Citation: Caiyun Jin,  Zexuan Wu,  Guopeng Li,  Zhan Luo,  Nian-Wu Li. 用于金属锂电池的磷腈基阻燃人工界面层[J]. Acta Physico-Chimica Sinica, ;2025, 41(8): 100094. doi: 10.1016/j.actphy.2025.100094 shu

用于金属锂电池的磷腈基阻燃人工界面层

  • Received Date: 14 February 2025
    Revised Date: 31 March 2025
    Accepted Date: 11 April 2025

    Fund Project: The project was supported by the National Natural Science Foundation of China (21975015).

  • 金属锂负极(LMA)因具有高的比容量(3860 mAh·g-1)和最低的氧化还原电位(-3.04 V vs.标准氢电极),而被认为是下一代高能量密度可充电电池的理想负极材料。然而,金属锂电池存在着锂负极枝晶不可控生长和容易热失控等难题。为此,本论文通过傅克烷基化反应设计合成了一种新型的倍半硅氧烷功能化的六苯氧基环三磷腈基多孔聚合物(SHPP)人工界面层用于保护LMA。SHPP分子链扭曲堆叠可形成大量纳米孔,这些具备独特限域效应的纳米孔能够限制阴离子的通过,提高锂离子迁移数,进而抑制锂枝晶生长。SHPP可以在受热时释放PO·自由基,可用于湮灭酯类电解液受热分解产生的高活性HO·和O·自由基,以减少电池热失控风险。另外,SHPP使得LMA界面中产生Li3P和LiF成分,有助于提高界面锂离子传导和化学稳定性。因此,SHPP-Li对称电池在酯类电解液中能够稳定循环1600 h,且SHPP-Li||LiNi0.8Co0.1Mn0.1O2全电池在500次循环后的容量保持率高达76.8%。这种阻燃型人工界面层为安全且无枝晶的锂金属负极提供新的设计思路。
  • 加载中
    1. [1]

      X.Q. Min, G.J. Xu, B. Xie, P. Guan, M.L. Sun, G.L. Cui, Energy Storage Mater. 47 (2022) 297, https://doi.org/10.1016/j.ensm.2022.02.005.

    2. [2]

      L.S. Li, G.J. Xu, S.H. Zhang, S.M. Dong, S.T. Wang, Z.L. Cui, X.F. Du, C.D. Wang, B. Xie, J.H. Du, X.H. Zhou, G.L. Cui, ACS Energy Lett. 7 (2022) 591, https://doi.org/10.1021/acsenergylett.1c02489.

    3. [3]

      H.Z. Jiang, X.Q. Han, X.F. Du, Z. Chen, C.L. Lu, X.T. Li, H.R. Zhang, J.W. Zhao, P.X. Han, G.L. Cui, Adv. Mater. 34 (2022) 2108665, https://doi.org/10.1002/adma.202108665.

    4. [4]

      J.F. Qian, W.A. Henderson, W. Xu, P. Bhattacharya, M. Engelhard, O. Borodin, J.G. Zhang, Nat. Commun. 6 (2015) 6362, https://doi.org/10.1038/ncomms7362.

    5. [5]

      C.P. Yang, Y.X. Yin, S.F. Zhang, N.W. Li, Y.G. Guo, Nat. Commun. 6 (2015) 8058, https://doi.org/10.1038/ncomms9058.

    6. [6]

      Z.K. Liu, J. Guan, H.X. Yang, P.X. Sun, N.W. Li, L. Yu, Chem. Commun. 58 (2022) 10973, https://doi.org/10.1039/d2cc04128f.

    7. [7]

      Y. Yan, T. Zeng, S. Liu, C. Shu, Y. Zeng, Energy Mater 3 (2023) 300002, https://doi.org/10.20517/energymater.2022.60.

    8. [8]

      K. Zhou, Y. Wang, J. Mei, X. Zhang, T. Xue, W. Fan, L. Zhang, T. Liu, Y. Xie, Small 20 (2024) e2305596, https://doi.org/10.1002/smll.202305596.

    9. [9]

      K. Zhou, M. Bao, Y. Fang, P. He, J. Ren, W. Zong, L. Zhang, T. Liu, Adv. Funct. Mater. 35 (2024) 2411963, https://doi.org/10.1002/adfm.202411963.

