Citation:
Fanpeng Meng, Fei Zhao, Jingkai Lin, Jinsheng Zhao, Huayang Zhang, Shaobin Wang. 优化氮化碳纳米片/球形共轭聚合物S型异质结界面电场以促进析氢反应[J]. Acta Physico-Chimica Sinica,
;2025, 41(8): 100095.
doi:
10.1016/j.actphy.2025.100095
-
基于氮化碳设计异质结是提升光催化效率的有效途径。本研究通过简便高效的球磨技术,构建了由氮化碳纳米片(GCNNS)与供体-受体共轭聚合物(聚对氨基亚苄基异苯胺,PASO)组成的全有机S型无金属异质结。该异质结展现出优异的光催化产氢性能,优化后的GCNNS/PASO-10样品的产氢速率达到10.12 mmol·g-1·h-1,分别是GCNNS和PASO的5.9倍和19.5倍。这种提升源于独特的界面结合作用、增强的可见光吸收能力以及S型异质结强内建电场促进的高效电荷分离。理论计算与表征结果表明,该异质结的S型机制实现了能带最优匹配并推动了空间电荷的有效分离,从而显著提升了光催化活性。本工作揭示了全有机材料在异质结构建中的独特优势,为设计先进S型体系以实现可持续能源转化提供了新思路。
-
-
-
[1]
X. Wu, L. Tan, G. Chen, J. Kang, G. Wang, Sci. China Mater, 67 (2024) 444, https://doi.org/10.1007/s40843-023-2755-2.
-
[2]
X.H. Wu, G.Q. Chen, J. Wang, J. Li, G. Wang, Acta Phys. Chim. Sin, 39 (2023) 221201, https://doi.org/10.3866/PKU.WHXB202212016.
-
[3]
S. Wan, W. Wang, B. Cheng, G. Luo, Q. Shen, J. Yu, J. Zhang, S. Cao, L. Zhang, Nat. Commun, 15 (2024) 9612, https://doi.org/10.1038/s41467-024-53951-6.
-
[4]
G. Zhang, Z.A. Lan, X. Wang, Angew. Chem. Int. Ed, 55 (2016) 15712, https://doi.org/10.1002/anie.201607375.
-
[5]
C. Sun, H. Zhang, H. Liu, X. Zheng, W. Zou, L. Dong, L. Qi, Appl. Catal. B Environ, 235 (2018) 66, https://doi.org/10.1016/j.apcatb.2018.04.050.
-
[6]
F. Yu, Z. Wang, S. Zhang, K. Yun, H. Ye, X. Gong, J. Hua, H. Tian, Appl. Catal. B Environ, 237 (2018) 32, https://doi.org/10.1016/j.apcatb.2018.05.045.
-
[7]
K. Sridharan, E. Jang, T.J. Park, Appl. Catal. B Environ, 142-143 (2013) 718, https://doi.org/10.1016/j.apcatb.2013.05.077.
-
[8]
M. Gu, J. Zhang, I.V. Kurganskii, A.S. Poryvaev, M.V. Fedin, B. Cheng, J. Yu, L. Zhang, Adv. Mater, 37 (2025) 2414803, https://doi.org/10.1002/adma.202414803.
-
[9]
Q. Xu, L. Zhang, B. Cheng, J. Fan, J. Yu, Chem, 6 (2020) 1543, https://doi.org/10.1016/j.chempr.2020.06.010.
-
[10]
L. Zhang, J. Zhang, J. Yu, H. García, Nat. Rev. Chem, (2025) 1, https://doi.org/10.1038/s41570-025-00698-3.
-
[11]
W. Yu, C. Bie, Acta Phys. Chim. Sin, 40 (2024) 2307022, https://doi.org/10.3866/PKU.WHXB202307022.
-
[12]
J. Cai, B. Liu, S. Zhang, L. Wang, Z. Wu, J. Zhang, B. Cheng, J. Mater. Sci. Technol, 197 (2024) 183, https://doi.org/10.1016/j.jmst.2024.02.012.
-
[13]
J. Cheng, S. Gao, B. Cheng, K. Yang, W. Wang, S. Cao, Acta Phys. Chim. Sin, 40 (2024) 2406026, https://doi.org/10.3866/PKU.WHXB202406026.
