Citation: Xintong Zhu, Bin Cao, Chong Yan, Cheng Tang, Aibing Chen, Qiang Zhang. Advances in coating strategies for graphite anodes in lithium-ion batteries[J]. Acta Physico-Chimica Sinica, ;2025, 41(9): 100096. doi: 10.1016/j.actphy.2025.100096 shu

Advances in coating strategies for graphite anodes in lithium-ion batteries

  • Corresponding author: Cheng Tang, cheng–net0@tsinghua.edu.cn Aibing Chen, chen_ab@163.com Qiang Zhang, zhang–qiang@mails.tsinghua.edu.cn
  • Received Date: 5 March 2025
    Revised Date: 11 April 2025
    Accepted Date: 18 April 2025

    Fund Project: the National Key Research and Development Program of China 2022YFB2404402Huaneng Group science and technology research project HNKJ23–H71National Natural Science Foundation of China 22478221National Natural Science Foundation of China U23A20573National Natural Science Foundation of China U23A20140the Hebei Natural Science Foundation B2024208091S&T Program of Hebei 22344402D

  • As a critical component for achieving sustainable energy systems, secondary lithium-ion batteries (LIBs) have become the dominant electrochemical energy storage technology. Graphite has been widely employed as an anode material in rechargeable LIBs, where the formation of a solid electrolyte interphase (SEI) on graphite particles plays a pivotal role in realizing optimal Li+ ion storage performance. However, solvent co-intercalation with Li+ ions leads to volumetric expansion, unstable SEI formation, irreversible capacity loss, structural layer collapse, and even lithium dendrite formation. To overcome these challenges, surface coating modification has emerged as an effective strategy to enhance graphite anode performance. This review systematically summarizes recent progress in coating materials (including carbon materials, lithium-ion conductors, metal compounds, and polymers) fabricated through vapor-phase or liquid-phase deposition. Enormous research investigations demonstrate that rationally designed coating layers prevent direct electrolyte/graphite contact to inhibit solvent decomposition, regulate lithium-ion flux distribution to promote uniform deposition, and function as artificial SEI components to improve interphasial stability. This review provides both theoretical insights and practical considerations for future research and development of advanced graphite anode materials for lithium-ion batteries.
  • 加载中
    1. [1]

      Y.-X. Yao, L. Xu, C. Yan, Q. Zhang, EES Batteries 1 (2025) 9, https://doi.org/10.1039/D4EB00011K.  doi: 10.1039/D4EB00011K

    2. [2]

      J.H. Yu, K. Köster, N. Voronina, S. Kim, H.-J. Shin, K.S. Kim, K. Ihm, H. Kim, H.-G. Jung, K. Yazawa, O. Guillon, P. Gargiani, L. Simonelli, P. Kaghazchi, S.-T. Myung, eScience (2025) 100376, https://doi.org/10.1016/j.esci.2025.100376.  doi: 10.1016/j.esci.2025.100376

    3. [3]

      G. Shen, S. Kondou, G. Wada, H. Nakagaki, M. Watanabe, K. Dokko, K. Ueno, EES Batteries 1 (2025) 273, https://doi.org/10.1039/D4EB00036F.  doi: 10.1039/D4EB00036F

    4. [4]

      Z.W. Seh, Y. Sun, Q. Zhang, Y. Cui, Chem. Soc. Rev. 45 (2016) 5605, https://doi.org/10.1039/C5CS00410A.  doi: 10.1039/C5CS00410A

    5. [5]

      B. Lin, Y. Zhang, W. Li, J. Huang, Y. Yang, S.W. Or, Z. Xing, S. Guo, eScience 4 (2024) 100180, https://doi.org/10.1016/j.esci.2023.100180.  doi: 10.1016/j.esci.2023.100180

    6. [6]

      R. Malik, V.K. Tomer, M. Sain, EES Batteries 1 (2025) 119, https://doi.org/10.1039/D4EB00006D.  doi: 10.1039/D4EB00006D

    7. [7]

      Z. Wang, J. Xia, X. Ji, Y. Liu, J. Zhang, X. He, W. Zhang, H. Wan, C. Wang, Nat. Energy 9 (2024) 251, https://doi.org/10.1038/s41560-023-01426-1.  doi: 10.1038/s41560-023-01426-1

    8. [8]

      S. Zou, Y. Yang, J. Wang, X. Zhou, X. Wan, M. Zhu, Energy Environ. Sci. 17 (2024) 4426, https://doi.org/10.1039/D4EE00822G.  doi: 10.1039/D4EE00822G

    9. [9]

      P. Lai, Y. Zhang, J. Wang, M. chen, X. Li, X. Deng, Q. Chen, B. Huang, C. Gan, Y. Zou, Y. Qiao, P. Zhang, J. Zhao, eScience (2025) 100399, https://doi.org/10.1016/j.esci.2025.100399.  doi: 10.1016/j.esci.2025.100399

    10. [10]

      B. Cao, X.F. Li, Acta Phys. -Chim. Sin. 36 (2020) 1905003, https://doi.org/10.3866/PKU.WHXB201905003.  doi: 10.3866/PKU.WHXB201905003

    11. [11]

      J. Song, B. Xiao, Y. Lin, K. Xu, X. Li, Adv. Energy Mater. 8 (2018) 1703082, https://doi.org/10.1002/aenm.201703082.  doi: 10.1002/aenm.201703082

    12. [12]

      C. Liu, K. Chen, H. Xiong, A. Zhao, H. Zhang, Q. Li, X. Ai, H. Yang, Y. Fang, Y. Cao, eScience 4 (2024) 100186, https://doi.org/10.1016/j.esci.2023.100186.  doi: 10.1016/j.esci.2023.100186