    10. [10]

      Y. Wang, K. Zhou, L. Cui, J. Mei, S. Li, L. Li, W. Fan, L. Zhang, T. Liu, J. Power Sources 591 (2024) 233853, https://doi.org/10.1016/j.jpowsour.2023.233853.

    11. [11]

      X.N. Feng, M.G. Ouyang, X. Liu, L.G. Lu, Y. Xia, X.M. He, Energy Storage Mater. 10 (2018) 246, https://doi.org/10.1016/j.ensm.2017.05.013.

    12. [12]

      Pei, G.Y. Zheng, F.F. Shi, Y.Z. Li, Y. Cui, Nano Lett. 17 (2017) 1132, https://doi.org/10.1021/acs.nanolett.6b04755.

    13. [13]

      C.H. Zhang, T. Jin, J.D. Liu, J.M. Ma, N.W. Li, L. Yu, Small 19 (2023) 2301523, https://doi.org/10.1002/smll.202301523.

    14. [14]

      Z.M. Zhao, F. Li, J.W. Zhao, G.L. Ding, J.Z. Wang, X.F. Du, Q. Zhou, G.J. Hou, G.L. Cui, Adv. Funct. Mater. 30 (2020) 2000347, https://doi.org/10.1002/adfm.202000347.

    15. [15]

      S.-Y. Zeng, W.-L. Wang, D. Li, C. Yang, Z.-J. Zheng, Energy Mater 4 (2024) 400029, https://doi.org/10.20517/energymater.2023.93.

    16. [16]

      Z. Liu, W. Huang, Y. Xiao, J. Zhang, W. Kong, P. Wu, C. Zhao, A. Chen, Q. Zhang, Acta Phys. Chim. Sin. 40 (2024) 2305040, https://doi.org/10.3866/PKU.WHXB202305040.

    17. [17]

      Y.F. Meng, D. Zhou, R.L. Liu, Y. Tian, Y.F. Gao, Y. Wang, B. Sun, F.Y. Kang, M. Armand, B.H. Li, G.X. Wang, D. Aurbach, Nat. Energy 8 (2023) 1023, https://doi.org/10.1038/s41560-023-01339-z.

    18. [18]

      M.C. Long, G. Wu, X.L. Wang, Y.Z. Wang, Energy Storage Mater. 53 (2022) 62, https://doi.org/10.1016/j.ensm.2022.08.044.

    19. [19]

      K.R. Adair, C.T. Zhao, M.N. Banis, Y. Zhao, R.Y. Li, M. Cai, X.L. Sun, Angew. Chem. Int. Ed. 58 (2019) 15797, https://doi.org/10.1002/anie.201907759.

    20. [20]

      W. Jia, J. Zhang, L. Zheng, H. Zhou, W. Zou, L. Wang, eScience (2024), https://doi.org/10.1016/j.esci.2024.100266.

    21. [21]

      Z.,Y.L. Hao, W. Li, Y. Zeng, Y. Dai, Y. Cong, J. Ju, B. Zhang, Carbon Neutralization 3 (2024) 629, https://doi.org/10.1002/cnl2.144.

    22. [22]

      J. Guan, N. Li, L. Yu, Acta Phys. Chim. Sin. 37 (2021) 2009011, https://doi.org/10.3866/PKU.WHXB202009011.

    23. [23]

      Z. Cui, Z. Jia, D. Ruan, Q. Nian, J. Fan, S. Chen, Z. He, D. Wang, J. Jiang, J. Ma, X. Ou, S. Jiao, Q. Wang, X. Ren, Nat. Commun. 15 (2024), https://doi.org/10.1038/s41467-024-46186-y.

    24. [24]

      J. Zhou, C. Zhang, H. Wang, Y. Guo, C. Xie, Y. Luo, C. Wang, S. Wen, J. Cai, W. Yu, F. Chen, Y. Zhang, Q. Huang, Z. Zheng, Sci. Adv. 11 (2024) 2410129, https://doi.org/10.1002/advs.202410129.

    25. [25]

      W.-L. Wu, Y.-T. Xu, X. Ke, Y.-M. Chen, Y.-F. Cheng, G.-D. Lin, M.-P. Fan, Y.-T. Liu, Z.-C. Shi, Energy Storage Mater 37 (2021) 387, https://doi.org/10.1016/j.ensm.2021.02.021.

