锂离子电池石墨负极包覆研究进展

祝鑫彤 曹斌 闫崇 唐城 陈爱兵 张强

引用本文: 祝鑫彤, 曹斌, 闫崇, 唐城, 陈爱兵, 张强. 锂离子电池石墨负极包覆研究进展[J]. 物理化学学报, 2025, 41(9): 100096. doi: 10.1016/j.actphy.2025.100096 shu
Citation:  Xintong Zhu, Bin Cao, Chong Yan, Cheng Tang, Aibing Chen, Qiang Zhang. Advances in coating strategies for graphite anodes in lithium-ion batteries[J]. Acta Physico-Chimica Sinica, 2025, 41(9): 100096. doi: 10.1016/j.actphy.2025.100096 shu

锂离子电池石墨负极包覆研究进展

    通讯作者: 唐城, cheng–net0@tsinghua.edu.cn; 陈爱兵, chen_ab@163.com; 张强, zhang–qiang@mails.tsinghua.edu.cn
  • 基金项目:

    国家重点研发计划 2022YFB2404402

    华能集团总部科技项目基础能源科技研究专项(四) HNKJ23–H71

    国家自然科学基金 22478221

    国家自然科学基金 U23A20573

    国家自然科学基金 U23A20140

    河北省自然科学基金 B2024208091

    河北省省级科技计划 22344402D

    清华大学自主科研项目 

摘要: 石墨负极是目前锂离子电池中广泛使用的商品化负极材料,其在接触电解液发生储锂时会因有机电解液的还原分解而形成一层固体电解质界面膜(SEI)。该界面膜对锂离子电池的循环稳定性、快充性能、安全性能等诸多方面有着关键影响。通过在石墨表面构建一层包覆层,减少其与电解液之间的副反应并促进稳定电极界面的形成,可以提高储锂的电化学性能。表面包覆通常通过气相或液相法实现,包覆材料主要包括碳材料、锂离子导体、金属化合物和聚合物材料等体系。本文评述了不同包覆材料和方法对石墨负极性能的提升作用,分析了包覆改性策略影响电池快充性能和循环稳定性的机制,为锂离子电池负极材料的研究和开发提供了材料物理化学基础。

English

    1. [1]

      Y.-X. Yao, L. Xu, C. Yan, Q. Zhang, EES Batteries 1 (2025) 9, https://doi.org/10.1039/D4EB00011K. doi: 10.1039/D4EB00011K

    2. [2]

      J.H. Yu, K. Köster, N. Voronina, S. Kim, H.-J. Shin, K.S. Kim, K. Ihm, H. Kim, H.-G. Jung, K. Yazawa, O. Guillon, P. Gargiani, L. Simonelli, P. Kaghazchi, S.-T. Myung, eScience (2025) 100376, https://doi.org/10.1016/j.esci.2025.100376. doi: 10.1016/j.esci.2025.100376

    3. [3]

      G. Shen, S. Kondou, G. Wada, H. Nakagaki, M. Watanabe, K. Dokko, K. Ueno, EES Batteries 1 (2025) 273, https://doi.org/10.1039/D4EB00036F. doi: 10.1039/D4EB00036F

    4. [4]

      Z.W. Seh, Y. Sun, Q. Zhang, Y. Cui, Chem. Soc. Rev. 45 (2016) 5605, https://doi.org/10.1039/C5CS00410A. doi: 10.1039/C5CS00410A

    5. [5]

      B. Lin, Y. Zhang, W. Li, J. Huang, Y. Yang, S.W. Or, Z. Xing, S. Guo, eScience 4 (2024) 100180, https://doi.org/10.1016/j.esci.2023.100180. doi: 10.1016/j.esci.2023.100180

    6. [6]

      R. Malik, V.K. Tomer, M. Sain, EES Batteries 1 (2025) 119, https://doi.org/10.1039/D4EB00006D. doi: 10.1039/D4EB00006D

    7. [7]

      Z. Wang, J. Xia, X. Ji, Y. Liu, J. Zhang, X. He, W. Zhang, H. Wan, C. Wang, Nat. Energy 9 (2024) 251, https://doi.org/10.1038/s41560-023-01426-1. doi: 10.1038/s41560-023-01426-1

    8. [8]

      S. Zou, Y. Yang, J. Wang, X. Zhou, X. Wan, M. Zhu, Energy Environ. Sci. 17 (2024) 4426, https://doi.org/10.1039/D4EE00822G. doi: 10.1039/D4EE00822G

    9. [9]

      P. Lai, Y. Zhang, J. Wang, M. chen, X. Li, X. Deng, Q. Chen, B. Huang, C. Gan, Y. Zou, Y. Qiao, P. Zhang, J. Zhao, eScience (2025) 100399, https://doi.org/10.1016/j.esci.2025.100399. doi: 10.1016/j.esci.2025.100399

    10. [10]

      B. Cao, X.F. Li, Acta Phys. -Chim. Sin. 36 (2020) 1905003, https://doi.org/10.3866/PKU.WHXB201905003. doi: 10.3866/PKU.WHXB201905003