    13. [13]

      S. Dhir, S. Wheeler, I. Capone, M. Pasta, Chem 6 (2020) 2442, https://doi.org/10.1016/j.chempr.2020.08.012.  doi: 10.1016/j.chempr.2020.08.012

    14. [14]

      S. Dhir, J. Cattermull, B. Jagger, M. Schart, L.F. Olbrich, Y. Chen, J. Zhao, K. Sada, A. Goodwin, M. Pasta, Nat. Commun. 15 (2024) 7580, https://doi.org/10.1038/s41467-024-51537-w.  doi: 10.1038/s41467-024-51537-w

    15. [15]

      Z. Liu, X. Liu, B. Wang, X. Wang, D. Lu, D. Shen, Z. Sun, Y. Liu, W. Zhang, Q. Zhang, Y. Li, eScience 3 (2023) 100177, https://doi.org/10.1016/j.esci.2023.100177.  doi: 10.1016/j.esci.2023.100177

    16. [16]

      Z. Yi, G. Chen, F. Hou, L. Wang, J. Liang, Adv. Energy Mater. 11 (2021) 2170001, https://doi.org/10.1002/aenm.202170001.  doi: 10.1002/aenm.202170001

    17. [17]

      Y. Zhu, G. Liang, X. Cui, X. Liu, H. Zhong, C. Zhi, Y. Yang, Energy Environ. Sci. 17 (2024) 369, https://doi.org/10.1039/D3EE03584K.  doi: 10.1039/D3EE03584K

    18. [18]

      M. Wang, J. Ma, Y. Meng, P. Tong, R. Luo, D. Shen, X. Zheng, N. Chen, M. Zhang, L. Song, Z. Zhang, D. Li, C. Wang, H. Cheng, Y. Lu, Z. Li, W. Chen, eScience (2025) 100397, https://doi.org/10.1016/j.esci.2025.100397.  doi: 10.1016/j.esci.2025.100397

    19. [19]

      M.B. Armand, M.S. Whittingham, R.A. Huggins, Mater. Res. Bull. 7 (1972) 101, https://doi.org/10.1016/0025-5408(72)90266-8.  doi: 10.1016/0025-5408(72)90266-8

    20. [20]

      H. Zheng, X. Han, W. Guo, L. Lin, Q. Xie, P. Liu, W. He, L. Wang, D.-L. Peng, Mater. Today Energy 18 (2020) 100518, https://doi.org/10.1016/j.mtener.2020.100518.  doi: 10.1016/j.mtener.2020.100518

    21. [21]

      W. Li, B. Song, A. Manthiram, Chem. Soc. Rev. 46 (2017) 3006, https://doi.org/10.1039/C6CS00875E.  doi: 10.1039/C6CS00875E

    22. [22]

      Y. Nishi, J. Power Sources 100 (2001) 101, https://doi.org/10.1016/S0378-7753(01)00887-4.  doi: 10.1016/S0378-7753(01)00887-4

    23. [23]

      G. Song, J. Ryu, S. Ko, B.M. Bang, S. Choi, M. Shin, S.-Y. Lee, S. Park, Chem. Asian J. 11 (2016) 1711, https://doi.org/10.1002/asia.201600249.  doi: 10.1002/asia.201600249

    24. [24]

      C. Song, S.H. Han, H. Moon, N.-S. Choi, EcoMat 6 (2024) e12476, https://doi.org/10.1002/eom2.12476.  doi: 10.1002/eom2.12476

    25. [25]

      S. Dong, Y. Song, K. Ye, J. Yan, G. Wang, K. Zhu, D. Cao, EcoMat 4 (2022) e12212, https://doi.org/10.1002/eom2.12212.  doi: 10.1002/eom2.12212

    26. [26]

      Y. Yi, H. Ma, X. Lian, Q. Mei, Z. Zeng, Y. Zhao, C. Lu, W. Zhao, W. Guo, Z. Liu, J. Sun, InfoMat 3 (2021) 891, https://doi.org/10.1002/inf2.12225.  doi: 10.1002/inf2.12225

    27. [27]

      Y. Yang, C. Yan, J.Q. Huang, Acta Phys. -Chim. Sin. 37 (2021) 202010076, https://doi.org/10.3866/PKU.WHXB202010076.  doi: 10.3866/PKU.WHXB202010076

    28. [28]

      G. Åvall, A.G. Ferrero, K.A. Janßen, M. Exner, Y. Son, P. Adelhelm, Adv. Energy Mater. 13 (2023) 2301944, https://doi.org/10.1002/aenm.202301944.  doi: 10.1002/aenm.202301944

    29. [29]

      P. Ma, P. Mirmira, P.J. Eng, S.-B. Son, I.D. Bloom, A.S. Filatov, C.V. Amanchukwu, Energy Environ. Sci. 15 (2022) 4823, https://doi.org/10.1039/D2EE01489K.  doi: 10.1039/D2EE01489K

    30. [30]

      S. Moharana, G. West, A.S. Menon, W.L. da Silva, M. Walker, M.J. Loveridge, ACS Appl. Mater. Interfaces 15 (2023) 50185, https://doi.org/10.1021/acsami.3c10792.  doi: 10.1021/acsami.3c10792

    31. [31]

      C.-Y. Wang, T. Liu, X.-G. Yang, S. Ge, N.V. Stanley, E.S. Rountree, Y. Leng, B.D. McCarthy, Nature 611 (2022) 485, https://doi.org/10.1038/s41586-022-05281-0.  doi: 10.1038/s41586-022-05281-0

    32. [32]

