利用碳纳米管分散的亚铁氰化锌钾电极选择性电吸附高盐放射性废水中的铯(Ⅰ)

项书宏 杨旅 徐应生 曹国新 周宏建

引用本文: 项书宏, 杨旅, 徐应生, 曹国新, 周宏建. 利用碳纳米管分散的亚铁氰化锌钾电极选择性电吸附高盐放射性废水中的铯(Ⅰ)[J]. 物理化学学报, 2025, 41(9): 100097. doi: 10.1016/j.actphy.2025.100097 shu
Citation:  Shuhong Xiang, Lv Yang, Yingsheng Xu, Guoxin Cao, Hongjian Zhou. Selective electrosorption of Cs(Ⅰ) from high-salinity radioactive wastewater using CNT-interspersed potassium zinc ferrocyanide electrodes[J]. Acta Physico-Chimica Sinica, 2025, 41(9): 100097. doi: 10.1016/j.actphy.2025.100097 shu

利用碳纳米管分散的亚铁氰化锌钾电极选择性电吸附高盐放射性废水中的铯(Ⅰ)

    通讯作者: 徐应生, yinsxu@hbnu.edu.cn; 曹国新, guoxin.cao@midea.com; 周宏建, hjzhou@issp.ac.cn
  • 基金项目:

    国家重点研发计划 2022YFC2904303

    国家自然科学基金 92463309

    国家自然科学基金 52400078

    安徽省重点研发项目 202426j16020001

    湖北省自然科学基金 2024AFB104

    中国科学院合肥物质科学研究院院长基金 YZJJ-GGZX-2022-01

摘要: 福岛核事故(FNA)产生的含137Cs放射性废水因其安全处置难题而备受关注。共存Na+离子严重阻碍Cs+的去除,加剧了放射性废水处理成本。近年来,电容去离子(CDI)技术在该领域展现出显著的潜力,但由于缺乏对Cs+具有高选择性的理想电极材料,该技术的实际应用受到了一定限制。本研究开发了一种碳纳米管(CNT)嵌入亚铁氰化锌钾(KZnFC-CNT)的复合材料,通过电化学方法预活化后作为CDI阴极,用于高盐放射性废水中Cs+的选择性电吸附。KZnFC-CNT电极表现出392.75 mg∙g−1的最大电吸附容量和11.21 mg∙g−1∙min−1的最高电吸附速率。在Na+ : Cs+摩尔比为100 : 1时,该电极对Cs+/Na+的选择性系数高达138.2。X射线衍射、电化学分析和理论模拟表明,Cs+的选择性电吸附主要受Cs+与Na+离子交换过程及KZnFC晶格相变的调控。本研究为高盐含铯放射性废水处理提供了有效策略。

English

    1. [1]

      S. Maki, R. Chandran, M. Fujii, T. Fujita, Y. Shiraishi, S. Ashina, N. Yabe, J. Cleaner Prod. 233 (2019) 1425, https://doi.org/10.1016/j.jclepro.2019.05.331. doi: 10.1016/j.jclepro.2019.05.331

    2. [2]

      T. Chalaux-Clergue, A. Foucher, P.-A. Chaboche, S. Hayashi, H. Tsuji, Y. Wakiyama, S. Huon, R. Vandromme, O. Cerdan, A. Nakao, Sci. Total Environ. 947 (2024) 174546, https://doi.org/10.1016/j.scitotenv.2024.174546. doi: 10.1016/j.scitotenv.2024.174546

    3. [3]

      M. Hachinohe, S. Hamamatsu, S. Kawamoto, Food Sci. and Technol. Res. 27 (2021) 1, https://doi.org/10.3136/fstr.27.1. doi: 10.3136/fstr.27.1

    4. [4]

      A. Konoplev, Toxics 10 (2022) 578, https://doi.org/10.3390/toxics10100578. doi: 10.3390/toxics10100578

    5. [5]

      N. Matsuda, N. Morita, M. Miura, Yakugaku Zasshi. 134 (2014) 135, https://doi.org/10.1248/yakushi.13-00227-1. doi: 10.1248/yakushi.13-00227-1

    6. [6]

      Y. Fakhri, M. Sarafraz, Z. Pilevar, H. Daraei, A. Rahimizadeh, S. Kazemi, K.M. Khedher, A.M. Khaneghah, Chemosphere 289 (2022) 133149, https://doi.org/10.1016/j.chemosphere.2021.133149. doi: 10.1016/j.chemosphere.2021.133149