    11. [11]

      J. Song, B. Xiao, Y. Lin, K. Xu, X. Li, Adv. Energy Mater. 8 (2018) 1703082, https://doi.org/10.1002/aenm.201703082. doi: 10.1002/aenm.201703082

    12. [12]

      C. Liu, K. Chen, H. Xiong, A. Zhao, H. Zhang, Q. Li, X. Ai, H. Yang, Y. Fang, Y. Cao, eScience 4 (2024) 100186, https://doi.org/10.1016/j.esci.2023.100186. doi: 10.1016/j.esci.2023.100186

    13. [13]

      S. Dhir, S. Wheeler, I. Capone, M. Pasta, Chem 6 (2020) 2442, https://doi.org/10.1016/j.chempr.2020.08.012. doi: 10.1016/j.chempr.2020.08.012

    14. [14]

      S. Dhir, J. Cattermull, B. Jagger, M. Schart, L.F. Olbrich, Y. Chen, J. Zhao, K. Sada, A. Goodwin, M. Pasta, Nat. Commun. 15 (2024) 7580, https://doi.org/10.1038/s41467-024-51537-w. doi: 10.1038/s41467-024-51537-w

    15. [15]

      Z. Liu, X. Liu, B. Wang, X. Wang, D. Lu, D. Shen, Z. Sun, Y. Liu, W. Zhang, Q. Zhang, Y. Li, eScience 3 (2023) 100177, https://doi.org/10.1016/j.esci.2023.100177. doi: 10.1016/j.esci.2023.100177

    16. [16]

      Z. Yi, G. Chen, F. Hou, L. Wang, J. Liang, Adv. Energy Mater. 11 (2021) 2170001, https://doi.org/10.1002/aenm.202170001. doi: 10.1002/aenm.202170001

    17. [17]

      Y. Zhu, G. Liang, X. Cui, X. Liu, H. Zhong, C. Zhi, Y. Yang, Energy Environ. Sci. 17 (2024) 369, https://doi.org/10.1039/D3EE03584K. doi: 10.1039/D3EE03584K

    18. [18]

      M. Wang, J. Ma, Y. Meng, P. Tong, R. Luo, D. Shen, X. Zheng, N. Chen, M. Zhang, L. Song, Z. Zhang, D. Li, C. Wang, H. Cheng, Y. Lu, Z. Li, W. Chen, eScience (2025) 100397, https://doi.org/10.1016/j.esci.2025.100397. doi: 10.1016/j.esci.2025.100397

    19. [19]

      M.B. Armand, M.S. Whittingham, R.A. Huggins, Mater. Res. Bull. 7 (1972) 101, https://doi.org/10.1016/0025-5408(72)90266-8. doi: 10.1016/0025-5408(72)90266-8

    20. [20]

      H. Zheng, X. Han, W. Guo, L. Lin, Q. Xie, P. Liu, W. He, L. Wang, D.-L. Peng, Mater. Today Energy 18 (2020) 100518, https://doi.org/10.1016/j.mtener.2020.100518. doi: 10.1016/j.mtener.2020.100518

    21. [21]

      W. Li, B. Song, A. Manthiram, Chem. Soc. Rev. 46 (2017) 3006, https://doi.org/10.1039/C6CS00875E. doi: 10.1039/C6CS00875E

    22. [22]

      Y. Nishi, J. Power Sources 100 (2001) 101, https://doi.org/10.1016/S0378-7753(01)00887-4. doi: 10.1016/S0378-7753(01)00887-4

    23. [23]

      G. Song, J. Ryu, S. Ko, B.M. Bang, S. Choi, M. Shin, S.-Y. Lee, S. Park, Chem. Asian J. 11 (2016) 1711, https://doi.org/10.1002/asia.201600249. doi: 10.1002/asia.201600249

    24. [24]

      C. Song, S.H. Han, H. Moon, N.-S. Choi, EcoMat 6 (2024) e12476, https://doi.org/10.1002/eom2.12476. doi: 10.1002/eom2.12476

    25. [25]

      S. Dong, Y. Song, K. Ye, J. Yan, G. Wang, K. Zhu, D. Cao, EcoMat 4 (2022) e12212, https://doi.org/10.1002/eom2.12212. doi: 10.1002/eom2.12212

    26. [26]

      Y. Yi, H. Ma, X. Lian, Q. Mei, Z. Zeng, Y. Zhao, C. Lu, W. Zhao, W. Guo, Z. Liu, J. Sun, InfoMat 3 (2021) 891, https://doi.org/10.1002/inf2.12225. doi: 10.1002/inf2.12225

    27. [27]

      Y. Yang, C. Yan, J.Q. Huang, Acta Phys. -Chim. Sin. 37 (2021) 202010076, https://doi.org/10.3866/PKU.WHXB202010076. doi: 10.3866/PKU.WHXB202010076

    28. [28]

