Citation: Fanpeng Meng,  Fei Zhao,  Jingkai Lin,  Jinsheng Zhao,  Huayang Zhang,  Shaobin Wang. 优化氮化碳纳米片/球形共轭聚合物S型异质结界面电场以促进析氢反应[J]. Acta Physico-Chimica Sinica, ;2025, 41(8): 100095. doi: 10.1016/j.actphy.2025.100095 shu

优化氮化碳纳米片/球形共轭聚合物S型异质结界面电场以促进析氢反应

  • Received Date: 18 March 2025
    Revised Date: 2 April 2025
    Accepted Date: 15 April 2025

    Fund Project: This work was funded by the National Natural Science Foundation of China (22302085, 22172069), the Natural Science Foundation of Shandong Province (ZR2024QB046, ZR2021ME071) and the Research Projects of Liaocheng University (318052272). H. Zhang and S. Wang acknowledges the support from Discovery Project (DP230102406, DP240102787), and Australian Laureate Fellowships (FL230100178) from the Australian Research Council.

  • 基于氮化碳设计异质结是提升光催化效率的有效途径。本研究通过简便高效的球磨技术,构建了由氮化碳纳米片(GCNNS)与供体-受体共轭聚合物(聚对氨基亚苄基异苯胺,PASO)组成的全有机S型无金属异质结。该异质结展现出优异的光催化产氢性能,优化后的GCNNS/PASO-10样品的产氢速率达到10.12 mmol·g-1·h-1,分别是GCNNS和PASO的5.9倍和19.5倍。这种提升源于独特的界面结合作用、增强的可见光吸收能力以及S型异质结强内建电场促进的高效电荷分离。理论计算与表征结果表明,该异质结的S型机制实现了能带最优匹配并推动了空间电荷的有效分离,从而显著提升了光催化活性。本工作揭示了全有机材料在异质结构建中的独特优势,为设计先进S型体系以实现可持续能源转化提供了新思路。
  • 加载中
    1. [1]

      X. Wu, L. Tan, G. Chen, J. Kang, G. Wang, Sci. China Mater, 67 (2024) 444, https://doi.org/10.1007/s40843-023-2755-2.

    2. [2]

      X.H. Wu, G.Q. Chen, J. Wang, J. Li, G. Wang, Acta Phys. Chim. Sin, 39 (2023) 221201, https://doi.org/10.3866/PKU.WHXB202212016.

    3. [3]

      S. Wan, W. Wang, B. Cheng, G. Luo, Q. Shen, J. Yu, J. Zhang, S. Cao, L. Zhang, Nat. Commun, 15 (2024) 9612, https://doi.org/10.1038/s41467-024-53951-6.

    4. [4]

      G. Zhang, Z.A. Lan, X. Wang, Angew. Chem. Int. Ed, 55 (2016) 15712, https://doi.org/10.1002/anie.201607375.

    5. [5]

      C. Sun, H. Zhang, H. Liu, X. Zheng, W. Zou, L. Dong, L. Qi, Appl. Catal. B Environ, 235 (2018) 66, https://doi.org/10.1016/j.apcatb.2018.04.050.

    6. [6]

      F. Yu, Z. Wang, S. Zhang, K. Yun, H. Ye, X. Gong, J. Hua, H. Tian, Appl. Catal. B Environ, 237 (2018) 32, https://doi.org/10.1016/j.apcatb.2018.05.045.

    7. [7]

      K. Sridharan, E. Jang, T.J. Park, Appl. Catal. B Environ, 142-143 (2013) 718, https://doi.org/10.1016/j.apcatb.2013.05.077.

    8. [8]

      M. Gu, J. Zhang, I.V. Kurganskii, A.S. Poryvaev, M.V. Fedin, B. Cheng, J. Yu, L. Zhang, Adv. Mater, 37 (2025) 2414803, https://doi.org/10.1002/adma.202414803.

    9. [9]

      Q. Xu, L. Zhang, B. Cheng, J. Fan, J. Yu, Chem, 6 (2020) 1543, https://doi.org/10.1016/j.chempr.2020.06.010.

    10. [10]

      L. Zhang, J. Zhang, J. Yu, H. García, Nat. Rev. Chem, (2025) 1, https://doi.org/10.1038/s41570-025-00698-3.

    11. [11]

      W. Yu, C. Bie, Acta Phys. Chim. Sin, 40 (2024) 2307022, https://doi.org/10.3866/PKU.WHXB202307022.

    12. [12]

      J. Cai, B. Liu, S. Zhang, L. Wang, Z. Wu, J. Zhang, B. Cheng, J. Mater. Sci. Technol, 197 (2024) 183, https://doi.org/10.1016/j.jmst.2024.02.012.