-
[14]
S. Mao, R. He, S. Song, Chinese J. Catal, 64 (2024) 1, https://doi.org/10.1016/S1872-2067(24)60102-6.
-
[15]
J. Yan, L. Wei, Acta Phys. Chim. Sin, 40 (2024) 2312024, https://doi.org/10.3866/PKU.WHXB202312024.
-
[16]
M. Gu, Y. Yang, B. Cheng, L. Zhang, P. Xiao, T. Chen, Chinese J. Catal, 59 (2024) 185, https://doi.org/10.1016/S1872-2067(23)64610-8.
-
[17]
S. Zhou, D. Wen, W. Zhong, J. Zhang, Y. Su, A. Meng, J. Mater. Sci. Technol, 199 (2024) 53, https://doi.org/10.1016/j.jmst.2024.02.048.
-
[18]
S. Cao, B. Zhong, C. Bie, B. Cheng, F. Xu, Acta Phys. Chim. Sin, 40 (2024) 2307016, https://doi.org/10.3866/PKU.WHXB202307016.
-
[19]
P. Li, Y. Cui, Z. Wang, G. Dawson, C. Shao, K. Dai, Acta Phys. Chim. Sin, 41 (2025) 100065, https://doi.org/10.1016/j.actphy.2025.100065.
-
[20]
H. He, Z. Wang, J. Zhang, C. Shao, K. Dai, K. Fan, Adv. Funct. Mater, 34 (2024) 2315426, https://doi.org/10.1002/adfm.202315426.
-
[21]
K. Li, C. Liu, J. Li, G. Wang, K. Wang, Acta Phys. Chim. Sin, 40 (2024) 2403009, https://doi.org/10.3866/PKU.WHXB202403009.
-
[22]
T. Yang, J. Wang, Z. Wang, J. Zhang, K. Dai, Chinese J. Catal, 58 (2024) 157, https://doi.org/10.1016/S1872-2067(23)64607-8.
-
[23]
Y. Liu, C. Chen, G. Dawson, J. Zhang, C. Shao, K. Dai, J. Mater. Sci. Technol, 233 (2025) 10, https://doi.org/10.1016/j.jmst.2024.12.094.
-
[24]
J. Wang, S. Wang, Coord. Chem. Rev., 453 (2022) 214338, https://doi.org/10.1016/j.ccr.2021.214338.
-
[25]
N. Chaoui, M. Trunk, R. Dawson, J. Schmidt, A. Thomas, Chem. Soc. Rev, 46 (2017) 3302, https://doi.org/10.1039/C7CS00071E.
-
[26]
J. Zhu, S. Zhang, R. He, Chinese J. Catal, 59 (2024) 4, https://doi.org/10.1016/S1872-2067(24)60011-2.
-
[27]
R.S. Sprick, J.X. Jiang, B. Bonillo, S. Ren, T. Ratvijitvech, P. Guiglion, M.A. Zwijnenburg, D.J. Adams, A.I. Cooper, J. Am. Chem. Soc, 137 (2015) 3265, https://doi.org/10.1021/ja511552k.
-
[28]
F. Guo, B. Hu, C. Yang, J. Zhang, Y. Hou, X. Wang, Adv. Mater, 33 (2021) 2101466, https://doi.org/10.1002/adma.202101466.
-
[29]
P. Dong, A. Zhang, J. Pan, K. Gao, Z. Wang, X. Xi, Appl. Surf. Sci, 615 (2023) 156414, https://doi.org/10.1016/j.apsusc.2023.156414.
-
[30]
F. Lan, Q. Wang, H. Chen, Y. Chen, Y. Zhang, B. Huang, H. Liu, J. Liu, R. Li, ACS Catal, 10 (2020) 12976, https://doi.org/10.1021/acscatal.0c03652.
-
[31]
Z. Zhu, X. Xing, Q. Qi, W. Shen, H. Wu, D. Li, B. Li, J. Liang, X. Tang, J. Zhao, H. Li, P. Huo, Chinese J. Struc. Chem, 42 (2023) 100194, https://doi.org/10.1016/j.cjsc.2023.100194.
-
[32]
F. Meng, W. Tian, Z. Tian, X. Tan, H. Zhang, S. Wang, Sci. Total Environ, 851 (2022) 158360, https://doi.org/10.1016/j.scitotenv.2022.158360.
-
[33]
J. Wang, G. Wang, B. Cheng, J. Yu, J. Fan, Chinese J. Catal, 42 (2021) 56, https://doi.org/10.1016/S1872-2067(20)63634-8.