      G. Åvall, A.G. Ferrero, K.A. Janßen, M. Exner, Y. Son, P. Adelhelm, Adv. Energy Mater. 13 (2023) 2301944, https://doi.org/10.1002/aenm.202301944. doi: 10.1002/aenm.202301944

    29. [29]

      P. Ma, P. Mirmira, P.J. Eng, S.-B. Son, I.D. Bloom, A.S. Filatov, C.V. Amanchukwu, Energy Environ. Sci. 15 (2022) 4823, https://doi.org/10.1039/D2EE01489K. doi: 10.1039/D2EE01489K

    30. [30]

      S. Moharana, G. West, A.S. Menon, W.L. da Silva, M. Walker, M.J. Loveridge, ACS Appl. Mater. Interfaces 15 (2023) 50185, https://doi.org/10.1021/acsami.3c10792. doi: 10.1021/acsami.3c10792

    31. [31]

      C.-Y. Wang, T. Liu, X.-G. Yang, S. Ge, N.V. Stanley, E.S. Rountree, Y. Leng, B.D. McCarthy, Nature 611 (2022) 485, https://doi.org/10.1038/s41586-022-05281-0. doi: 10.1038/s41586-022-05281-0

    32. [32]

      J. Wang, D. Yu, X. Sun, H. Wang, J. Li, eScience 4 (2024) 100252, https://doi.org/10.1016/j.esci.2024.100252. doi: 10.1016/j.esci.2024.100252

    33. [33]

      I. Kuribayashi, M. Yokoyama, M. Yamashita, J. Power Sources 54 (1995) 1, https://doi.org/10.1016/0378-7753(94)02030-7. doi: 10.1016/0378-7753(94)02030-7

    34. [34]

      S. Kuwabata, N. Tsumura, S.i. Goda, C.R. Martin, H. Yoneyama, J. Electrochem. Soc. 145 (1998) 1415, https://doi.org/10.1149/1.1838497. doi: 10.1149/1.1838497

    35. [35]

      P. Yu, J.A. Ritter, R.E. White, B.N. Popov, J. Electrochem. Soc. 147 (2000) 1280, https://doi.org/10.1149/1.1393350. doi: 10.1149/1.1393350

    36. [36]

      K. Kawabata, H. Yoshimatsu, E. Fujii, K. Hiragushi, A. Osaka, Y. Miura, J. Mater. Sci. Lett. 20 (2001) 851, https://doi.org/10.1023/A:1010970931622. doi: 10.1023/A:1010970931622

    37. [37]

      S.S. Zhang, K. Xu, T.R. Jow, Electrochem. Commun. 5 (2003) 979, https://doi.org/10.1016/j.elecom.2003.09.014. doi: 10.1016/j.elecom.2003.09.014

    38. [38]

      H.-L. Zhang, S. Liu, F. Li, S. Bai, C. Liu, J. Tan, H.M. Cheng, Carbon 44 (2006) 2212, https://doi.org/10.1016/j.carbon.2006.02.037. doi: 10.1016/j.carbon.2006.02.037

    39. [39]

      S. Yoon, H. Kim, S.M. Oh, J. Power Sources 94 (2001) 68, https://doi.org/10.1016/S0378-7753(00)00601-7. doi: 10.1016/S0378-7753(00)00601-7

    40. [40]

      C. Natarajan, H. Fujimoto, K. Tokumitsu, A. Mabuchi, T. Kasuh, Carbon 39 (2001) 1409, https://doi.org/10.1016/S0008-6223(00)00267-0. doi: 10.1016/S0008-6223(00)00267-0

    41. [41]

      B. Cao, M. Du, Z. Guo, H. Liu, C. Yan, A. Chen, X. Chen, C. Tang, J.-Q. Huang, Q. Zhang, Carbon Future 1 (2024) 9200017, https://doi.org/10.26599/CF.2024.9200017. doi: 10.26599/CF.2024.9200017

    42. [42]

      Z.-X. Zhao, H.-L. Zhu, W. Liu, Y.-X. Qi, T. Li, Y.-J. Bai, New J. Chem. 46 (2022) 7968, https://doi.org/10.1039/D2NJ00394E. doi: 10.1039/D2NJ00394E

    43. [43]

      F. Ding, W. Xu, D. Choi, W. Wang, X. Li, M.H. Engelhard, X. Chen, Z. Yang, J.-G. Zhang, J. Mater. Chem. 22 (2012) 12745, https://doi.org/10.1039/C2JM31015E. doi: 10.1039/C2JM31015E

    44. [44]

      H. Zeng, J. He, D. Fang, Y. Liang, R. Zhao, Y. Cai, D. Lu, Energy Technol. 7 (2019) 1801078, https://doi.org/10.1002/ente.201801078. doi: 10.1002/ente.201801078

    45. [45]

      W. Liang, Y. Zhao, L. Shi, Z. Wang, Y. Wang, M. Zhang, S. Yuan, Particuology 86 (2024) 67, https://doi.org/10.1016/j.partic.2023.05.001. doi: 10.1016/j.partic.2023.05.001