    13. [13]

      J. Cheng, S. Gao, B. Cheng, K. Yang, W. Wang, S. Cao, Acta Phys. Chim. Sin, 40 (2024) 2406026, https://doi.org/10.3866/PKU.WHXB202406026.

    14. [14]

      S. Mao, R. He, S. Song, Chinese J. Catal, 64 (2024) 1, https://doi.org/10.1016/S1872-2067(24)60102-6.

    15. [15]

      J. Yan, L. Wei, Acta Phys. Chim. Sin, 40 (2024) 2312024, https://doi.org/10.3866/PKU.WHXB202312024.

    16. [16]

      M. Gu, Y. Yang, B. Cheng, L. Zhang, P. Xiao, T. Chen, Chinese J. Catal, 59 (2024) 185, https://doi.org/10.1016/S1872-2067(23)64610-8.

    17. [17]

      S. Zhou, D. Wen, W. Zhong, J. Zhang, Y. Su, A. Meng, J. Mater. Sci. Technol, 199 (2024) 53, https://doi.org/10.1016/j.jmst.2024.02.048.

    18. [18]

      S. Cao, B. Zhong, C. Bie, B. Cheng, F. Xu, Acta Phys. Chim. Sin, 40 (2024) 2307016, https://doi.org/10.3866/PKU.WHXB202307016.

    19. [19]

      P. Li, Y. Cui, Z. Wang, G. Dawson, C. Shao, K. Dai, Acta Phys. Chim. Sin, 41 (2025) 100065, https://doi.org/10.1016/j.actphy.2025.100065.

    20. [20]

      H. He, Z. Wang, J. Zhang, C. Shao, K. Dai, K. Fan, Adv. Funct. Mater, 34 (2024) 2315426, https://doi.org/10.1002/adfm.202315426.

    21. [21]

      K. Li, C. Liu, J. Li, G. Wang, K. Wang, Acta Phys. Chim. Sin, 40 (2024) 2403009, https://doi.org/10.3866/PKU.WHXB202403009.

    22. [22]

      T. Yang, J. Wang, Z. Wang, J. Zhang, K. Dai, Chinese J. Catal, 58 (2024) 157, https://doi.org/10.1016/S1872-2067(23)64607-8.

    23. [23]

      Y. Liu, C. Chen, G. Dawson, J. Zhang, C. Shao, K. Dai, J. Mater. Sci. Technol, 233 (2025) 10, https://doi.org/10.1016/j.jmst.2024.12.094.

    24. [24]

      J. Wang, S. Wang, Coord. Chem. Rev., 453 (2022) 214338, https://doi.org/10.1016/j.ccr.2021.214338.

    25. [25]

      N. Chaoui, M. Trunk, R. Dawson, J. Schmidt, A. Thomas, Chem. Soc. Rev, 46 (2017) 3302, https://doi.org/10.1039/C7CS00071E.

    26. [26]

      J. Zhu, S. Zhang, R. He, Chinese J. Catal, 59 (2024) 4, https://doi.org/10.1016/S1872-2067(24)60011-2.

    27. [27]

      R.S. Sprick, J.X. Jiang, B. Bonillo, S. Ren, T. Ratvijitvech, P. Guiglion, M.A. Zwijnenburg, D.J. Adams, A.I. Cooper, J. Am. Chem. Soc, 137 (2015) 3265, https://doi.org/10.1021/ja511552k.

    28. [28]

      F. Guo, B. Hu, C. Yang, J. Zhang, Y. Hou, X. Wang, Adv. Mater, 33 (2021) 2101466, https://doi.org/10.1002/adma.202101466.

    29. [29]

      P. Dong, A. Zhang, J. Pan, K. Gao, Z. Wang, X. Xi, Appl. Surf. Sci, 615 (2023) 156414, https://doi.org/10.1016/j.apsusc.2023.156414.

    30. [30]

      F. Lan, Q. Wang, H. Chen, Y. Chen, Y. Zhang, B. Huang, H. Liu, J. Liu, R. Li, ACS Catal, 10 (2020) 12976, https://doi.org/10.1021/acscatal.0c03652.

    31. [31]

      Z. Zhu, X. Xing, Q. Qi, W. Shen, H. Wu, D. Li, B. Li, J. Liang, X. Tang, J. Zhao, H. Li, P. Huo, Chinese J. Struc. Chem, 42 (2023) 100194, https://doi.org/10.1016/j.cjsc.2023.100194.