-
[34]
Y. Chen, D. Yang, B. Shi, W. Dai, H. Ren, K. An, Z. Zhou, Z. Zhao, W. Wang, Z. Jiang, J. Mater. Chem. A, 8 (2020) 7724, https://doi.org/10.1039/D0TA00901F.
-
[35]
B. Liu, D.M. Lv, Y.L. Wang, W.Y. Li, Y.W. Sun, Z.W. Li, Langmuir, 40 (2024) 6363, https://doi.org/10.1021/acs.langmuir.3c03910.
-
[36]
F. Yu, Z. Wang, S. Zhang, H. Ye, K. Kong, X. Gong, J. Hua, H. Tian, Adv. Funct. Mater, 28 (2018) 1804512, https://doi.org/10.1002/adfm.201804512.
-
[37]
Q. Du, Y. Wei, J. Zheng, C. Xu, Electrochim. Acta, 132 (2014) 258, https://doi.org/10.1016/j.electacta.2014.03.172.
-
[38]
Y. Liu, J. Wu, F. Wang, Appl. Catal. B Environ, 307 (2022) 121144, https://doi.org/10.1016/j.apcatb.2022.121144.
-
[39]
M. Samal, S. Valligatla, N.A. Saad, M.V. Rao, D.N. Rao, R. Sahu, B.P. Biswal, ChemComm, 55 (2019) 11025, https://doi.org/10.1039/C9CC05415D.
-
[40]
W. Zhou, T. Jia, D. Zhang, Z. Zheng, W. Hong, X. Chen, Appl. Catal. B Environ, 259 (2019) 118067, https://doi.org/10.1016/j.apcatb.2019.118067.
-
[41]
L. Chen, X. Liang, H. Wang, Q. Xiao, X. Qiu, Chem. Eng. J., 442 (2022) 136115, https://doi.org/10.1016/j.cej.2022.136115.
-
[42]
F. Yu, Z. Zhu, S. Wang, J. Wang, Z. Xu, F. Song, Z. Dong, Z. Zhang, Appl. Catal. B Environ, 301 (2022) 120819, https://doi.org/10.1016/j.apcatb.2021.120819.
-
[43]
K. Li, W.D. Zhang, Small, 14 (2018) 1703599, https://doi.org/10.1002/smll.201703599.
-
[44]
Z. Jin, J. Li, D. Liu, Y. Sun, X. Li, Q. Cai, H. Ding, J. Gui, Sep. Purif. Technol, 284 (2022) 120207, https://doi.org/10.1016/j.seppur.2021.120207.
-
[45]
A.M. Elewa, A.F.M. El-Mahdy, A.E. Hassan, Z. Wen, J. Jayakumar, T.L. Lee, L.Y. Ting, I.M.A. Mekhemer, T.F. Huang, M.H. Elsayed, C.L. Chang, W.C. Lin, H.H. Chou, J. Mater. Chem. A, 10 (2022) 12378, https://doi.org/10.1039/D2TA00328G.
-
[46]
C. Wang, C. Yang, J. Qin, S. Rajendran, X. Zhang, Mater. Chem. Phys, 275 (2022) 125299, https://doi.org/10.1016/j.matchemphys.2021.125299.
-
[47]
Q. Sheng, Y. Du, Y. Dong, J. Zhao, X. Zhong, Y. Xie, Appl. Surf. Sci, 603 (2022) 154425, https://doi.org/10.1016/j.apsusc.2022.154425.
-
[48]
S. Ni, H. Qu, H. Xing, Z. Xu, X. Zhu, M. Yuan, M. Rong, L. Wang, J. Yu, Y. Li, L. Yang, H. Liu, Chin. J. Chem. Eng., 41 (2022) 320, https://doi.org/10.1016/j.cjche.2021.09.026.
-
[49]
S. Xiao, X. Li, W. Zhang, Y. Xiang, T. Li, X. Niu, J.S. Chen, Q. Yan, ACS Nano, 15 (2021) 13307, https://doi.org/10.1021/acsnano.1c03056.
-
[50]
M. Chandra, U. Guharoy, D. Pradhan, ACS Appl. Mater. Interfaces, 14 (2022) 22122, https://doi.org/10.1021/acsami.2c03230.
-
[51]
P. Dong, A. Zhang, T. Cheng, J. Pan, J. Song, L. Zhang, R. Guan, X. Xi, J. Zhang, Chinese J. Catal, 43 (2022) 2592, https://doi.org/10.1016/S1872-2067(22)64094-4.