      J. Wang, D. Yu, X. Sun, H. Wang, J. Li, eScience 4 (2024) 100252, https://doi.org/10.1016/j.esci.2024.100252.  doi: 10.1016/j.esci.2024.100252

    33. [33]

      I. Kuribayashi, M. Yokoyama, M. Yamashita, J. Power Sources 54 (1995) 1, https://doi.org/10.1016/0378-7753(94)02030-7.  doi: 10.1016/0378-7753(94)02030-7

    34. [34]

      S. Kuwabata, N. Tsumura, S.i. Goda, C.R. Martin, H. Yoneyama, J. Electrochem. Soc. 145 (1998) 1415, https://doi.org/10.1149/1.1838497.  doi: 10.1149/1.1838497

    35. [35]

      P. Yu, J.A. Ritter, R.E. White, B.N. Popov, J. Electrochem. Soc. 147 (2000) 1280, https://doi.org/10.1149/1.1393350.  doi: 10.1149/1.1393350

    36. [36]

      K. Kawabata, H. Yoshimatsu, E. Fujii, K. Hiragushi, A. Osaka, Y. Miura, J. Mater. Sci. Lett. 20 (2001) 851, https://doi.org/10.1023/A:1010970931622.  doi: 10.1023/A:1010970931622

    37. [37]

      S.S. Zhang, K. Xu, T.R. Jow, Electrochem. Commun. 5 (2003) 979, https://doi.org/10.1016/j.elecom.2003.09.014.  doi: 10.1016/j.elecom.2003.09.014

    38. [38]

      H.-L. Zhang, S. Liu, F. Li, S. Bai, C. Liu, J. Tan, H.M. Cheng, Carbon 44 (2006) 2212, https://doi.org/10.1016/j.carbon.2006.02.037.  doi: 10.1016/j.carbon.2006.02.037

    39. [39]

      S. Yoon, H. Kim, S.M. Oh, J. Power Sources 94 (2001) 68, https://doi.org/10.1016/S0378-7753(00)00601-7.  doi: 10.1016/S0378-7753(00)00601-7

    40. [40]

      C. Natarajan, H. Fujimoto, K. Tokumitsu, A. Mabuchi, T. Kasuh, Carbon 39 (2001) 1409, https://doi.org/10.1016/S0008-6223(00)00267-0.  doi: 10.1016/S0008-6223(00)00267-0

    41. [41]

      B. Cao, M. Du, Z. Guo, H. Liu, C. Yan, A. Chen, X. Chen, C. Tang, J.-Q. Huang, Q. Zhang, Carbon Future 1 (2024) 9200017, https://doi.org/10.26599/CF.2024.9200017.  doi: 10.26599/CF.2024.9200017

    42. [42]

      Z.-X. Zhao, H.-L. Zhu, W. Liu, Y.-X. Qi, T. Li, Y.-J. Bai, New J. Chem. 46 (2022) 7968, https://doi.org/10.1039/D2NJ00394E.  doi: 10.1039/D2NJ00394E

    43. [43]

      F. Ding, W. Xu, D. Choi, W. Wang, X. Li, M.H. Engelhard, X. Chen, Z. Yang, J.-G. Zhang, J. Mater. Chem. 22 (2012) 12745, https://doi.org/10.1039/C2JM31015E.  doi: 10.1039/C2JM31015E

    44. [44]

      H. Zeng, J. He, D. Fang, Y. Liang, R. Zhao, Y. Cai, D. Lu, Energy Technol. 7 (2019) 1801078, https://doi.org/10.1002/ente.201801078.  doi: 10.1002/ente.201801078

    45. [45]

      W. Liang, Y. Zhao, L. Shi, Z. Wang, Y. Wang, M. Zhang, S. Yuan, Particuology 86 (2024) 67, https://doi.org/10.1016/j.partic.2023.05.001.  doi: 10.1016/j.partic.2023.05.001

    46. [46]

      C. Wang, H. Zhao, J. Wang, J. Wang, P. Lv, Ionics 19 (2013) 221, https://doi.org/10.1007/s11581-012-0733-9.  doi: 10.1007/s11581-012-0733-9

    47. [47]

      Y. Zhang, H. Huang, X. Chen, T. Gao, J. Li, Y. Yao, Z. Xu, M. Zheng, Z. Liu, Energy Fuel. 38 (2024) 23140, https://doi.org/10.1021/acs.energyfuels.4c04723.  doi: 10.1021/acs.energyfuels.4c04723

    48. [48]

      Y. Ma, P. Qi, J. Ma, L. Wei, L. Zhao, J. Cheng, Y. Su, Y. Gu, Y. Lian, Y. Peng, Y. Shen, L. Chen, Z. Deng, Z. Liu, Adv. Sci. 8 (2021) 2100488, https://doi.org/10.1002/advs.202100488.  doi: 10.1002/advs.202100488

    49. [49]

      C.-T. Hsieh, B.C. Mallick, Y.A. Gandomi, Y.-C. Huang, C.-C. Fu, R.-S. Juang, J.-K. Chang, Electrochim. Acta 423 (2022) 140605, https://doi.org/10.1016/j.electacta.2022.140605.  doi: 10.1016/j.electacta.2022.140605

    50. [50]

      N. Kim, S. Chae, J. Ma, M. Ko, J. Cho, Nat. Commun. 8 (2017) 812, https://doi.org/10.1038/s41467-017-00973-y.  doi: 10.1038/s41467-017-00973-y

    51. [51]

      J. Hou, B. Gong, C. Hou, W. B. Wang, D. Yang, X. Wang, Int. J. Electrochem. Sci. 14 (2019) 3455, https://doi.org/10.20964/2019.04.22.  doi: 10.20964/2019.04.22