    26. [26]

      S. Gao, Z. Li, N. Liu, G. Liu, H. Yang, P.F. Cao, Adv. Funct. Mater. 32 (2022) 2202013, https://doi.org/10.1002/adfm.202202013.

    27. [27]

      Z. Wang, Z. Du, Y. Liu, C.E. Knapp, Y. Dai, J. Li, W. Zhang, R. Chen, F. Guo, W. Zong, X. Gao, J. Zhu, C. Wei, G. He, eScience 4 (2024) 100189, https://doi.org/10.1016/j.esci.2023.100189.

    28. [28]

      L.Z. Huang, W. Li, Z.M. Cui, Energy Mater 4 (2024) 400030, https://doi.org/10.20517/energymater.2023.83.

    29. [29]

      L.P. Zhai, G.J. Li, X.B. Yang, S. Park, D.D. Han, L. Mi, Y.J. Wang, Z.P. Li, S.Y. Lee, Adv. Funct. Mater. 32 (2021) 2108798, https://doi.org/10.1002/adfm.202108798.

    30. [30]

      J.R. He, A. Bhargav, A. Manthiram, Angew. Chem. Int. Ed. 61 (2022) e202116586, https://doi.org/10.1002/anie.202116586.

    31. [31]

      H. Jia, Y.B. Xu, X.H. Zhang, S.D. Burton, P.Y. Gao, B.E. Matthews, M.H. Engelhard, K.S. Han, L.R. Zhong, C.M. Wang, W. Xu, Angew. Chem. Int. Ed. 60 (2021) 12999, https://doi.org/10.1002/anie.202102403.

    32. [32]

      W.,Z.T. Tang, Y. Duan, M. Zhou, Z. Li, R. Liu, Carbon Neutralization 3 (2024) 386, https://doi.org/10.1002/cnl2.130.

    33. [33]

      J. Liu, X. Li, D. Wu, H. Wang, J. Huang, J. Ma, Acta Phys. Chim. Sin. 40 (2024) 2306039, https://doi.org/10.3866/PKU.WHXB202306039.

    34. [34]

      L. Qu, Y. Sui, C. Zhang, X. Dai, P. Li, G. Sun, B. Xu, D. Fang, React. Funct. Polym. 148 (2020) 104485, https://doi.org/10.1016/j.reactfunctpolym.2020.104485.

    35. [35]

      T. Zhu, D.L. Chen, G.Q. Liu, P. Qi, X.Y. Gu, H.F. Li, J. Sun, S. Zhang, Small 18 (2022) 2203693, https://doi.org/10.1002/smll.202203693.

    36. [36]

      X. Wei, D. Zheng, M. Zhao, H.Z. Chen, X. Fan, B. Gao, L. Gu, Y. Guo, J.B. Qin, J. Wei, Y.L. Zhao, G.C. Zhang, Angew. Chem. Int. Ed. 59 (2020) 14639, https://doi.org/10.1002/anie.202006175.

    37. [37]

      Y.Q. Wang, M. Soldatov, Q.Z. Wang, H.Z. Liu, Polymer 218 (2021) 123491, https://doi.org/10.1016/j.polymer.2021.123491.

    38. [38]

      Y. Zhang, L. Yu, X.D. Zhang, Y.H. Wang, C.P. Yang, X.L. Liu, W.P. Wang, Y. Zhang, X.T. Li, G. Li, S. Xin, Y.G. Guo, C.L. Bai, Sci. Adv. 9 (2023) eade5802, https://doi.org/10.1126/sciadv.ade5802.

    39. [39]

      H.X. Yang, Z.K. Liu, Y. Wang, N.W. Li, L. Yu, Adv. Funct. Mater. 33 (2023) 2209837, https://doi.org/10.1002/adfm.202209837.

    40. [40]

      K. Su, T. Jin, C.H. Zhang, R. Wang, S. Yuan, N.W. Li, L. Yu, Chem. Eng. J. 450 (2022) 138049, https://doi.org/10.1016/j.cej.2022.138049.

    41. [41]

      P. Qi, S.H. Wang, W.J. Wang, J. Sun, H.F. Yuan, S. Zhang, Int. J. Biol. Macromol. 205 (2022) 261, https://doi.org/10.1016/j.ijbiomac.2022.02.062.