-
[52]
M. Tan, Y. Ma, C. Yu, Q. Luan, J. Li, C. Liu, W. Dong, Y. Su, L. Qiao, L. Gao, Q. Lu, Y. Bai, Adv. Funct. Mater, 32 (2021) 2111740, https://doi.org/10.1002/adfm.202111740.
-
[53]
Y. Wu, Y. Chen, D. Li, D. Sajjad, Y. Chen, Y. Sun, S. Liu, J. Shi, Z. Jiang, Appl. Catal. B Environ, 309 (2022) 121261, https://doi.org/10.1016/j.apcatb.2022.121261.
-
[54]
M. Qureshi, K. Takanabe, Chem. Mater., 29 (2017) 158, https://doi.org/10.1021/acs.chemmater.6b02907.
-
[55]
S. Cao, L. Piao, Angew. Chem. Int. Ed, 59 (2020) 18312, https://doi.org/10.1002/anie.202009633.
-
[56]
G. Kresse, J. Furthmüller, Phys. Rev B, 54 (1996) 11169, https://doi.org/10.1103/PhysRevB.54.11169.
-
[57]
I.M. Sundaram, S. Kalimuthu, G.P. P, K. Sekar, S. Rajendran, Int. J. Hydrog. Energy, 47 (2022) 3709, https://doi.org/10.1016/j.ijhydene.2021.10.261.
-
[58]
F. Jing, Y. Guo, B. Li, Y.F. Chen, C. Jia, J. Li, Chinese Chem. Lett, 33 (2022) 1303, https://doi.org/10.1016/j.cclet.2021.07.056.
-
[59]
C. Cheng, B. He, J. Fan, B. Cheng, S. Cao, J. Yu, Adv Mater, 33 (2021) 2100317, https://doi.org/10.1002/adma.202100317.
-
[60]
J. Tao, X. Yu, Q. Liu, G. Liu, H. Tang, J. Colloid Interface Sci, 585 (2021) 470, https://doi.org/10.1016/j.jcis.2020.10.028.
-
[1]
-
-
-
[1]
Chenye An , Abiduweili Sikandaier , Xue Guo , Yukun Zhu , Hua Tang , Dongjiang Yang . 红磷纳米颗粒嵌入花状CeO2分级S型异质结高效光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2405019-. doi: 10.3866/PKU.WHXB202405019
-
[2]
Jiajie Cai , Chang Cheng , Bowen Liu , Jianjun Zhang , Chuanjia Jiang , Bei Cheng . CdS/DBTSO-BDTO S型异质结光催化制氢及其电荷转移动力学. Acta Physico-Chimica Sinica, 2025, 41(8): 100084-. doi: 10.1016/j.actphy.2025.100084
-
[3]
You Wu , Chang Cheng , Kezhen Qi , Bei Cheng , Jianjun Zhang , Jiaguo Yu , Liuyang Zhang . ZnO/D-A共轭聚合物S型异质结高效光催化产H2O2及其电荷转移动力学研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-. doi: 10.3866/PKU.WHXB202406027
-
[4]
Xinyu Miao , Hao Yang , Jie He , Jing Wang , Zhiliang Jin . Adjusting the electronic structure of Keggin-type polyoxometalates to construct S-scheme heterojunction for photocatalytic hydrogen evolution. Acta Physico-Chimica Sinica, 2025, 41(6): 100051-. doi: 10.1016/j.actphy.2025.100051
-
[5]
Kaihui Huang , Dejun Chen , Xin Zhang , Rongchen Shen , Peng Zhang , Difa Xu , Xin Li . Constructing Covalent Triazine Frameworks/N-Doped Carbon-Coated Cu2O S-Scheme Heterojunctions for Boosting Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(12): 2407020-. doi: 10.3866/PKU.WHXB202407020
-
[6]
Jiaxing Cai , Wendi Xu , Haoqiang Chi , Qian Liu , Wa Gao , Li Shi , Jingxiang Low , Zhigang Zou , Yong Zhou . 具有0D/2D界面的InOOH/ZnIn2S4空心球S型异质结用于增强光催化CO2转化性能. Acta Physico-Chimica Sinica, 2024, 40(11): 2407002-. doi: 10.3866/PKU.WHXB202407002
-
[7]
Weikang Wang , Yadong Wu , Jianjun Zhang , Kai Meng , Jinhe Li , Lele Wang , Qinqin Liu . 三聚氰胺泡沫支撑的S型硫铟锌镉/硫掺杂氮化碳异质结的绿色H2O2合成:协同界面电荷转移调控与局域光热效应. Acta Physico-Chimica Sinica, 2025, 41(8): 100093-. doi: 10.1016/j.actphy.2025.100093
-
[8]