    52. [52]

      M. Hu, H. Wu, G.-J. Zhang, Chem. Phys. Lett. 833 (2023) 140917, https://doi.org/10.1016/j.cplett.2023.140917.  doi: 10.1016/j.cplett.2023.140917

    53. [53]

      S.M. George, Chem. Rev. 110 (2010) 111, https://doi.org/10.1021/cr900056b.  doi: 10.1021/cr900056b

    54. [54]

      S.M. Gowdru, Y.-C. Wu, T.-R. Liu, S.B. Patil, Z.-J. Li, H.-H. Hsieh, Z. Chen, C.-Y. Wen, D.-Y. Wang, J. Chin. Chem. Soc. 70 (2023) 2238, https://doi.org/10.1002/jccs.202300291.  doi: 10.1002/jccs.202300291

    55. [55]

      A. Pearse, T. Schmitt, E. Sahadeo, D.M. Stewart, A. Kozen, K. Gerasopoulos, A.A. Talin, S.B. Lee, G.W. Rubloff, K.E. Gregorczyk, ACS Nano 12 (2018) 4286, https://doi.org/10.1021/acsnano.7b08751.  doi: 10.1021/acsnano.7b08751

    56. [56]

      Y.S. Jung, A.S. Cavanagh, L.A. Riley, S.-H. Kang, A.C. Dillon, M.D. Groner, S.M. George, S.-H. Lee, Adv. Mater. 22 (2010) 2172, https://doi.org/10.1002/adma.200903951.  doi: 10.1002/adma.200903951

    57. [57]

      E. Kazyak, K.-H. Chen, Y. Chen, T.H. Cho, N.P. Dasgupta, Adv. Energy Mater. 12 (2022) 2102618, https://doi.org/10.1002/aenm.202102618.  doi: 10.1002/aenm.202102618

    58. [58]

      M. Audren-Paul, Y. Tison, H. Martinez, D. Peralta, G. Yildirim, F. Le Cras, M. Legallais, ACS Appl. Energy Mater. 8 (2025) 3392, https://doi.org/10.1021/acsaem.4c02930.  doi: 10.1021/acsaem.4c02930

    59. [59]

      D.-L. Yang, R.-K. Liu, Y. Wei, Q. Sun, J.-X. Wang, Particuology 85 (2024) 22, https://doi.org/10.1016/j.partic.2023.03.013.  doi: 10.1016/j.partic.2023.03.013

    60. [60]

      X. Rao, L. Zhang, B. Li, X. Zeng, W. Xiao, Y. Lou, H. Xie, H. Yan, Z. Yi, S. Zhong, Mater. Adv. 3 (2022) 8958, https://doi.org/10.1039/D2MA00820C.  doi: 10.1039/D2MA00820C

    61. [61]

      X.B. Ding, Q.H. Huang, X.H. Xiong, Acta Phys. -Chim. Sin. 38 (2022) 202204057, https://doi.org/10.3866/PKU.WHXB202204057.  doi: 10.3866/PKU.WHXB202204057

    62. [62]

      Y. Gao, J. Zhang, Y. Chen, C. Wang, Surf. Interfaces 24 (2021) 101089, https://doi.org/10.1016/j.surfin.2021.101089.  doi: 10.1016/j.surfin.2021.101089

    63. [63]

      Y. Xiao, J. Li, W. Huang, L. Wang, J.J. Luo, Mater. Sci.: Mater. Electron. 33 (2022) 16740, https://doi.org/10.1007/s10854-022-08533-x.  doi: 10.1007/s10854-022-08533-x

    64. [64]

      J.C. Abrego-Martinez, Y. Wang, V. Vanpeene, L. Roue, Carbon 209 (2023) 118004, https://doi.org/10.1016/j.carbon.2023.118004.  doi: 10.1016/j.carbon.2023.118004

    65. [65]

      M.-L. Lee, Y.H. Li, S.-C. Liao, J.-M. Chen, J.-W. Yeh, H.C. Shih, Electrochim. Acta 112 (2013) 529, https://doi.org/10.1016/j.electacta.2013.08.150.  doi: 10.1016/j.electacta.2013.08.150

    66. [66]

      J.H. Sung, T. Kim, S. Kim, F. Hasan, S.K. Mohanty, M.K. Srinivasa, S.C. Reddy, H.D. Yoo, Energies 16 (2023) 6141, https://doi.org/10.3390/en16176141.  doi: 10.3390/en16176141

    67. [67]

      J.W. Lee, S.Y. Kim, D.Y. Rhee, S. Park, J.Y. Jung, M.-S. Park, ACS Appl. Mater. Interfaces 14 (2022) 29797, https://doi.org/10.1021/acsami.2c05583.  doi: 10.1021/acsami.2c05583

    68. [68]

      C.-M. Chang, H.-F. Lin, S.-C. Liao, H.-T. Chiu, C.-E. Liu, H.-L. Guo, Int. J. Electrochem. Sci. 14 (2019) 1197, https://doi.org/10.20964/2019.02.49.  doi: 10.20964/2019.02.49

    69. [69]

      S. Lee, J.W. Lee, W. Eom, Y.W. Jung, T.H. Han, Appl. Surf. Sci. 526 (2020) 146720, https://doi.org/10.1016/j.apsusc.2020.146720.  doi: 10.1016/j.apsusc.2020.146720

    70. [70]

      S.-H. Park, H.J. Kim, J. Lee, Y.K. Jeong, J.W. Choi, H. Lee, ACS Appl. Mater. Interfaces 8 (2016) 13973, https://doi.org/10.1021/acsami.6b04109.  doi: 10.1021/acsami.6b04109

    71. [71]