    46. [46]

      C. Wang, H. Zhao, J. Wang, J. Wang, P. Lv, Ionics 19 (2013) 221, https://doi.org/10.1007/s11581-012-0733-9. doi: 10.1007/s11581-012-0733-9

    47. [47]

      Y. Zhang, H. Huang, X. Chen, T. Gao, J. Li, Y. Yao, Z. Xu, M. Zheng, Z. Liu, Energy Fuel. 38 (2024) 23140, https://doi.org/10.1021/acs.energyfuels.4c04723. doi: 10.1021/acs.energyfuels.4c04723

    48. [48]

      Y. Ma, P. Qi, J. Ma, L. Wei, L. Zhao, J. Cheng, Y. Su, Y. Gu, Y. Lian, Y. Peng, Y. Shen, L. Chen, Z. Deng, Z. Liu, Adv. Sci. 8 (2021) 2100488, https://doi.org/10.1002/advs.202100488. doi: 10.1002/advs.202100488

    49. [49]

      C.-T. Hsieh, B.C. Mallick, Y.A. Gandomi, Y.-C. Huang, C.-C. Fu, R.-S. Juang, J.-K. Chang, Electrochim. Acta 423 (2022) 140605, https://doi.org/10.1016/j.electacta.2022.140605. doi: 10.1016/j.electacta.2022.140605

    50. [50]

      N. Kim, S. Chae, J. Ma, M. Ko, J. Cho, Nat. Commun. 8 (2017) 812, https://doi.org/10.1038/s41467-017-00973-y. doi: 10.1038/s41467-017-00973-y

    51. [51]

      J. Hou, B. Gong, C. Hou, W. B. Wang, D. Yang, X. Wang, Int. J. Electrochem. Sci. 14 (2019) 3455, https://doi.org/10.20964/2019.04.22. doi: 10.20964/2019.04.22

    52. [52]

      M. Hu, H. Wu, G.-J. Zhang, Chem. Phys. Lett. 833 (2023) 140917, https://doi.org/10.1016/j.cplett.2023.140917. doi: 10.1016/j.cplett.2023.140917

    53. [53]

      S.M. George, Chem. Rev. 110 (2010) 111, https://doi.org/10.1021/cr900056b. doi: 10.1021/cr900056b

    54. [54]

      S.M. Gowdru, Y.-C. Wu, T.-R. Liu, S.B. Patil, Z.-J. Li, H.-H. Hsieh, Z. Chen, C.-Y. Wen, D.-Y. Wang, J. Chin. Chem. Soc. 70 (2023) 2238, https://doi.org/10.1002/jccs.202300291. doi: 10.1002/jccs.202300291

    55. [55]

      A. Pearse, T. Schmitt, E. Sahadeo, D.M. Stewart, A. Kozen, K. Gerasopoulos, A.A. Talin, S.B. Lee, G.W. Rubloff, K.E. Gregorczyk, ACS Nano 12 (2018) 4286, https://doi.org/10.1021/acsnano.7b08751. doi: 10.1021/acsnano.7b08751

    56. [56]

      Y.S. Jung, A.S. Cavanagh, L.A. Riley, S.-H. Kang, A.C. Dillon, M.D. Groner, S.M. George, S.-H. Lee, Adv. Mater. 22 (2010) 2172, https://doi.org/10.1002/adma.200903951. doi: 10.1002/adma.200903951

    57. [57]

      E. Kazyak, K.-H. Chen, Y. Chen, T.H. Cho, N.P. Dasgupta, Adv. Energy Mater. 12 (2022) 2102618, https://doi.org/10.1002/aenm.202102618. doi: 10.1002/aenm.202102618

    58. [58]

      M. Audren-Paul, Y. Tison, H. Martinez, D. Peralta, G. Yildirim, F. Le Cras, M. Legallais, ACS Appl. Energy Mater. 8 (2025) 3392, https://doi.org/10.1021/acsaem.4c02930. doi: 10.1021/acsaem.4c02930

    59. [59]

      D.-L. Yang, R.-K. Liu, Y. Wei, Q. Sun, J.-X. Wang, Particuology 85 (2024) 22, https://doi.org/10.1016/j.partic.2023.03.013. doi: 10.1016/j.partic.2023.03.013

    60. [60]

      X. Rao, L. Zhang, B. Li, X. Zeng, W. Xiao, Y. Lou, H. Xie, H. Yan, Z. Yi, S. Zhong, Mater. Adv. 3 (2022) 8958, https://doi.org/10.1039/D2MA00820C. doi: 10.1039/D2MA00820C

    61. [61]

      X.B. Ding, Q.H. Huang, X.H. Xiong, Acta Phys. -Chim. Sin. 38 (2022) 202204057, https://doi.org/10.3866/PKU.WHXB202204057. doi: 10.3866/PKU.WHXB202204057

    62. [62]

