Citation: Weikang Wang, Yadong Wu, Jianjun Zhang, Kai Meng, Jinhe Li, Lele Wang, Qinqin Liu. Green H2O2 synthesis via melamine-foam supported S-scheme Cd0.5Zn0.5In2S4/S-doped carbon nitride heterojunction: synergistic interfacial charge transfer and local photothermal effect[J]. Acta Physico-Chimica Sinica, ;2025, 41(8): 100093. doi: 10.1016/j.actphy.2025.100093 shu

Green H2O2 synthesis via melamine-foam supported S-scheme Cd0.5Zn0.5In2S4/S-doped carbon nitride heterojunction: synergistic interfacial charge transfer and local photothermal effect

  • Corresponding author: Jianjun Zhang, zhangjianjun@cug.edu.com Qinqin Liu, qqliu@ujs.edu.cn
  • Received Date: 13 March 2025
    Revised Date: 1 April 2025
    Accepted Date: 10 April 2025

    Fund Project: the Natural Science Foundation of China 22472069the Natural Science Foundation of China 22102064the Natural Science Foundation of China 22302080Anhui Key Laboratory of Nanomaterials and Nanotechnology, the Major Science and Technology Projects in Anhui Province 202305a12020006

  • Green photocatalytic synthesis of hydrogen peroxide (H2O2) represents a promising alternative to the energy-intensive anthraquinone process, yet it is hindered by rapid carrier recombination and insufficient redox capacity in sacrificial-agent-free systems. This work reports a melamine foam (MF)-supported sulfur (S)-doped carbon nitride (SCN)/S vacancy-modified Cd0.5Zn0.5In2S4 (CZIS) S-scheme heterojunction (CZIS/SCN/MF) via an in situ chemical bath-hydrothermal method for sacrificial-agent-free H2O2 photosynthesis. The S-scheme charge transfer mechanism was confirmed by in situ irradiated X-ray photoelectron spectroscopy, free-radical trapping electron paramagnetic resonance, femtosecond transient absorption spectra and theoretical calculations. Specifically, the sulfur doping could modulate the local charge distribution of the carbon nitride framework to reinforce the interfacial built-in electric field for the CZIS/SCN S-scheme heterojunction. Meanwhile, the calcination-induced S-vacancies in CZIS could serve as photoelectron traps, promoting charge separation, and reserving photoinduced holes for H2O oxidation, thereby achieving sacrificial-agent-free H2O2 synthesis. Coupled with the photothermal effect of MF's three-dimensional porous framework, the CZIS/SCN/MF catalyst with optimized S-doping density and SCN dosage delivers an H2O2 production rate of 3.46 mmol·g−1·h−1 in pure water, surpassing most of the sacrificial-agent-free systems. This study proposes a novel strategy for synergistic interfacial charge regulation and energy conversion enhancement in sacrificial-agent-free photocatalytic systems.
  • 加载中
    1. [1]

      Y. Zhang, C. Pan, G. Bian, J. Xu, Y. Dong, Y. Zhang, Y. Lou, W. Liu, Y. Zhu, Nat. Energy 8 (2023) 361, http://doi.org/10.1038/s41560-023-01218-7.  doi: 10.1038/s41560-023-01218-7

    2. [2]

      X. Zhang, D. Gao, B. Zhu, B. Cheng, J. Yu, H. Yu, Nat. Commun. 15 (2024) 3212, http://doi.org/10.1038/s41467-024-47624-7.  doi: 10.1038/s41467-024-47624-7

    3. [3]

      A. Meng, X. Ma, D. Wen, W. Zhong, S. Zhou, Y. Su, Chin. J. Catal. 60 (2024) 231, http://doi.org/10.1016/s1872-2067(24)60008-2.  doi: 10.1016/s1872-2067(24)60008-2

    4. [4]

      K. Zhang, Y. Li, S. Yuan, L. Zhang, Q. Wang, Acta Phys. Chim. Sin. 39 (2023) 2212010, http://doi.org/10.3866/PKU.WHXB202212010.  doi: 10.3866/PKU.WHXB202212010

    5. [5]

      K. Li, J. Mei, J. Li, Y. Liu, G. Wang, D. Hu, S. Yan, K. Wang, Sci. China Mater. 67 (2024) 484, http://doi.org/10.1007/s40843-023-2717-0.  doi: 10.1007/s40843-023-2717-0

    6. [6]

      Y. Zhang, Y. Wang, Y. Liu, S. Zhang, Y. Zhao, J. Zhang, J. Materiomics 11 (2025) 100985, http://doi.org/10.1016/j.jmat.2024.100985.  doi: 10.1016/j.jmat.2024.100985

