in Milk. University Chemistry, 2024, 39(5): 251-257. doi: 10.3866/PKU.DXHX202311084

    17. [17]

      Peng YUELiyao SHIJinglei CUIHuirong ZHANGYanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210

    18. [18]

      Baitong Wei Jinxin Guo Xigong Liu Rongxiu Zhu Lei Liu . Theoretical Study on the Structure, Stability of Hydrocarbon Free Radicals and Selectivity of Alkane Chlorination Reaction. University Chemistry, 2025, 40(3): 402-407. doi: 10.12461/PKU.DXHX202406003

    19. [19]

      Yinuo Wang Siran Wang Yilong Zhao Dazhen Xu . Selective Synthesis of Diarylmethyl Anilines and Triarylmethanes via Multicomponent Reactions: Introduce a Comprehensive Experiment of Organic Chemistry. University Chemistry, 2024, 39(8): 324-330. doi: 10.3866/PKU.DXHX202401063

    20. [20]

      Yu WangHaiyang ShiZihan ChenFeng ChenPing WangXuefei Wang . Hollow AgPt@Pt core-shell cocatalyst with electron-rich Ptδ shell for boosting selectivity of photocatalytic H2O2 production for faceted BiVO4. Acta Physico-Chimica Sinica, 2025, 41(7): 100081-0. doi: 10.1016/j.actphy.2025.100081

Metrics
  • PDF Downloads(0)
  • Abstract views(10)
  • HTML views(6)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return