      Y. Gao, J. Zhang, Y. Chen, C. Wang, Surf. Interfaces 24 (2021) 101089, https://doi.org/10.1016/j.surfin.2021.101089. doi: 10.1016/j.surfin.2021.101089

    63. [63]

      Y. Xiao, J. Li, W. Huang, L. Wang, J.J. Luo, Mater. Sci.: Mater. Electron. 33 (2022) 16740, https://doi.org/10.1007/s10854-022-08533-x. doi: 10.1007/s10854-022-08533-x

    64. [64]

      J.C. Abrego-Martinez, Y. Wang, V. Vanpeene, L. Roue, Carbon 209 (2023) 118004, https://doi.org/10.1016/j.carbon.2023.118004. doi: 10.1016/j.carbon.2023.118004

    65. [65]

      M.-L. Lee, Y.H. Li, S.-C. Liao, J.-M. Chen, J.-W. Yeh, H.C. Shih, Electrochim. Acta 112 (2013) 529, https://doi.org/10.1016/j.electacta.2013.08.150. doi: 10.1016/j.electacta.2013.08.150

    66. [66]

      J.H. Sung, T. Kim, S. Kim, F. Hasan, S.K. Mohanty, M.K. Srinivasa, S.C. Reddy, H.D. Yoo, Energies 16 (2023) 6141, https://doi.org/10.3390/en16176141. doi: 10.3390/en16176141

    67. [67]

      J.W. Lee, S.Y. Kim, D.Y. Rhee, S. Park, J.Y. Jung, M.-S. Park, ACS Appl. Mater. Interfaces 14 (2022) 29797, https://doi.org/10.1021/acsami.2c05583. doi: 10.1021/acsami.2c05583

    68. [68]

      C.-M. Chang, H.-F. Lin, S.-C. Liao, H.-T. Chiu, C.-E. Liu, H.-L. Guo, Int. J. Electrochem. Sci. 14 (2019) 1197, https://doi.org/10.20964/2019.02.49. doi: 10.20964/2019.02.49

    69. [69]

      S. Lee, J.W. Lee, W. Eom, Y.W. Jung, T.H. Han, Appl. Surf. Sci. 526 (2020) 146720, https://doi.org/10.1016/j.apsusc.2020.146720. doi: 10.1016/j.apsusc.2020.146720

    70. [70]

      S.-H. Park, H.J. Kim, J. Lee, Y.K. Jeong, J.W. Choi, H. Lee, ACS Appl. Mater. Interfaces 8 (2016) 13973, https://doi.org/10.1021/acsami.6b04109. doi: 10.1021/acsami.6b04109

    71. [71]

      S. Heng, X. Shan, W. Wang, Y. Wang, G. Zhu, Q. Qu, H. Zheng, Carbon 159 (2020) 390, https://doi.org/10.1016/j.carbon.2019.12.054. doi: 10.1016/j.carbon.2019.12.054

    72. [72]

      Q. Ma, M. Cao, Z. Fu, R. Wang, P. Xiong, K. Hua, L. Zhang, T. Zhou, H. Li, C. Zhang, ACS Appl. Mater. Interfaces 16 (2024) 35033, https://doi.org/10.1021/acsami.4c05191. doi: 10.1021/acsami.4c05191

    73. [73]

      W. Liu, H. Xu, H. Qin, Y. Lv, G. Zhu, X. Lei, F. Lin, Z. Zhang, L. Wang, J. Mater. Sci. 55 (2020) 4382, https://doi.org/10.1007/s10853-019-04313-x. doi: 10.1007/s10853-019-04313-x

    74. [74]

      J.H. Kim, B.R. Kim, J.S. Im, Korean, J. Chem. Eng. 40 (2023) 2839, https://doi.org/10.1007/s11814-023-1529-5. doi: 10.1007/s11814-023-1529-5

    75. [75]

      U.-S. Im, J.U. Hwang, J.H. Yun, W. Ahn, K.S. Kim, J.S. Im, Mater. Lett. 278 (2020) 128421, https://doi.org/10.1016/j.matlet.2020.128421. doi: 10.1016/j.matlet.2020.128421

    76. [76]

      Y.-S. Wu, Y.-H. Lee, Z.-W. Yang, Z.-Z. Guo, H.-C. Wu, J. Phys. Chem. Solid. 69 (2008) 376, https://doi.org/10.1016/j.jpcs.2007.07.010. doi: 10.1016/j.jpcs.2007.07.010

    77. [77]

      S. Huang, Q. Fan, X. Chen, Y. Wu, L. Liu, Z. Yu, J. Xu, J. Colloid Interface Sci. 676 (2024) 197, https://doi.org/10.1016/j.jcis.2024.07.101. doi: 10.1016/j.jcis.2024.07.101

    78. [78]

      M. Su, H. Wan, Y. Liu, W. Xiao, A. Dou, Z. Wang, H. Guo, Powder Technol. 323 (2018) 294, https://doi.org/10.1016/j.powtec.2017.09.005. doi: 10.1016/j.powtec.2017.09.005