    7. [7]

      W. Wang, L. Wang, L. Sun, H. Jiang, Y. Liu, Q. Liu, X. She, H. Tang, Chem. Eng. J. 477 (2023) 146945, http://doi.org/10.1016/j.cej.2023.146945.  doi: 10.1016/j.cej.2023.146945

    8. [8]

      Y. Wu, C. Cheng, K. Qi, B. Cheng, J. Zhang, J. Yu, L. Zhang, Acta Phys. Chim. Sin. 40 (2024) 2406027, http://doi.org/10.3866/PKU.WHXB202406027.  doi: 10.3866/PKU.WHXB202406027

    9. [9]

      Q. Zhang, H. Miao, J. Wang, T. Sun, E. Liu, Chin. J. Catal. 63 (2024) 176, http://doi.org/10.1016/s1872-2067(24)60077-x.  doi: 10.1016/s1872-2067(24)60077-x

    10. [10]

      W. Wang, Y. Wu, S. Khan, H. Jiang, M.A. Qaiser, X. Chai, C. Zhu, L. Wang, Q. Liu, Int. J. Hydrogen Energy 77 (2024) 1176, http://doi.org/10.1016/j.ijhydene.2024.06.264.  doi: 10.1016/j.ijhydene.2024.06.264

    11. [11]

      W. Wang, H. Zhang, S. Zhang, Y. Liu, G. Wang, C. Sun, H. Zhao, Angew. Chem. Int. Ed. 58 (2019) 16644, https://doi.org/10.1002/anie.201908640.  doi: 10.1002/anie.201908640

    12. [12]

      W. Wang, R. Liu, J. Zhang, T. Kong, L. Wang, X. Yu, X. Ji, Q. Liu, R. Long, Z. Lu, Y. Xiong, Angew. Chem. Int. Ed. 64 (2025) e202415800, http://doi.org/10.1002/anie.202415800.  doi: 10.1002/anie.202415800

    13. [13]

      W. Yang, J. Zhang, Q. Xu, Y. Yang, L. Zhang, Acta Phys. Chim. Sin. 40 (2024) 2312014, http://doi.org/10.3866/PKU.WHXB202312014.  doi: 10.3866/PKU.WHXB202312014

    14. [14]

      Y. Yang, J. Liu, M. Gu, B. Cheng, L. Wang, J. Yu, Appl. Catal. B Environ. 333 (2023) 122780, http://doi.org/10.1016/j.apcatb.2023.122780.  doi: 10.1016/j.apcatb.2023.122780

    15. [15]

      X. Deng, J. Zhang, K. Qi, G. Liang, F. Xu, J. Yu, Nat. Commun. 15 (2024) 4807, http://doi.org/10.1038/s41467-024-49004-7.  doi: 10.1038/s41467-024-49004-7

    16. [16]

      X. Wu, L. Tan, G. Chen, J. Kang, G. Wang, Sci. China Mater. 67 (2024) 444, http://doi.org/10.1007/s40843-023-2755-2.  doi: 10.1007/s40843-023-2755-2

    17. [17]

      W. Yu, C. Bie, Acta Phys. Chim. Sin. 40 (2024) 2307022, http://doi.org/10.3866/PKU.WHXB202307022.  doi: 10.3866/PKU.WHXB202307022

    18. [18]

      W. Wang, S. Mei, H. Jiang, L. Wang, H. Tang, Q. Liu, Chin. J. Catal. 55 (2023) 137, http://doi.org/10.1016/s1872-2067(23)64551-6.  doi: 10.1016/s1872-2067(23)64551-6

    19. [19]

      R. He, D. Xu, X. Li, J. Mater. Sci. Technol. 138 (2023) 256, http://doi.org/10.1016/j.jmst.2022.09.002.  doi: 10.1016/j.jmst.2022.09.002

    20. [20]

      W. Zhong, A. Meng, Y. Su, H. Yu, P. Han, J. Yu, Angew. Chem. Int. Ed. 64 (2025) e202425038, http://doi.org/10.1002/anie.202425038.  doi: 10.1002/anie.202425038

    21. [21]

      Y. Li, Z. Xia, Q. Yang, L. Wang, Y. Xing, J. Mater. Sci. Technol. 125 (2022) 128, http://doi.org/10.1016/j.jmst.2022.02.035.  doi: 10.1016/j.jmst.2022.02.035

    22. [22]