      S. Heng, X. Shan, W. Wang, Y. Wang, G. Zhu, Q. Qu, H. Zheng, Carbon 159 (2020) 390, https://doi.org/10.1016/j.carbon.2019.12.054.  doi: 10.1016/j.carbon.2019.12.054

    72. [72]

      Q. Ma, M. Cao, Z. Fu, R. Wang, P. Xiong, K. Hua, L. Zhang, T. Zhou, H. Li, C. Zhang, ACS Appl. Mater. Interfaces 16 (2024) 35033, https://doi.org/10.1021/acsami.4c05191.  doi: 10.1021/acsami.4c05191

    73. [73]

      W. Liu, H. Xu, H. Qin, Y. Lv, G. Zhu, X. Lei, F. Lin, Z. Zhang, L. Wang, J. Mater. Sci. 55 (2020) 4382, https://doi.org/10.1007/s10853-019-04313-x.  doi: 10.1007/s10853-019-04313-x

    74. [74]

      J.H. Kim, B.R. Kim, J.S. Im, Korean, J. Chem. Eng. 40 (2023) 2839, https://doi.org/10.1007/s11814-023-1529-5.  doi: 10.1007/s11814-023-1529-5

    75. [75]

      U.-S. Im, J.U. Hwang, J.H. Yun, W. Ahn, K.S. Kim, J.S. Im, Mater. Lett. 278 (2020) 128421, https://doi.org/10.1016/j.matlet.2020.128421.  doi: 10.1016/j.matlet.2020.128421

    76. [76]

      Y.-S. Wu, Y.-H. Lee, Z.-W. Yang, Z.-Z. Guo, H.-C. Wu, J. Phys. Chem. Solid. 69 (2008) 376, https://doi.org/10.1016/j.jpcs.2007.07.010.  doi: 10.1016/j.jpcs.2007.07.010

    77. [77]

      S. Huang, Q. Fan, X. Chen, Y. Wu, L. Liu, Z. Yu, J. Xu, J. Colloid Interface Sci. 676 (2024) 197, https://doi.org/10.1016/j.jcis.2024.07.101.  doi: 10.1016/j.jcis.2024.07.101

    78. [78]

      M. Su, H. Wan, Y. Liu, W. Xiao, A. Dou, Z. Wang, H. Guo, Powder Technol. 323 (2018) 294, https://doi.org/10.1016/j.powtec.2017.09.005.  doi: 10.1016/j.powtec.2017.09.005

    79. [79]

      T. Xu, W. Sun, T. Kong, J. Zhou, Y. Qian, Acta Phys. -Chim. Sin. 40 (2023) 202303021, https://doi.org/10.3866/PKU.WHXB202303021.  doi: 10.3866/PKU.WHXB202303021

    80. [80]

      J. Peng, H. Tan, Z. Wu, Y. Tang, P. Liu, L. He, J. Yang, S. Hu, S. Wang, X. Wang, ACS Appl. Mater. Interfaces 15 (2023) 59552, https://doi.org/10.1021/acsami.3c15484.  doi: 10.1021/acsami.3c15484

    81. [81]

      M. Yoshio, H. Wang, K. Fukuda, Angew. Chem. Int. Ed. 42 (2003) 4203, https://doi.org/10.1002/anie.200351203.  doi: 10.1002/anie.200351203

    82. [82]

      W. Zhou, Y. Mo, P. Gao, K. Wang, J. Ke, Z. Liu, S. Chen, J. Liu, Adv. Funct. Mater. 34 (2024) 2312994, https://doi.org/10.1002/adfm.202312994.  doi: 10.1002/adfm.202312994

    83. [83]

      X. Yi, G. Qi, X. Liu, C. Depcik, L. Liu, J. Energy Storage 95 (2024) 112480, https://doi.org/10.1016/j.est.2024.112480.  doi: 10.1016/j.est.2024.112480

    84. [84]

      J.-H. Lin, C.-Y. Chen, Surf. Coat. Technol. 436 (2022) 128270, https://doi.org/10.1016/j.surfcoat.2022.128270.  doi: 10.1016/j.surfcoat.2022.128270

    85. [85]

      W. Cai, C. Yan, Y.-X. Yao, L. Xu, R. Xu, L.-L. Jiang, J.-Q. Huang, Q. Zhang, Small Struct. 1 (2020) 2000010, https://doi.org/10.1002/sstr.202000010.  doi: 10.1002/sstr.202000010

    86. [86]

      Y. Liu, H. Shi, Z.-S. Wu, Energy Environ. Sci. 16 (2023) 4834, https://doi.org/10.1039/D3EE02213G.  doi: 10.1039/D3EE02213G

    87. [87]

      Y.-X. Yao, C. Yan, Q. Zhang, Chem. Commun. 56 (2020) 14570, https://doi.org/10.1039/D0CC05084A.  doi: 10.1039/D0CC05084A

    88. [88]

      P. Xiao, Z. Wang, K. Long, J. Yang, X. Liu, C. Ling, L. Chen, L. Mei, RSC Adv. 14 (2024) 13277, https://doi.org/10.1039/d4ra01560f.  doi: 10.1039/d4ra01560f

    89. [89]

      N. Gunawardhana, N. Dimov, M. Sasidharan, G.-J. Park, H. Nakamura, M. Yoshio, Electrochem. Commun. 13 (2011) 1116, https://doi.org/10.1016/j.elecom.2011.07.014.  doi: 10.1016/j.elecom.2011.07.014

    90. [90]

      G. Park, N. Gunawardhana, H. Nakamura, Y. Lee, M. Yoshio, J. Power Sources 196 (2011) 9820, https://doi.org/10.1016/j.jpowsour.2011.07.006.  doi: 10.1016/j.jpowsour.2011.07.006