    79. [79]

      T. Xu, W. Sun, T. Kong, J. Zhou, Y. Qian, Acta Phys. -Chim. Sin. 40 (2023) 202303021, https://doi.org/10.3866/PKU.WHXB202303021. doi: 10.3866/PKU.WHXB202303021

    80. [80]

      J. Peng, H. Tan, Z. Wu, Y. Tang, P. Liu, L. He, J. Yang, S. Hu, S. Wang, X. Wang, ACS Appl. Mater. Interfaces 15 (2023) 59552, https://doi.org/10.1021/acsami.3c15484. doi: 10.1021/acsami.3c15484

    81. [81]

      M. Yoshio, H. Wang, K. Fukuda, Angew. Chem. Int. Ed. 42 (2003) 4203, https://doi.org/10.1002/anie.200351203. doi: 10.1002/anie.200351203

    82. [82]

      W. Zhou, Y. Mo, P. Gao, K. Wang, J. Ke, Z. Liu, S. Chen, J. Liu, Adv. Funct. Mater. 34 (2024) 2312994, https://doi.org/10.1002/adfm.202312994. doi: 10.1002/adfm.202312994

    83. [83]

      X. Yi, G. Qi, X. Liu, C. Depcik, L. Liu, J. Energy Storage 95 (2024) 112480, https://doi.org/10.1016/j.est.2024.112480. doi: 10.1016/j.est.2024.112480

    84. [84]

      J.-H. Lin, C.-Y. Chen, Surf. Coat. Technol. 436 (2022) 128270, https://doi.org/10.1016/j.surfcoat.2022.128270. doi: 10.1016/j.surfcoat.2022.128270

    85. [85]

      W. Cai, C. Yan, Y.-X. Yao, L. Xu, R. Xu, L.-L. Jiang, J.-Q. Huang, Q. Zhang, Small Struct. 1 (2020) 2000010, https://doi.org/10.1002/sstr.202000010. doi: 10.1002/sstr.202000010

    86. [86]

      Y. Liu, H. Shi, Z.-S. Wu, Energy Environ. Sci. 16 (2023) 4834, https://doi.org/10.1039/D3EE02213G. doi: 10.1039/D3EE02213G

    87. [87]

      Y.-X. Yao, C. Yan, Q. Zhang, Chem. Commun. 56 (2020) 14570, https://doi.org/10.1039/D0CC05084A. doi: 10.1039/D0CC05084A

    88. [88]

      P. Xiao, Z. Wang, K. Long, J. Yang, X. Liu, C. Ling, L. Chen, L. Mei, RSC Adv. 14 (2024) 13277, https://doi.org/10.1039/d4ra01560f. doi: 10.1039/d4ra01560f

    89. [89]

      N. Gunawardhana, N. Dimov, M. Sasidharan, G.-J. Park, H. Nakamura, M. Yoshio, Electrochem. Commun. 13 (2011) 1116, https://doi.org/10.1016/j.elecom.2011.07.014. doi: 10.1016/j.elecom.2011.07.014

    90. [90]

      G. Park, N. Gunawardhana, H. Nakamura, Y. Lee, M. Yoshio, J. Power Sources 196 (2011) 9820, https://doi.org/10.1016/j.jpowsour.2011.07.006. doi: 10.1016/j.jpowsour.2011.07.006

    91. [91]

      J. Yue, Y. Zhu, J. Lv, Y. Wang, J. Cheng, X. Zhao, Chem. Eng. Sci. 297 (2024) 120302, https://doi.org/10.1016/j.ces.2024.120302. doi: 10.1016/j.ces.2024.120302

    92. [92]

      H. Li, H. Zhou, Chem. Commun. 48 (2012) 1201, https://doi.org/10.1039/C1CC14764A. doi: 10.1039/C1CC14764A

    93. [93]

      X. Liao, Z. Ding, Z. Yin, Ionics 26 (2020) 5367, https://doi.org/10.1007/s11581-020-03577-7. doi: 10.1007/s11581-020-03577-7

    94. [94]

      Y.-J. Han, J. Kim, J.-S. Yeo, J.C. An, I.-P. Hong, K. Nakabayashi, J. Miyawaki, J.-D. Jung, S.-H. Yoon, Carbon 94 (2015) 432, https://doi.org/10.1016/j.carbon.2015.07.030. doi: 10.1016/j.carbon.2015.07.030

    95. [95]

      H. Oka, H. Kadoura, N.T. Takahashi, T. Ikawa, J. Power Sources 543 (2022) 231850, https://doi.org/10.1016/j.jpowsour.2022.231850. doi: 10.1016/j.jpowsour.2022.231850

    96. [96]

      C. Shi, S. Zhang, Z. Jiang, H. Sun, C. Zhang, F. Xue, Powder Technol. 411 (2022) 117921, https://doi.org/10.1016/j.powtec.2022.117921. doi: 10.1016/j.powtec.2022.117921

    97. [97]