    7. [7]

      J. Riond, Schweiz. Arch. Tierheilkd. 146 (2004) 547, https://doi.org/10.1024/0036-7281.146.12.547. doi: 10.1024/0036-7281.146.12.547

    8. [8]

      Y. Fakhri, T. Mahmudiono, V. Ranaei, M. Sarafraz, A. Nematollahi, A. Biol. Trace Elem. Res. 201 (2023) 2011, https://doi.org/10.1007/s12011-022-03289-1. doi: 10.1007/s12011-022-03289-1

    9. [9]

      X. Zhang, P. Gu, Y. Liu, Chemosphere 215 (2019) 543, https://doi.org/10.1016/j.chemosphere.2018.10.029. doi: 10.1016/j.chemosphere.2018.10.029

    10. [10]

      S. Zhuang, J. Wang, Front. Environ. Sci. Eng. 18 (3) (2024) 38, https://doi.org/10.1007/s11783-024-1798-1. doi: 10.1007/s11783-024-1798-1

    11. [11]

      D. Kadadou, E.A. Said, R. Ajaj, S.W. Hasan, J. Water Process Eng. 52 (2023) 103604, https://doi.org/10.1016/j.jwpe.2023.103604. doi: 10.1016/j.jwpe.2023.103604

    12. [12]

      R.A. Rahman, H. Ibrahium, Y.-T. Hung, Water 3 (2011) 551, https://doi.org/10.3390/w3020551. doi: 10.3390/w3020551

    13. [13]

      J. Wang, S. Zhuang, S. Rev. Environ. Sci. Bio-Technol. 18 (2019) 231, https://doi.org/10.1007/s11157-019-09499-9. doi: 10.1007/s11157-019-09499-9

    14. [14]

      M.E. Suss, S. Porada, X. Sun, P.M. Biesheuvel, J. Yoon, V. Presser, Energy Environ. Sci. 8 (2015) 2296, https://doi.org/10.1039/c5ee00519a. doi: 10.1039/c5ee00519a

    15. [15]

      Z. Tang, B. Hu, P. Nie, X. Shang, J. Yang, J. Liu, Chem. Eng. J. 466 (2023) 143216, https://doi.org/10.1016/j.cej.2023.143216. doi: 10.1016/j.cej.2023.143216

    16. [16]

      K. Wang, Y. Liu, X. Xu, Y. Jiao, L. Pan, Chem. Eng. J. 463 (2023) 142394, https://doi.org/10.1016/j.cej.2023.142394. doi: 10.1016/j.cej.2023.142394

    17. [17]

      J. Ma, S. Xing, Y. Wang, J. Yang, F. Yu, Nano-Micro Lett. 16 (1) (2024) 143, https://doi.org/10.1007/s40820-024-01371-y. doi: 10.1007/s40820-024-01371-y

    18. [18]

      M. Mao, T. Yan, G. Chen, J. Zhang, L. Shi, D. Zhang, Environ. Sci. Technol. 55 (1) (2020) 730, https://doi.org/10.1021/acs.est.0c06562. doi: 10.1021/acs.est.0c06562

    19. [19]

      K. Zuo, J. Kim, A. Jain, T. Wang, R. Verduzco, M. Long, Q. Li, Environ. Sci. Technol. 52 (16) (2018) 9486, https://doi.org/10.1021/acs.est.8b01868. doi: 10.1021/acs.est.8b01868

    20. [20]

      P. Liu, T. Yan, J. Zhang, L. Shi, D. Zhang, J. Mater. Chem. A 5 (28) (2017) 14748, https://doi.org/10.1039/c7ta03515b. doi: 10.1039/c7ta03515b

    21. [21]

      J.G. Gamaethiralalage, K. Singh, S. Sahin, J. Yoon, M. Elimelech, M.E. Suss, P. Liang, P.M. Biesheuvel, R.L. Zornitta, L.C.P.M. de Smet, Energy Environ. Sci. 14 (2021) 1095, https://doi.org/10.1039/d0ee03145c. doi: 10.1039/d0ee03145c

    22. [22]

      X. Liu, J. Wang, Environ. Sci. Pollut. Res. 28 (2021) 3182, https://doi.org/10.1007/s11356-020-10691-6. doi: 10.1007/s11356-020-10691-6