      C. Zhang, L. Lin, M. Zhou, Y. Wang, S. Xu, X. Chen, Z. Li, Chem. Eng. J. 495 (2024) 153563, http://doi.org/10.1016/j.cej.2024.153563.  doi: 10.1016/j.cej.2024.153563

    23. [23]

      Z. Jiang, Q. Long, B. Cheng, R. He, L. Wang, J. Mater. Sci. Technol. 162 (2023) 1, http://doi.org/10.1016/j.jmst.2023.03.045.  doi: 10.1016/j.jmst.2023.03.045

    24. [24]

      S. Mao, R. He, S. Song, Chin. J. Catal. 64 (2024) 1, http://doi.org/10.1016/s1872-2067(24)60102-6.  doi: 10.1016/s1872-2067(24)60102-6

    25. [25]

      Y. Niu, Y.-Y. Li, J. Wang, H. Wang, B. Wang, J. Xu, M. Tian, H. Lin, L. Wang, Inorg. Chem. 62 (2023) 5690, http://doi.org/10.1021/acs.inorgchem.3c00240.  doi: 10.1021/acs.inorgchem.3c00240

    26. [26]

      W. Wang, W. Shan, Y. Hu, H. Jiang, L. Wang, J. Chen, Q. Liu, H. Tang, Chem. Eng. J. 493 (2024) 152516, http://doi.org/10.1016/j.cej.2024.152516.  doi: 10.1016/j.cej.2024.152516

    27. [27]

      Y. Sun, R. Xiong, X. Ke, J. Liao, Y. Xiao, B. Cheng, S. Lei, Sep. Purif. Technol. 345 (2024) 127253, http://doi.org/10.1016/j.seppur.2024.127253.  doi: 10.1016/j.seppur.2024.127253

    28. [28]

      L. Ying, Z. Huang, Y. Dong, F. Lin, J. Ding, W. Wang, J. Lu, Desalination 549 (2023) 116328, http://doi.org/10.1016/j.desal.2022.116328.  doi: 10.1016/j.desal.2022.116328

    29. [29]

      H. Xu, S. Zhang, X. Zhang, M. Xu, J. Geng, M. Han, H. Zhang, J. Mater. Chem. A 11 (2023) 10204, http://doi.org/10.1039/d2ta09904g.  doi: 10.1039/d2ta09904g

    30. [30]

      C. Lu, S. Khan, H. Jiang, M.A. Qaiser, W. Wang, L. Wang, Q. Liu, Appl. Surf. Sci. 654 (2024) 159463, http://doi.org/10.1016/j.apsusc.2024.159463.  doi: 10.1016/j.apsusc.2024.159463

    31. [31]

      C. Liu, Q. Zhang, Z. Zou, J. Mater. Sci. Technol. 139 (2023) 167, http://doi.org/10.1016/j.jmst.2022.08.030.  doi: 10.1016/j.jmst.2022.08.030

    32. [32]

      C. Zhu, Q. He, W. Wang, F. Du, F. Yang, C. Chen, C. Wang, S. Wang, X. Duan, J. Colloid. Interf. Sci. 620 (2022) 253, http://doi.org/10.1016/j.jcis.2022.04.024.  doi: 10.1016/j.jcis.2022.04.024

    33. [33]

      X. Wu, D. Li, B. Luo, B. Chen, Y. Huang, T. Yu, N. Shen, L. Li, W. Shi, Appl. Catal. B Environ. 325 (2023) 122292, http://doi.org/10.1016/j.apcatb.2022.122292.  doi: 10.1016/j.apcatb.2022.122292

    34. [34]

      S. Xu, Y. Yu, X. Zhang, D. Xue, Y. Wei, H. Xia, F. Zhang, J.N. Zhang, Angew. Chem. Int. Ed. 63 (2024) e202407578, http://doi.org/10.1002/anie.202407578.  doi: 10.1002/anie.202407578

    35. [35]

      S. Wang, G. Hu, Y. Dou, S. Li, M. Li, H. Feng, Y.-S. Feng, Sep. Purif. Technol. 354 (2025) 129220, http://doi.org/10.1016/j.seppur.2024.129220.  doi: 10.1016/j.seppur.2024.129220

    36. [36]

      J. Sun, H. Liu, S. Wang, Y. Zhang, C. Bie, L. Zhang, J. Materiomics 11 (2025) 100975, http://doi.org/10.1016/j.jmat.2024.100975.  doi: 10.1016/j.jmat.2024.100975

    37. [37]

      K. Meng, J. Zhang, B. Cheng, X. Ren, Z. Xia, F. Xu, L. Zhang, J. Yu, Adv. Mater. 36 (2024) 2406460, http://doi.org/10.1002/adma.202406460.  doi: 10.1002/adma.202406460