    42. [42]

      B.Y. Liaw, E.P. Roth, R.G. Jungst, G. Nagasubramanian, H.L. Case, D.H. Doughty, J. Power Sources 119 (2003) 874, https://doi.org/10.1016/s0378-7753(03)00196-4.

    43. [43]

      Z.H. Lin, Y. Wang, Y. Li, Y. Liu, S.C. Zhong, M.S. Xie, F. Yan, Z.Y. Zhang, J. Peng, J.Q. Li, A.P. Wang, X.B. Chen, M.L. Zhai, H. Zhang, J.Y. Qiu, Energy Storage Mater. 53 (2022) 917, https://doi.org/10.1016/j.ensm.2022.10.019.

    44. [44]

      S.J. Tan, Y.F. Tian, Y. Zhao, X.X. Feng, J. Zhang, C.H. Zhang, M. Fan, J.C. Guo, Y.X. Yin, F.Y. Wang, S. Xin, Y.G. Guo, J. Am. Chem. Soc. 144 (2022) 18240, https://doi.org/10.1021/jacs.2c08396.

    45. [45]

      G.X. Li, H. Jiang, R. Kou, D.W. Wang, A. Nguyen, M. Liao, P. Shi, A. Silver, D.H. Wang, ACS Energy Lett. 7 (2022) 2282, https://doi.org/10.1021/acsenergylett.2c01090.

    46. [46]

      J.J. Lee, D. Jin, J.Y. Kim, Y.J. Roh, H. Lee, S.H. Kang, J. Choi, T. Jo, Y.G. Lee, Y.M. Lee, Adv. Energy Mater. 13 (2023) 2300172, https://doi.org/10.1002/aenm.202300172.

    47. [47]

      N. Piao, S.F. Liu, B. Zhang, X. Ji, X.L. Fan, L. Wang, P.F. Wang, T. Jin, S.C. Liou, H.C. Yang, J.J. Jiang, K. Xu, M.A. Schroeder, X.M. He, C.S. Wang, ACS Energy Lett. 6 (2021) 1839, https://doi.org/10.1021/acsenergylett.1c00365.

    48. [48]

      Z. Li, X.Y. Zheng, S.Y. Ye, C. Ou, Y. Xie, Z.B. Li, F. Tian, D. Lei, C.X. Wang, Small 19 (2023) 2301005, https://doi.org/10.1002/smll.202301005.

  • 加载中
    1. [1]

      Yifeng Xu Jiquan Liu Bin Cui Yan Li Gang Xie Ying Yang . “Xiao Li’s School Adventures: The Working Principles and Safety Risks of Lithium-ion Batteries”. University Chemistry, 2024, 39(9): 259-265. doi: 10.12461/PKU.DXHX202404009

    2. [2]

      南开大学师唯/华北电力大学(保定)刘景维:二维配位聚合物中有序的亲锂冠醚位点用于无枝晶锂沉积

      . CCS Chemistry, 2025, 7(0): -.

    3. [3]

      Jiandong Liu Zhijia Zhang Mikhail Kamenskii Filipp Volkov Svetlana Eliseeva Jianmin Ma . Research Progress on Cathode Electrolyte Interphase in High-Voltage Lithium Batteries. Acta Physico-Chimica Sinica, 2025, 41(2): 100011-. doi: 10.3866/PKU.WHXB202308048

    4. [4]

      Siyu Zhang Kunhong Gu Bing'an Lu Junwei Han Jiang Zhou . Hydrometallurgical Processes on Recycling of Spent Lithium-lon Battery Cathode: Advances and Applications in Sustainable Technologies. Acta Physico-Chimica Sinica, 2024, 40(10): 2309028-. doi: 10.3866/PKU.WHXB202309028

    5. [5]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    6. [6]

      Jiaxuan Zuo Kun Zhang Jing Wang Xifei Li . 锂离子电池Ni-Co-Mn基正极材料前驱体的形核调控及机制. Acta Physico-Chimica Sinica, 2025, 41(1): 2404042-. doi: 10.3866/PKU.WHXB202404042

    7. [7]

      Jiahe LIUGan TANGKai CHENMingda ZHANG . Effect of low-temperature electrolyte additives on low-temperature performance of lithium cobaltate batteries. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 719-728. doi: 10.11862/CJIC.20250023