    23. [23]

      X. Liu, J. Wang, Sci. Total Environ. 749 (2020) 141524, https://doi.org/10.1016/j.scitotenv.2020.141524. doi: 10.1016/j.scitotenv.2020.141524

    24. [24]

      S.-H. Lee, M. Choi, J.-K. Moon, S. Lee, J. Choi, S. Kim, Appl. Sci. 11 (2021) 10042, https://doi.org/10.3390/app112110042. doi: 10.3390/app112110042

    25. [25]

      Z. Qin, Y. Li, N. Gu, Adv. Healthcare Mater. 7 (2018) 1800347, https://doi.org/10.1002/adhm.201800347. doi: 10.1002/adhm.201800347

    26. [26]

      T. Vincent, C. Vincent, Y. Barré, Y. Guari, G. Le Saout, E. Guibal, J. Mater. Chem. A 2 (2014) 10007, https://doi.org/10.1039/c4ta01128g. doi: 10.1039/c4ta01128g

    27. [27]

      Y. Jung, U.S. Choi, Y.G. Ko, J. Hazard. Mater. 420 (2021) 126654, https://doi.org/10.1016/j.jhazmat.2021.126654. doi: 10.1016/j.jhazmat.2021.126654

    28. [28]

      J. Huo, G. Yu, J. Wang, Sci. Total Environ. 761 (2021) 143286, https://doi.org/10.1016/j.scitotenv.2020.143286. doi: 10.1016/j.scitotenv.2020.143286

    29. [29]

      Z. Li, Z. Zhang, J. Cheng, Q. Li, B. Xie, Y. Li, S. Yang, J. Mol. Liq. 345 (2022) 117823, https://doi.org/10.1016/j.molliq.2021.117823. doi: 10.1016/j.molliq.2021.117823

    30. [30]

      J. Qian, L. Zhou, X. Yang, D. Hua, N. Wu, J. Hazard. Mater. 386 (2020) 121965, https://doi.org/10.1016/j.jhazmat.2019.121965. doi: 10.1016/j.jhazmat.2019.121965

    31. [31]

      K. Singh, G. Li, J. Lee, H. Zuilhof, B.L. Mehdi, R.L. Zornitta, L.C.P.M. de Smet, Adv. Funct. Mater. 31 (2021) 2105203, https://doi.org/10.1002/adfm.202105203. doi: 10.1002/adfm.202105203

    32. [32]

      T.H. Chen, D.V. Cuong, Y. Jang, N.Z. Khu, E. Chung, C.H. Hou, Chemosphere 307 (2022) 135613, https://doi.org/10.1016/j.chemosphere.2022.135613. doi: 10.1016/j.chemosphere.2022.135613

    33. [33]

      R. A. Renaud, P. Cartraud, P. Gravereau, E. Garner, Thermochim. Acta 31 (1979) 243, https://doi.org/10.1016/0040-6031(79)85013-3. doi: 10.1016/0040-6031(79)85013-3

    34. [34]

      M. Mao, T. Yan, J. Shen, J. Zhang, D. Zhang, Environ. Sci. Technol. 55 (2021) 7665, https://doi.org/10.1021/acs.est.1c01483. doi: 10.1021/acs.est.1c01483

    35. [35]

      V. Koleva, M. Kalapsazova, D. Marinova, S. Harizanova, R. Stoyanova, Chemsuschem 16 (2023) e202201442, https://doi.org/10.1002/cssc.202201442. doi: 10.1002/cssc.202201442

    36. [36]

      K. Kiyohara, Y. Kawai, J. Chem. Phys. 151 (2019) 104704, https://doi.org/10.1063/1.5113738. doi: 10.1063/1.5113738

    37. [37]

      B. Zhang, Q. Yi, W. Qu, K. Zhang, Q. Lu, T. Yan, D. Zhang, Adv. Funct. Mater. 34 (2024) 2401332, https://doi.org/10.1002/adfm.202401332. doi: 10.1002/adfm.202401332

  • 加载中
计量
  • PDF下载量:  0
  • 文章访问数:  23
  • HTML全文浏览量:  6
文章相关
  • 发布日期:  2025-09-15
  • 收稿日期:  2025-02-28
  • 接受日期:  2025-04-21
  • 修回日期:  2025-04-19
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章