    38. [38]

      M. Gu, Y. Yang, B. Cheng, L. Zhang, P. Xiao, T. Chen, Chin. J. Catal. 59 (2024) 185, http://doi.org/10.1016/s1872-2067(23)64610-8.  doi: 10.1016/s1872-2067(23)64610-8

    39. [39]

      H. Zhang, J. Liu, Y. Zhang, B. Cheng, B. Zhu, L. Wang, J. Mater. Sci. Technol. 166 (2023) 241, http://doi.org/10.1016/j.jmst.2023.05.030.  doi: 10.1016/j.jmst.2023.05.030

    40. [40]

      Y. Zhao, Y. Zhang, H. Tan, C. Ai, J. Zhang, J. Materiomics 11 (2025) 100970, http://doi.org/10.1016/j.jmat.2024.100970.  doi: 10.1016/j.jmat.2024.100970

    41. [41]

      B. Zhu, J. Liu, J. Sun, F. Xie, H. Tan, B. Cheng, J. Zhang, J. Mater. Sci. Technol. 162 (2023) 90, http://doi.org/10.1016/j.jmst.2023.03.054.  doi: 10.1016/j.jmst.2023.03.054

    42. [42]

      J. Qiu, K. Meng, Y. Zhang, B. Cheng, J. Zhang, L. Wang, J. Yu, Adv. Mater. 36 (2024) 2400288, http://doi.org/10.1002/adma.202400288.  doi: 10.1002/adma.202400288

    43. [43]

      M. Sayed, F. Xu, P. Kuang, J. Low, S. Wang, L. Zhang, J. Yu, Nat. Commun. 12 (2021) 4936, http://doi.org/10.1038/s41467-021-25007-6.  doi: 10.1038/s41467-021-25007-6

    44. [44]

      W. Wang, W. Zhang, Y. Cai, Q. Wang, J. Deng, J. Chen, Z. Jiang, Y. Zhang, C. Yu, Nano Res. 16 (2023) 2177, http://doi.org/10.1007/s12274-022-4976-0.  doi: 10.1007/s12274-022-4976-0

    45. [45]

      Y. Ma, S. Wang, Y. Zhang, B. Cheng, L. Zhang, J. Materiomics 11 (2025) 100978, http://doi.org/10.1016/j.jmat.2024.100978.  doi: 10.1016/j.jmat.2024.100978

    46. [46]

      F. Xu, Y. He, J. Zhang, G. Liang, C. Liu, J. Yu, Angew. Chem. Int. Ed. 64 (2025) e202414672 http://doi.org/10.1002/anie.202414672.  doi: 10.1002/anie.202414672

    47. [47]

      M. Gu, J. Zhang, I.V. Kurganskii, A.S. Poryvaev, M.V. Fedin, B. Cheng, J. Yu, L. Zhang, Adv. Mater. 37 (2025) 2414803, http://doi.org/10.1002/adma.202414803.  doi: 10.1002/adma.202414803

    48. [48]

      Y. Xia, K. Zhang, H. Yang, L. Shi, Q. Yi, Acta Phys. Chim. Sin. 40 (2024) 2407012, http://doi.org/10.3866/PKU.WHXB202407012.  doi: 10.3866/PKU.WHXB202407012

    49. [49]

      J. Yan, J. Zhang, J. Mater. Sci. Technol. 193 (2024) 18, http://doi.org/10.1016/j.jmst.2023.12.054.  doi: 10.1016/j.jmst.2023.12.054

    50. [50]

      G. Sun, Z. Tai, J. Zhang, B. Cheng, H. Yu, J. Yu, Appl. Catal. B Environ. 358 (2024) 124459, http://doi.org/10.1016/j.apcatb.2024.124459.  doi: 10.1016/j.apcatb.2024.124459

    51. [51]

      X. Zhou, C. Ai, X. Wang, Z. Wu, J. Zhang, J. Materiomics 11 (2025) 100974, http://doi.org/10.1016/j.jmat.2024.100974.  doi: 10.1016/j.jmat.2024.100974

    52. [52]

      J. Cai, B. Liu, S. Zhang, L. Wang, Z. Wu, J. Zhang, B. Cheng, J. Mater. Sci. Technol. 197 (2024) 183, http://doi.org/10.1016/j.jmst.2024.02.012.  doi: 10.1016/j.jmst.2024.02.012

    53. [53]

      J. Zhang, B. Zhu, L. Zhang, J. Yu, Chem.Commun. 59 (2023) 688, http://doi.org/10.1039/d2cc06300j.  doi: 10.1039/d2cc06300j