    8. [8]

      Zhenming Xu Mingbo Zheng Zhenhui Liu Duo Chen Qingsheng Liu . Experimental Design of Project-Driven Teaching in Computational Materials Science: First-Principles Calculations of the LiFePO4 Cathode Material for Lithium-Ion Batteries. University Chemistry, 2024, 39(4): 140-148. doi: 10.3866/PKU.DXHX202307022

    9. [9]

      Aoyu Huang Jun Xu Yu Huang Gui Chu Mao Wang Lili Wang Yongqi Sun Zhen Jiang Xiaobo Zhu . Tailoring Electrode-Electrolyte Interfaces via a Simple Slurry Additive for Stable High-Voltage Lithium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 100037-. doi: 10.3866/PKU.WHXB202408007

    10. [10]

      Mingyang Men Jinghua Wu Gaozhan Liu Jing Zhang Nini Zhang Xiayin Yao . 液相法制备硫化物固体电解质及其在全固态锂电池中的应用. Acta Physico-Chimica Sinica, 2025, 41(1): 2309019-. doi: 10.3866/PKU.WHXB202309019

    11. [11]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    12. [12]

      Zeqiu Chen Limiao Cai Jie Guan Zhanyang Li Hao Wang Yaoguang Guo Xingtao Xu Likun Pan . 电容去离子提锂技术中电极材料的研究进展. Acta Physico-Chimica Sinica, 2025, 41(8): 100089-. doi: 10.1016/j.actphy.2025.100089

    13. [13]

      Jianbao Mei Bei Li Shu Zhang Dongdong Xiao Pu Hu Geng Zhang . Enhanced Performance of Ternary NASICON-Type Na3.5-xMn0.5V1.5-xZrx(PO4)3/C Cathodes for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(12): 2407023-. doi: 10.3866/PKU.WHXB202407023

    14. [14]

      Xueyu Lin Ruiqi Wang Wujie Dong Fuqiang Huang . 高性能双金属氧化物负极的理性设计及储锂特性. Acta Physico-Chimica Sinica, 2025, 41(3): 2311005-. doi: 10.3866/PKU.WHXB202311005

    15. [15]

      Yuyao Wang Zhitao Cao Zeyu Du Xinxin Cao Shuquan Liang . Research Progress of Iron-based Polyanionic Cathode Materials for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 100035-. doi: 10.3866/PKU.WHXB202406014

    16. [16]

      Bowen Yang Rui Wang Benjian Xin Lili Liu Zhiqiang Niu . C-SnO2/MWCNTs Composite with Stable Conductive Network for Lithium-based Semi-Solid Flow Batteries. Acta Physico-Chimica Sinica, 2025, 41(2): 100015-. doi: 10.3866/PKU.WHXB202310024

    17. [17]

      Yingtong Shi Guotong Xu Guizeng Liang Di Lan Siyuan Zhang Yanru Wang Daohao Li Guanglei Wu . PEG-VN改性PP隔膜用于高稳定性高效率锂硫电池. Acta Physico-Chimica Sinica, 2025, 41(7): 100082-. doi: 10.1016/j.actphy.2025.100082

    18. [18]

      Junke LIUKungui ZHENGWenjing SUNGaoyang BAIGuodong BAIZuwei YINYao ZHOUJuntao LI . Preparation of modified high-nickel layered cathode with LiAlO2/cyclopolyacrylonitrile dual-functional coating. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1461-1473. doi: 10.11862/CJIC.20240189

    19. [19]

      Liangliang Song Haoyan Liang Shunqing Li Bao Qiu Zhaoping Liu . 超高比能电池高锰富锂层状氧化物正极材料面临的挑战与解决策略. Acta Physico-Chimica Sinica, 2025, 41(8): 100085-. doi: 10.1016/j.actphy.2025.100085

    20. [20]

      Doudou Qin Junyang Ding Chu Liang Qian Liu Ligang Feng Yang Luo Guangzhi Hu Jun Luo Xijun Liu . Addressing Challenges and Enhancing Performance of Manganese-based Cathode Materials in Aqueous Zinc-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(10): 2310034-. doi: 10.3866/PKU.WHXB202310034

Metrics
  • PDF Downloads(0)
  • Abstract views(10)
  • HTML views(1)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return