Changjun You , Chunchun Wang , Mingjie Cai , Yanping Liu , Baikang Zhu , Shijie Li . 引入内建电场强化BiOBr/C3N5 S型异质结中光载流子分离以实现高效催化降解微污染物. Acta Physico-Chimica Sinica, 2024, 40(11): 2407014-. doi: 10.3866/PKU.WHXB202407014
-
[9]
Guoqiang Chen , Zixuan Zheng , Wei Zhong , Guohong Wang , Xinhe Wu . 熔融中间体运输导向合成富氨基g-C3N4纳米片用于高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406021-. doi: 10.3866/PKU.WHXB202406021
-
[10]
Jingzhao Cheng , Shiyu Gao , Bei Cheng , Kai Yang , Wang Wang , Shaowen Cao . 4-氨基-1H-咪唑-5-甲腈修饰供体-受体型氮化碳光催化剂的构建及其高效光催化产氢研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406026-. doi: 10.3866/PKU.WHXB202406026
-
[11]
Yuejiao An , Wenxuan Liu , Yanfeng Zhang , Jianjun Zhang , Zhansheng Lu . Revealing Photoinduced Charge Transfer Mechanism of SnO2/BiOBr S-Scheme Heterostructure for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2407021-. doi: 10.3866/PKU.WHXB202407021
-
[12]
Xiutao Xu , Chunfeng Shao , Jinfeng Zhang , Zhongliao Wang , Kai Dai . Rational Design of S-Scheme CeO2/Bi2MoO6 Microsphere Heterojunction for Efficient Photocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309031-. doi: 10.3866/PKU.WHXB202309031
-
[13]
Shijie Li , Ke Rong , Xiaoqin Wang , Chuqi Shen , Fang Yang , Qinghong Zhang . Design of Carbon Quantum Dots/CdS/Ta3N5 S-Scheme Heterojunction Nanofibers for Efficient Photocatalytic Antibiotic Removal. Acta Physico-Chimica Sinica, 2024, 40(12): 2403005-. doi: 10.3866/PKU.WHXB202403005
-
[14]
Jianyu Qin , Yuejiao An , Yanfeng Zhang . In Situ Assembled ZnWO4/g-C3N4 S-Scheme Heterojunction with Nitrogen Defect for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2408002-. doi: 10.3866/PKU.WHXB202408002
-
[15]
Jinwang Wu , Qijing Xie , Chengliang Zhang , Haifeng Shi . 自旋极化增强ZnFe1.2Co0.8O4/BiVO4 S型异质结光催化性能降解四环素. Acta Physico-Chimica Sinica, 2025, 41(5): 100050-. doi: 10.1016/j.actphy.2025.100050
-
[16]
Peng Li , Yuanying Cui , Zhongliao Wang , Graham Dawson , Chunfeng Shao , Kai Dai . Efficient interfacial charge transfer of CeO2/Bi19Br3S27 S-scheme heterojunction for boosted photocatalytic CO2 reduction. Acta Physico-Chimica Sinica, 2025, 41(6): 100065-. doi: 10.1016/j.actphy.2025.100065
-
[17]
Kexin Dong , Chuqi Shen , Ruyu Yan , Yanping Liu , Chunqiang Zhuang , Shijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-. doi: 10.3866/PKU.WHXB202310013
-
[18]
Tieping CAO , Yuejun LI , Dawei SUN . Surface plasmon resonance effect enhanced photocatalytic CO2 reduction performance of S-scheme Bi2S3/TiO2 heterojunction. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 903-912. doi: 10.11862/CJIC.20240366
-
[19]
Yang Xia , Kangyan Zhang , Heng Yang , Lijuan Shi , Qun Yi . 构建双通道路径增强iCOF/Bi2O3 S型异质结在纯水体系中光催化合成H2O2性能. Acta Physico-Chimica Sinica, 2024, 40(11): 2407012-. doi: 10.3866/PKU.WHXB202407012
-
[20]
Ke Li , Chuang Liu , Jingping Li , Guohong Wang , Kai Wang . 钛酸铋/氮化碳无机有机复合S型异质结纯水光催化产过氧化氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-. doi: 10.3866/PKU.WHXB202403009
-
[1]
Metrics
- PDF Downloads(0)
- Abstract views(122)
- HTML views(9)