    32. [32]

      F. Meng, W. Tian, Z. Tian, X. Tan, H. Zhang, S. Wang, Sci. Total Environ, 851 (2022) 158360, https://doi.org/10.1016/j.scitotenv.2022.158360.

    33. [33]

      J. Wang, G. Wang, B. Cheng, J. Yu, J. Fan, Chinese J. Catal, 42 (2021) 56, https://doi.org/10.1016/S1872-2067(20)63634-8.

    34. [34]

      Y. Chen, D. Yang, B. Shi, W. Dai, H. Ren, K. An, Z. Zhou, Z. Zhao, W. Wang, Z. Jiang, J. Mater. Chem. A, 8 (2020) 7724, https://doi.org/10.1039/D0TA00901F.

    35. [35]

      B. Liu, D.M. Lv, Y.L. Wang, W.Y. Li, Y.W. Sun, Z.W. Li, Langmuir, 40 (2024) 6363, https://doi.org/10.1021/acs.langmuir.3c03910.

    36. [36]

      F. Yu, Z. Wang, S. Zhang, H. Ye, K. Kong, X. Gong, J. Hua, H. Tian, Adv. Funct. Mater, 28 (2018) 1804512, https://doi.org/10.1002/adfm.201804512.

    37. [37]

      Q. Du, Y. Wei, J. Zheng, C. Xu, Electrochim. Acta, 132 (2014) 258, https://doi.org/10.1016/j.electacta.2014.03.172.

    38. [38]

      Y. Liu, J. Wu, F. Wang, Appl. Catal. B Environ, 307 (2022) 121144, https://doi.org/10.1016/j.apcatb.2022.121144.

    39. [39]

      M. Samal, S. Valligatla, N.A. Saad, M.V. Rao, D.N. Rao, R. Sahu, B.P. Biswal, ChemComm, 55 (2019) 11025, https://doi.org/10.1039/C9CC05415D.

    40. [40]

      W. Zhou, T. Jia, D. Zhang, Z. Zheng, W. Hong, X. Chen, Appl. Catal. B Environ, 259 (2019) 118067, https://doi.org/10.1016/j.apcatb.2019.118067.

    41. [41]

      L. Chen, X. Liang, H. Wang, Q. Xiao, X. Qiu, Chem. Eng. J., 442 (2022) 136115, https://doi.org/10.1016/j.cej.2022.136115.

    42. [42]

      F. Yu, Z. Zhu, S. Wang, J. Wang, Z. Xu, F. Song, Z. Dong, Z. Zhang, Appl. Catal. B Environ, 301 (2022) 120819, https://doi.org/10.1016/j.apcatb.2021.120819.

    43. [43]

      K. Li, W.D. Zhang, Small, 14 (2018) 1703599, https://doi.org/10.1002/smll.201703599.

    44. [44]

      Z. Jin, J. Li, D. Liu, Y. Sun, X. Li, Q. Cai, H. Ding, J. Gui, Sep. Purif. Technol, 284 (2022) 120207, https://doi.org/10.1016/j.seppur.2021.120207.

    45. [45]

      A.M. Elewa, A.F.M. El-Mahdy, A.E. Hassan, Z. Wen, J. Jayakumar, T.L. Lee, L.Y. Ting, I.M.A. Mekhemer, T.F. Huang, M.H. Elsayed, C.L. Chang, W.C. Lin, H.H. Chou, J. Mater. Chem. A, 10 (2022) 12378, https://doi.org/10.1039/D2TA00328G.

    46. [46]

      C. Wang, C. Yang, J. Qin, S. Rajendran, X. Zhang, Mater. Chem. Phys, 275 (2022) 125299, https://doi.org/10.1016/j.matchemphys.2021.125299.

    47. [47]

      Q. Sheng, Y. Du, Y. Dong, J. Zhao, X. Zhong, Y. Xie, Appl. Surf. Sci, 603 (2022) 154425, https://doi.org/10.1016/j.apsusc.2022.154425.

    48. [48]

      S. Ni, H. Qu, H. Xing, Z. Xu, X. Zhu, M. Yuan, M. Rong, L. Wang, J. Yu, Y. Li, L. Yang, H. Liu, Chin. J. Chem. Eng., 41 (2022) 320, https://doi.org/10.1016/j.cjche.2021.09.026.

    49. [49]

      S. Xiao, X. Li, W. Zhang, Y. Xiang, T. Li, X. Niu, J.S. Chen, Q. Yan, ACS Nano, 15 (2021) 13307, https://doi.org/10.1021/acsnano.1c03056.

    50. [50]

      M. Chandra, U. Guharoy, D. Pradhan, ACS Appl. Mater. Interfaces, 14 (2022) 22122, https://doi.org/10.1021/acsami.2c03230.