      Y. Hou, H. Guo, B. Xing, H. Zeng, W. Kang, X. Qu, C. Zhang, J. Jia, G. Huang, Y. Cao, Fuel 374 (2024) 132488, https://doi.org/10.1016/j.fuel.2024.132488. doi: 10.1016/j.fuel.2024.132488

    98. [98]

      Y. Ma, Y. Zheng, M. Xu, S. Huang, G. Yuan, JOM 75 (2023) 5321, https://doi.org/10.1007/s11837-023-05992-3. doi: 10.1007/s11837-023-05992-3

    99. [99]

      X.W. Liu, Y. Niu, R.X. Cao, X.H. Chen, H.Y. Shang, H.H. Song, Acta Phys. -Chim. Sin. 38 (2022) 202012062, https://doi.org/10.3866/PKU.WHXB202012062. doi: 10.3866/PKU.WHXB202012062

    100. [100]

      S. Bhattacharya, A.R. Riahi, A.T. Alpas, Carbon 77 (2014) 99, https://doi.org/10.1016/j.carbon.2014.05.011. doi: 10.1016/j.carbon.2014.05.011

    101. [101]

      D. Song, M.R. Jo, G.-H. Lee, J. Song, N.-S. Choi, Y.-M. Kang, J. Alloys Compd. 615 (2014) 220, https://doi.org/10.1016/j.jallcom.2014.06.158. doi: 10.1016/j.jallcom.2014.06.158

    102. [102]

      S. Yang, K. Yamamoto, X. Mei, A. Sakuda, T. Uchiyama, T. Watanabe, T. Takami, A. Hayashi, M. Tatsumisago, Y. Uchimoto, ACS Appl. Energy Mater. 5 (2022) 667, https://doi.org/10.1021/acsaem.1c03166. doi: 10.1021/acsaem.1c03166

    103. [103]

      S. Tu, B. Zhang, Y. Zhang, Z. Chen, X. Wang, R. Zhan, Y. Ou, W. Wang, X. Liu, X. Duan, L. Wang, Y. Sun, Nat. Energy 8 (2023) 1365, https://doi.org/10.1038/s41560-023-01387-5. doi: 10.1038/s41560-023-01387-5

    104. [104]

      Y. Huang, C. Wang, H. Lv, Y. Xie, S. Zhou, Y. Ye, E. Zhou, T. Zhu, H. Xie, W. Jiang, X. Wu, X. Kong, H. Jin, H. Ji, Adv. Mater. 36 (2024) 2308675, https://doi.org/10.1002/adma.202308675. doi: 10.1002/adma.202308675

    105. [105]

      C. Wang, Y. Xie, Y. Huang, S. Zhou, H. Xie, H. Jin, H. Ji, Angew. Chem. Int. Ed. 63 (2024) e202402301, https://doi.org/10.1002/anie.202402301. doi: 10.1002/anie.202402301

    106. [106]

      B. Moradi, D. Wang, G.G. Botte, J. Appl. Electrochem. 50 (2020) 321, https://doi.org/10.1007/s10800-019-01393-0. doi: 10.1007/s10800-019-01393-0

    107. [107]

      K.R. Tallman, S. Yan, C.D. Quilty, A. Abraham, A.H. McCarthy, A.C. Marschilok, K.J. Takeuchi, E.S. Takeuchi, D.C. Bock, J. Electrochem. Soc. 167 (2020) 160503, https://doi.org/10.1149/1945-7111/abcaba. doi: 10.1149/1945-7111/abcaba

    108. [108]

      F. Nobili, S. Dsoke, M. Mancini, R. Marassi, Fuel Cells 9 (2009) 264, https://doi.org/10.1002/fuce.200800087. doi: 10.1002/fuce.200800087

    109. [109]

      Y.S. Jung, A.S. Cavanagh, L. Gedvilas, N.E. Widjonarko, I.D. Scott, S.-H. Lee, G.-H. Kim, S.M. George, A.C. Dillon, Adv. Energy Mater. 2 (2012) 1022, https://doi.org/10.1002/aenm.201100750. doi: 10.1002/aenm.201100750

    110. [110]

      L. Shen, C. Xu, J. Gao, J. Tao, Q. Zhang, Y. Chen, Y. Lin, Z. Huang, J. Li, J. Energy Chem. 77 (2023) 348, https://doi.org/10.1016/j.jechem.2022.10.044. doi: 10.1016/j.jechem.2022.10.044

    111. [111]

      S.C. Jung, Y.-K. Han, J. Phys. Chem. Lett. 4 (2013) 2681, https://doi.org/10.1021/jz401231e. doi: 10.1021/jz401231e

    112. [112]

      T. Feng, Y. Xu, Z. Zhang, X. Du, X. Sun, L. Xiong, R. Rodriguez, R. Holze, ACS Appl. Mater. Interfaces 8 (2016) 6512, https://doi.org/10.1021/acsami.6b00231. doi: 10.1021/acsami.6b00231