    91. [91]

      J. Yue, Y. Zhu, J. Lv, Y. Wang, J. Cheng, X. Zhao, Chem. Eng. Sci. 297 (2024) 120302, https://doi.org/10.1016/j.ces.2024.120302.  doi: 10.1016/j.ces.2024.120302

    92. [92]

      H. Li, H. Zhou, Chem. Commun. 48 (2012) 1201, https://doi.org/10.1039/C1CC14764A.  doi: 10.1039/C1CC14764A

    93. [93]

      X. Liao, Z. Ding, Z. Yin, Ionics 26 (2020) 5367, https://doi.org/10.1007/s11581-020-03577-7.  doi: 10.1007/s11581-020-03577-7

    94. [94]

      Y.-J. Han, J. Kim, J.-S. Yeo, J.C. An, I.-P. Hong, K. Nakabayashi, J. Miyawaki, J.-D. Jung, S.-H. Yoon, Carbon 94 (2015) 432, https://doi.org/10.1016/j.carbon.2015.07.030.  doi: 10.1016/j.carbon.2015.07.030

    95. [95]

      H. Oka, H. Kadoura, N.T. Takahashi, T. Ikawa, J. Power Sources 543 (2022) 231850, https://doi.org/10.1016/j.jpowsour.2022.231850.  doi: 10.1016/j.jpowsour.2022.231850

    96. [96]

      C. Shi, S. Zhang, Z. Jiang, H. Sun, C. Zhang, F. Xue, Powder Technol. 411 (2022) 117921, https://doi.org/10.1016/j.powtec.2022.117921.  doi: 10.1016/j.powtec.2022.117921

    97. [97]

      Y. Hou, H. Guo, B. Xing, H. Zeng, W. Kang, X. Qu, C. Zhang, J. Jia, G. Huang, Y. Cao, Fuel 374 (2024) 132488, https://doi.org/10.1016/j.fuel.2024.132488.  doi: 10.1016/j.fuel.2024.132488

    98. [98]

      Y. Ma, Y. Zheng, M. Xu, S. Huang, G. Yuan, JOM 75 (2023) 5321, https://doi.org/10.1007/s11837-023-05992-3.  doi: 10.1007/s11837-023-05992-3

    99. [99]

      X.W. Liu, Y. Niu, R.X. Cao, X.H. Chen, H.Y. Shang, H.H. Song, Acta Phys. -Chim. Sin. 38 (2022) 202012062, https://doi.org/10.3866/PKU.WHXB202012062.  doi: 10.3866/PKU.WHXB202012062

    100. [100]

      S. Bhattacharya, A.R. Riahi, A.T. Alpas, Carbon 77 (2014) 99, https://doi.org/10.1016/j.carbon.2014.05.011.  doi: 10.1016/j.carbon.2014.05.011

    101. [101]

      D. Song, M.R. Jo, G.-H. Lee, J. Song, N.-S. Choi, Y.-M. Kang, J. Alloys Compd. 615 (2014) 220, https://doi.org/10.1016/j.jallcom.2014.06.158.  doi: 10.1016/j.jallcom.2014.06.158

    102. [102]

      S. Yang, K. Yamamoto, X. Mei, A. Sakuda, T. Uchiyama, T. Watanabe, T. Takami, A. Hayashi, M. Tatsumisago, Y. Uchimoto, ACS Appl. Energy Mater. 5 (2022) 667, https://doi.org/10.1021/acsaem.1c03166.  doi: 10.1021/acsaem.1c03166

    103. [103]

      S. Tu, B. Zhang, Y. Zhang, Z. Chen, X. Wang, R. Zhan, Y. Ou, W. Wang, X. Liu, X. Duan, L. Wang, Y. Sun, Nat. Energy 8 (2023) 1365, https://doi.org/10.1038/s41560-023-01387-5.  doi: 10.1038/s41560-023-01387-5

    104. [104]

      Y. Huang, C. Wang, H. Lv, Y. Xie, S. Zhou, Y. Ye, E. Zhou, T. Zhu, H. Xie, W. Jiang, X. Wu, X. Kong, H. Jin, H. Ji, Adv. Mater. 36 (2024) 2308675, https://doi.org/10.1002/adma.202308675.  doi: 10.1002/adma.202308675

    105. [105]

      C. Wang, Y. Xie, Y. Huang, S. Zhou, H. Xie, H. Jin, H. Ji, Angew. Chem. Int. Ed. 63 (2024) e202402301, https://doi.org/10.1002/anie.202402301.  doi: 10.1002/anie.202402301

    106. [106]

      B. Moradi, D. Wang, G.G. Botte, J. Appl. Electrochem. 50 (2020) 321, https://doi.org/10.1007/s10800-019-01393-0.  doi: 10.1007/s10800-019-01393-0

    107. [107]

      K.R. Tallman, S. Yan, C.D. Quilty, A. Abraham, A.H. McCarthy, A.C. Marschilok, K.J. Takeuchi, E.S. Takeuchi, D.C. Bock, J. Electrochem. Soc. 167 (2020) 160503, https://doi.org/10.1149/1945-7111/abcaba.  doi: 10.1149/1945-7111/abcaba

    108. [108]

      F. Nobili, S. Dsoke, M. Mancini, R. Marassi, Fuel Cells 9 (2009) 264, https://doi.org/10.1002/fuce.200800087.  doi: 10.1002/fuce.200800087

    109. [109]