    51. [51]

      P. Dong, A. Zhang, T. Cheng, J. Pan, J. Song, L. Zhang, R. Guan, X. Xi, J. Zhang, Chinese J. Catal, 43 (2022) 2592, https://doi.org/10.1016/S1872-2067(22)64094-4.

    52. [52]

      M. Tan, Y. Ma, C. Yu, Q. Luan, J. Li, C. Liu, W. Dong, Y. Su, L. Qiao, L. Gao, Q. Lu, Y. Bai, Adv. Funct. Mater, 32 (2021) 2111740, https://doi.org/10.1002/adfm.202111740.

    53. [53]

      Y. Wu, Y. Chen, D. Li, D. Sajjad, Y. Chen, Y. Sun, S. Liu, J. Shi, Z. Jiang, Appl. Catal. B Environ, 309 (2022) 121261, https://doi.org/10.1016/j.apcatb.2022.121261.

    54. [54]

      M. Qureshi, K. Takanabe, Chem. Mater., 29 (2017) 158, https://doi.org/10.1021/acs.chemmater.6b02907.

    55. [55]

      S. Cao, L. Piao, Angew. Chem. Int. Ed, 59 (2020) 18312, https://doi.org/10.1002/anie.202009633.

    56. [56]

      G. Kresse, J. Furthmüller, Phys. Rev B, 54 (1996) 11169, https://doi.org/10.1103/PhysRevB.54.11169.

    57. [57]

      I.M. Sundaram, S. Kalimuthu, G.P. P, K. Sekar, S. Rajendran, Int. J. Hydrog. Energy, 47 (2022) 3709, https://doi.org/10.1016/j.ijhydene.2021.10.261.

    58. [58]

      F. Jing, Y. Guo, B. Li, Y.F. Chen, C. Jia, J. Li, Chinese Chem. Lett, 33 (2022) 1303, https://doi.org/10.1016/j.cclet.2021.07.056.

    59. [59]

      C. Cheng, B. He, J. Fan, B. Cheng, S. Cao, J. Yu, Adv Mater, 33 (2021) 2100317, https://doi.org/10.1002/adma.202100317.

    60. [60]

      J. Tao, X. Yu, Q. Liu, G. Liu, H. Tang, J. Colloid Interface Sci, 585 (2021) 470, https://doi.org/10.1016/j.jcis.2020.10.028.

  • 加载中
    1. [1]

      Chenye An Abiduweili Sikandaier Xue Guo Yukun Zhu Hua Tang Dongjiang Yang . 红磷纳米颗粒嵌入花状CeO2分级S型异质结高效光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2405019-. doi: 10.3866/PKU.WHXB202405019

    2. [2]

      Jiajie Cai Chang Cheng Bowen Liu Jianjun Zhang Chuanjia Jiang Bei Cheng . CdS/DBTSO-BDTO S型异质结光催化制氢及其电荷转移动力学. Acta Physico-Chimica Sinica, 2025, 41(8): 100084-. doi: 10.1016/j.actphy.2025.100084

    3. [3]

      You Wu Chang Cheng Kezhen Qi Bei Cheng Jianjun Zhang Jiaguo Yu Liuyang Zhang . ZnO/D-A共轭聚合物S型异质结高效光催化产H2O2及其电荷转移动力学研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-. doi: 10.3866/PKU.WHXB202406027

    4. [4]

      Xinyu Miao Hao Yang Jie He Jing Wang Zhiliang Jin . Adjusting the electronic structure of Keggin-type polyoxometalates to construct S-scheme heterojunction for photocatalytic hydrogen evolution. Acta Physico-Chimica Sinica, 2025, 41(6): 100051-. doi: 10.1016/j.actphy.2025.100051

    5. [5]

      Kaihui Huang Dejun Chen Xin Zhang Rongchen Shen Peng Zhang Difa Xu Xin Li . Constructing Covalent Triazine Frameworks/N-Doped Carbon-Coated Cu2O S-Scheme Heterojunctions for Boosting Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(12): 2407020-. doi: 10.3866/PKU.WHXB202407020

    6. [6]

      Jiaxing Cai Wendi Xu Haoqiang Chi Qian Liu Wa Gao Li Shi Jingxiang Low Zhigang Zou Yong Zhou . 具有0D/2D界面的InOOH/ZnIn2S4空心球S型异质结用于增强光催化CO2转化性能. Acta Physico-Chimica Sinica, 2024, 40(11): 2407002-. doi: 10.3866/PKU.WHXB202407002

    7. [7]