    113. [113]

      D.S. Kim, Y.E. Kim, H. Kim, J. Power Sources 422 (2019) 18, https://doi.org/10.1016/j.jpowsour.2019.03.027. doi: 10.1016/j.jpowsour.2019.03.027

    114. [114]

      D.S. Kim, D.J. Chung, J. Bae, G. Jeong, H. Kim, Electrochim. Acta 258 (2017) 336, https://doi.org/10.1016/j.electacta.2017.11.056. doi: 10.1016/j.electacta.2017.11.056

    115. [115]

      D.Y. Rhee, J. Kim, J. Moon, M.-S. Park, J. Alloys Compd. 843 (2020) 156042, https://doi.org/10.1016/j.jallcom.2020.156042. doi: 10.1016/j.jallcom.2020.156042

    116. [116]

      S.-M. Lee, J. Kim, J. Moon, K.-N. Jung, J.H. Kim, G.-J. Park, J.-H. Choi, D.Y. Rhee, J.-S. Kim, J.-W. Lee, M.S. Park, Nat. Commun. 12 (2021) 39, https://doi.org/10.1038/s41467-020-20297-8. doi: 10.1038/s41467-020-20297-8

    117. [117]

      F. Wang, S. Lin, X. Lu, R. Hong, H. Liu, Electrochim. Acta 404 (2022) 139708, https://doi.org/10.1016/j.electacta.2021.139708. doi: 10.1016/j.electacta.2021.139708

    118. [118]

      Y. Zhai, Z. Zhong, N. Kuang, Q. Li, T. Xu, J. He, H. Li, X. Yin, Y. Jia, Q. He, S. Wu, Q. Yang, J. Am. Chem. Soc. 146 (2024) 15209, https://doi.org/10.1021/jacs.4c02115. doi: 10.1021/jacs.4c02115

    119. [119]

      Q. Shi, W. Liu, Q. Qu, T. Gao, Y. Wang, G. Liu, V.S. Battaglia, H. Zheng, Carbon 111 (2017) 291, https://doi.org/10.1016/j.carbon.2016.10.008. doi: 10.1016/j.carbon.2016.10.008

    120. [120]

      S. Heng, Q. Shi, Y. Wang, Q. Qu, J. Zhang, G. Zhu, H. Zheng, ACS Appl. Energy Mater. 2 (2019) 1336, https://doi.org/10.1021/acsaem.8b01912. doi: 10.1021/acsaem.8b01912

    121. [121]

      Q. Wang, J. Yang, X. Huang, Z. Zhai, J. Tang, J. You, C. Shi, W. Li, P. Dai, W. Zheng, L. Huang, S. Sun, Adv. Energy Mater. 12 (2022) 2103972, https://doi.org/10.1002/aenm.202103972. doi: 10.1002/aenm.202103972

    122. [122]

      Q. Shi, S. Heng, Q. Qu, T. Gao, W. Liu, L. Hang, H. Zheng, J. Mater. Chem. A 5 (2017) 10885, https://doi.org/10.1039/C7TA02706K. doi: 10.1039/C7TA02706K

    123. [123]

      J. Luo, C.-E. Wu, L.-Y. Su, S.-S. Huang, C.-C. Fang, Y.-S. Wu, J. Chou, N.-L. Wu, J. Power Sources 406 (2018) 63, https://doi.org/10.1016/j.jpowsour.2018.10.002. doi: 10.1016/j.jpowsour.2018.10.002

    124. [124]

      W. Cao, J. Lu, K. Zhou, G. Sun, J. Zheng, Z. Geng, H. Li, Nano Energy 95 (2022) 106983, https://doi.org/10.1016/j.nanoen.2022.106983. doi: 10.1016/j.nanoen.2022.106983

    125. [125]

      F.-S. Li, Y.-S. Wu, J. Chou, M. Winter, N.-L. Wu, Adv. Mater. 27 (2015) 130, https://doi.org/10.1002/adma.201403880. doi: 10.1002/adma.201403880

    126. [126]

      J. Zhou, K. Ma, X. Lian, Q. Shi, J. Wang, Z. Chen, L. Guo, Y. Liu, A. Bachmatiuk, J. Sun, R. Yang, J. Choi, M. Rümmeli, Small 18 (2022) 2107460, https://doi.org/10.1002/smll.202107460. doi: 10.1002/smll.202107460

    127. [127]

      H. Da, S. Pan, J. Li, J. Huang, X. Yuan, H. Dong, J. Liu, H. Zhang, Energy Storage Mater. 56 (2023) 457, https://doi.org/10.1016/j.ensm.2023.01.038. doi: 10.1016/j.ensm.2023.01.038

  • 加载中
计量
  • PDF下载量:  2
  • 文章访问数:  34
  • HTML全文浏览量:  12
文章相关
  • 发布日期:  2025-09-15
  • 收稿日期:  2025-03-05
  • 接受日期:  2025-04-18
  • 修回日期:  2025-04-11
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

/

返回文章