      Y.S. Jung, A.S. Cavanagh, L. Gedvilas, N.E. Widjonarko, I.D. Scott, S.-H. Lee, G.-H. Kim, S.M. George, A.C. Dillon, Adv. Energy Mater. 2 (2012) 1022, https://doi.org/10.1002/aenm.201100750.  doi: 10.1002/aenm.201100750

    110. [110]

      L. Shen, C. Xu, J. Gao, J. Tao, Q. Zhang, Y. Chen, Y. Lin, Z. Huang, J. Li, J. Energy Chem. 77 (2023) 348, https://doi.org/10.1016/j.jechem.2022.10.044.  doi: 10.1016/j.jechem.2022.10.044

    111. [111]

      S.C. Jung, Y.-K. Han, J. Phys. Chem. Lett. 4 (2013) 2681, https://doi.org/10.1021/jz401231e.  doi: 10.1021/jz401231e

    112. [112]

      T. Feng, Y. Xu, Z. Zhang, X. Du, X. Sun, L. Xiong, R. Rodriguez, R. Holze, ACS Appl. Mater. Interfaces 8 (2016) 6512, https://doi.org/10.1021/acsami.6b00231.  doi: 10.1021/acsami.6b00231

    113. [113]

      D.S. Kim, Y.E. Kim, H. Kim, J. Power Sources 422 (2019) 18, https://doi.org/10.1016/j.jpowsour.2019.03.027.  doi: 10.1016/j.jpowsour.2019.03.027

    114. [114]

      D.S. Kim, D.J. Chung, J. Bae, G. Jeong, H. Kim, Electrochim. Acta 258 (2017) 336, https://doi.org/10.1016/j.electacta.2017.11.056.  doi: 10.1016/j.electacta.2017.11.056

    115. [115]

      D.Y. Rhee, J. Kim, J. Moon, M.-S. Park, J. Alloys Compd. 843 (2020) 156042, https://doi.org/10.1016/j.jallcom.2020.156042.  doi: 10.1016/j.jallcom.2020.156042

    116. [116]

      S.-M. Lee, J. Kim, J. Moon, K.-N. Jung, J.H. Kim, G.-J. Park, J.-H. Choi, D.Y. Rhee, J.-S. Kim, J.-W. Lee, M.S. Park, Nat. Commun. 12 (2021) 39, https://doi.org/10.1038/s41467-020-20297-8.  doi: 10.1038/s41467-020-20297-8

    117. [117]

      F. Wang, S. Lin, X. Lu, R. Hong, H. Liu, Electrochim. Acta 404 (2022) 139708, https://doi.org/10.1016/j.electacta.2021.139708.  doi: 10.1016/j.electacta.2021.139708

    118. [118]

      Y. Zhai, Z. Zhong, N. Kuang, Q. Li, T. Xu, J. He, H. Li, X. Yin, Y. Jia, Q. He, S. Wu, Q. Yang, J. Am. Chem. Soc. 146 (2024) 15209, https://doi.org/10.1021/jacs.4c02115.  doi: 10.1021/jacs.4c02115

    119. [119]

      Q. Shi, W. Liu, Q. Qu, T. Gao, Y. Wang, G. Liu, V.S. Battaglia, H. Zheng, Carbon 111 (2017) 291, https://doi.org/10.1016/j.carbon.2016.10.008.  doi: 10.1016/j.carbon.2016.10.008

    120. [120]

      S. Heng, Q. Shi, Y. Wang, Q. Qu, J. Zhang, G. Zhu, H. Zheng, ACS Appl. Energy Mater. 2 (2019) 1336, https://doi.org/10.1021/acsaem.8b01912.  doi: 10.1021/acsaem.8b01912

    121. [121]

      Q. Wang, J. Yang, X. Huang, Z. Zhai, J. Tang, J. You, C. Shi, W. Li, P. Dai, W. Zheng, L. Huang, S. Sun, Adv. Energy Mater. 12 (2022) 2103972, https://doi.org/10.1002/aenm.202103972.  doi: 10.1002/aenm.202103972

    122. [122]

      Q. Shi, S. Heng, Q. Qu, T. Gao, W. Liu, L. Hang, H. Zheng, J. Mater. Chem. A 5 (2017) 10885, https://doi.org/10.1039/C7TA02706K.  doi: 10.1039/C7TA02706K

    123. [123]

      J. Luo, C.-E. Wu, L.-Y. Su, S.-S. Huang, C.-C. Fang, Y.-S. Wu, J. Chou, N.-L. Wu, J. Power Sources 406 (2018) 63, https://doi.org/10.1016/j.jpowsour.2018.10.002.  doi: 10.1016/j.jpowsour.2018.10.002

    124. [124]

      W. Cao, J. Lu, K. Zhou, G. Sun, J. Zheng, Z. Geng, H. Li, Nano Energy 95 (2022) 106983, https://doi.org/10.1016/j.nanoen.2022.106983.  doi: 10.1016/j.nanoen.2022.106983

    125. [125]

      F.-S. Li, Y.-S. Wu, J. Chou, M. Winter, N.-L. Wu, Adv. Mater. 27 (2015) 130, https://doi.org/10.1002/adma.201403880.  doi: 10.1002/adma.201403880

    126. [126]

      J. Zhou, K. Ma, X. Lian, Q. Shi, J. Wang, Z. Chen, L. Guo, Y. Liu, A. Bachmatiuk, J. Sun, R. Yang, J. Choi, M. Rümmeli, Small 18 (2022) 2107460, https://doi.org/10.1002/smll.202107460.  doi: 10.1002/smll.202107460

    127. [127]

      H. Da, S. Pan, J. Li, J. Huang, X. Yuan, H. Dong, J. Liu, H. Zhang, Energy Storage Mater. 56 (2023) 457, https://doi.org/10.1016/j.ensm.2023.01.038.  doi: 10.1016/j.ensm.2023.01.038