      Weikang Wang Yadong Wu Jianjun Zhang Kai Meng Jinhe Li Lele Wang Qinqin Liu . 三聚氰胺泡沫支撑的S型硫铟锌镉/硫掺杂氮化碳异质结的绿色H2O2合成:协同界面电荷转移调控与局域光热效应. Acta Physico-Chimica Sinica, 2025, 41(8): 100093-. doi: 10.1016/j.actphy.2025.100093

    8. [8]

      Changjun You Chunchun Wang Mingjie Cai Yanping Liu Baikang Zhu Shijie Li . 引入内建电场强化BiOBr/C3N5 S型异质结中光载流子分离以实现高效催化降解微污染物. Acta Physico-Chimica Sinica, 2024, 40(11): 2407014-. doi: 10.3866/PKU.WHXB202407014

    9. [9]

      Guoqiang Chen Zixuan Zheng Wei Zhong Guohong Wang Xinhe Wu . 熔融中间体运输导向合成富氨基g-C3N4纳米片用于高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406021-. doi: 10.3866/PKU.WHXB202406021

    10. [10]

      Jingzhao Cheng Shiyu Gao Bei Cheng Kai Yang Wang Wang Shaowen Cao . 4-氨基-1H-咪唑-5-甲腈修饰供体-受体型氮化碳光催化剂的构建及其高效光催化产氢研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406026-. doi: 10.3866/PKU.WHXB202406026

    11. [11]

      Yuejiao An Wenxuan Liu Yanfeng Zhang Jianjun Zhang Zhansheng Lu . Revealing Photoinduced Charge Transfer Mechanism of SnO2/BiOBr S-Scheme Heterostructure for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2407021-. doi: 10.3866/PKU.WHXB202407021

    12. [12]

      Xiutao Xu Chunfeng Shao Jinfeng Zhang Zhongliao Wang Kai Dai . Rational Design of S-Scheme CeO2/Bi2MoO6 Microsphere Heterojunction for Efficient Photocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309031-. doi: 10.3866/PKU.WHXB202309031

    13. [13]

      Shijie Li Ke Rong Xiaoqin Wang Chuqi Shen Fang Yang Qinghong Zhang . Design of Carbon Quantum Dots/CdS/Ta3N5 S-Scheme Heterojunction Nanofibers for Efficient Photocatalytic Antibiotic Removal. Acta Physico-Chimica Sinica, 2024, 40(12): 2403005-. doi: 10.3866/PKU.WHXB202403005

    14. [14]

      Jianyu Qin Yuejiao An Yanfeng ZhangIn Situ Assembled ZnWO4/g-C3N4 S-Scheme Heterojunction with Nitrogen Defect for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2408002-. doi: 10.3866/PKU.WHXB202408002

    15. [15]

      Jinwang Wu Qijing Xie Chengliang Zhang Haifeng Shi . 自旋极化增强ZnFe1.2Co0.8O4/BiVO4 S型异质结光催化性能降解四环素. Acta Physico-Chimica Sinica, 2025, 41(5): 100050-. doi: 10.1016/j.actphy.2025.100050

    16. [16]

      Peng Li Yuanying Cui Zhongliao Wang Graham Dawson Chunfeng Shao Kai Dai . Efficient interfacial charge transfer of CeO2/Bi19Br3S27 S-scheme heterojunction for boosted photocatalytic CO2 reduction. Acta Physico-Chimica Sinica, 2025, 41(6): 100065-. doi: 10.1016/j.actphy.2025.100065

    17. [17]

      Kexin Dong Chuqi Shen Ruyu Yan Yanping Liu Chunqiang Zhuang Shijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-. doi: 10.3866/PKU.WHXB202310013

    18. [18]

      Tieping CAOYuejun LIDawei SUN . Surface plasmon resonance effect enhanced photocatalytic CO2 reduction performance of S-scheme Bi2S3/TiO2 heterojunction. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 903-912. doi: 10.11862/CJIC.20240366

    19. [19]

      Yang Xia Kangyan Zhang Heng Yang Lijuan Shi Qun Yi . 构建双通道路径增强iCOF/Bi2O3 S型异质结在纯水体系中光催化合成H2O2性能. Acta Physico-Chimica Sinica, 2024, 40(11): 2407012-. doi: 10.3866/PKU.WHXB202407012

    20. [20]

      Ke Li Chuang Liu Jingping Li Guohong Wang Kai Wang . 钛酸铋/氮化碳无机有机复合S型异质结纯水光催化产过氧化氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-. doi: 10.3866/PKU.WHXB202403009

Metrics
  • PDF Downloads(0)
  • Abstract views(122)
  • HTML views(9)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return