  • 加载中
    1. [1]

      Aoyu Huang Jun Xu Yu Huang Gui Chu Mao Wang Lili Wang Yongqi Sun Zhen Jiang Xiaobo Zhu . Tailoring Electrode-Electrolyte Interfaces via a Simple Slurry Additive for Stable High-Voltage Lithium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 100037-. doi: 10.3866/PKU.WHXB202408007

    2. [2]

      Xinlong WANGZhenguo CHENGGuo WANGXiaokuen ZHANGYong XIANGXinquan WANG . Enhancement of the fragile interface of high voltage LiCoO2 by surface gradient permeation of trace amounts of Mg/F. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 571-580. doi: 10.11862/CJIC.20230259

    3. [3]

      Yuting ZHANGZunyi LIUNing LIDongqiang ZHANGShiling ZHAOYu ZHAO . Nickel vanadate anode material with high specific surface area through improved co-precipitation method: Preparation and electrochemical properties. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2163-2174. doi: 10.11862/CJIC.20240204

    4. [4]

      Xueyu Lin Ruiqi Wang Wujie Dong Fuqiang Huang . 高性能双金属氧化物负极的理性设计及储锂特性. Acta Physico-Chimica Sinica, 2025, 41(3): 2311005-. doi: 10.3866/PKU.WHXB202311005

    5. [5]

      Yifeng Xu Jiquan Liu Bin Cui Yan Li Gang Xie Ying Yang . “Xiao Li’s School Adventures: The Working Principles and Safety Risks of Lithium-ion Batteries”. University Chemistry, 2024, 39(9): 259-265. doi: 10.12461/PKU.DXHX202404009

    6. [6]

      Siyu Zhang Kunhong Gu Bing'an Lu Junwei Han Jiang Zhou . Hydrometallurgical Processes on Recycling of Spent Lithium-lon Battery Cathode: Advances and Applications in Sustainable Technologies. Acta Physico-Chimica Sinica, 2024, 40(10): 2309028-. doi: 10.3866/PKU.WHXB202309028

    7. [7]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    8. [8]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    9. [9]

      Xinpeng LIULiuyang ZHAOHongyi LIYatu CHENAimin WUAikui LIHao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488

    10. [10]

      Junke LIUKungui ZHENGWenjing SUNGaoyang BAIGuodong BAIZuwei YINYao ZHOUJuntao LI . Preparation of modified high-nickel layered cathode with LiAlO2/cyclopolyacrylonitrile dual-functional coating. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1461-1473. doi: 10.11862/CJIC.20240189

    11. [11]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    12. [12]

      Liangliang SongHaoyan LiangShunqing LiBao QiuZhaoping Liu . Challenges and strategies on high-manganese Li-rich layered oxide cathodes for ultrahigh-energy-density batteries. Acta Physico-Chimica Sinica, 2025, 41(8): 100085-0. doi: 10.1016/j.actphy.2025.100085

    13. [13]

      Yuanchao LIWeifeng HUANGPengchao LIANGZifang ZHAOBaoyan XINGDongliang YANLi YANGSonglin WANG . Effect of heterogeneous dual carbon sources on electrochemical properties of LiMn0.8Fe0.2PO4/C composites. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 751-760. doi: 10.11862/CJIC.20230252

    14. [14]

      Changsheng AnTao Liu . Decoding SEI chemistry at the lithium-metal potential. Acta Physico-Chimica Sinica, 2025, 41(9): 100101-0. doi: 10.1016/j.actphy.2025.100101

    15. [15]

      Jiandong Liu Zhijia Zhang Mikhail Kamenskii Filipp Volkov Svetlana Eliseeva Jianmin Ma . Research Progress on Cathode Electrolyte Interphase in High-Voltage Lithium Batteries. Acta Physico-Chimica Sinica, 2025, 41(2): 100011-. doi: 10.3866/PKU.WHXB202308048

    16. [16]

      Yu Guo Zhiwei Huang Yuqing Hu Junzhe Li Jie Xu . 钠离子电池中铁基异质结构负极材料的最新研究进展. Acta Physico-Chimica Sinica, 2025, 41(3): 2311015-. doi: 10.3866/PKU.WHXB202311015

    17. [17]

      Mingyang Men Jinghua Wu Gaozhan Liu Jing Zhang Nini Zhang Xiayin Yao . 液相法制备硫化物固体电解质及其在全固态锂电池中的应用. Acta Physico-Chimica Sinica, 2025, 41(1): 2309019-. doi: 10.3866/PKU.WHXB202309019

    18. [18]

      Zhaoxuan ZHULixin WANGXiaoning TANGLong LIYan SHIJiaojing SHAO . Application of poly(vinyl alcohol) conductive hydrogel electrolytes in zinc ion batteries. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 893-902. doi: 10.11862/CJIC.20240368

    19. [19]

      Jiaxuan Zuo Kun Zhang Jing Wang Xifei Li . 锂离子电池Ni-Co-Mn基正极材料前驱体的形核调控及机制. Acta Physico-Chimica Sinica, 2025, 41(1): 2404042-. doi: 10.3866/PKU.WHXB202404042

    20. [20]

      Shanghua Li Malin Li Xiwen Chi Xin Yin Zhaodi Luo Jihong Yu . 基于高离子迁移动力学的取向ZnQ分子筛保护层实现高稳定水系锌金属负极的构筑. Acta Physico-Chimica Sinica, 2025, 41(1): 2309003-. doi: 10.3866/PKU.WHXB202309003

Metrics
  • PDF Downloads(1)
  • Abstract views(10)
  • HTML views(4)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return