    54. [54]

      S. Wan, W. Wang, B. Cheng, G. Luo, Q. Shen, J. Yu, J. Zhang, S. Cao, L. Zhang, Nat. Commun. 15 (2024) 9612, http://doi.org/10.1038/s41467-024-53951-6.  doi: 10.1038/s41467-024-53951-6

    55. [55]

      C. Cheng, J. Yu, D. Xu, L. Wang, G. Liang, L. Zhang, M. Jaroniec, Nat. Commun. 15 (2024) 1313, http://doi.org/10.1038/s41467-024-45604-5.  doi: 10.1038/s41467-024-45604-5

    56. [56]

      C. Cheng, J. Zhang, B. Zhu, G. Liang, L. Zhang, J. Yu, Angew. Chem. Int. Ed. 62 (2023) e202218688, http://doi.org/10.1002/anie.202218688.  doi: 10.1002/anie.202218688

    57. [57]

      D. Zu, Y. Ying, Q. Wei, P. Xiong, M.S. Ahmed, Z. Lin, M.M.J. Li, M. Li, Z. Xu, G. Chen, L. Bai, S. She, Y.H. Tsang, H. Huang, Angew. Chem. Int. Ed. 63 (2024) e202405756, http://doi.org/10.1002/anie.202405756.  doi: 10.1002/anie.202405756

    58. [58]

      Y. Yang, X. Zhou, M. Gu, B. Cheng, Z. Wu, J. Zhang, Acta Phys. Chim. Sin. 41 (2025) 100064, http://doi.org/10.1016/j.actphy.2025.100064.  doi: 10.1016/j.actphy.2025.100064

    59. [59]

      T. Wang, X. Pan, M. He, L. Kang, W. Ma, Adv. Sci. 11 (2024) 2403771, http://doi.org/10.1002/advs.202403771.  doi: 10.1002/advs.202403771

    60. [60]

      M.D. Segall, P.J.D. Lindan, M.J. Probert, C.J. Pickard, P.J. Hasnip, S.J. Clark, M.C. Payne, J. Phys. Condens. Mat. 14 (2002) 2717, http://doi.org/10.1088/0953-8984/14/11/301.  doi: 10.1088/0953-8984/14/11/301

    61. [61]

      Y. Wu, Y. Yang, M. Gu, C. Bie, H. Tan, B. Cheng, J. Xu, Chin. J. Catal. 53 (2023) 123, http://doi.org/10.1016/s1872-2067(23)64514-0.  doi: 10.1016/s1872-2067(23)64514-0

    62. [62]

      Wang, L.-Y. Huang, L.-J. Xue, Q. Kang, L.-L. Wen, K.-L. Lv, Appl. Catal. B Environ. 358 (2024) 124366, http://doi.org/10.1016/j.apcatb.2024.124366.  doi: 10.1016/j.apcatb.2024.124366

  • 加载中
    1. [1]

      Chao LiuHuan YuJiaming LiXi YuZhuangzhi YuYuxi SongFeng ZhangQinfang ZhangZhigang Zou . 具有光热效应的多级Ti3C2/Bi12O17Br2肖特基异质结简单合成及其太阳能驱动抗生素光降解的研究. Acta Physico-Chimica Sinica, 2025, 41(7): 100075-0. doi: 10.1016/j.actphy.2025.100075

    2. [2]

      Ziyang LongQuanzheng LiChengliang ZhangHaifeng Shi . BiVO4/WO3-x S-scheme heterojunctions with amplified internal electric field for boosting photothermal-catalytic activity. Acta Physico-Chimica Sinica, 2025, 41(10): 100122-0. doi: 10.1016/j.actphy.2025.100122

    3. [3]

      Qiang ChengJingping LiZhendong KeJiaming LiKai Wang . Advanced oxidation technology synergistic photothermal degradation of antibiotics over inorganic/organic S-scheme heterojunction. Acta Physico-Chimica Sinica, 2026, 42(5): 100187-0. doi: 10.1016/j.actphy.2025.100187

    4. [4]

      Chengyan GeJiawei HuXingyu LiuYuxi SongChao LiuZhigang Zou . Self-integrated black NiO clusters with ZnIn2S4 microspheres for photothermal-assisted hydrogen evolution by S-scheme electron transfer mechanism. Acta Physico-Chimica Sinica, 2026, 42(1): 100154-0. doi: 10.1016/j.actphy.2025.100154

    5. [5]

      Zhen LiSujuan ZhangZhongliao WangJinfeng ZhangGaoli ChenShifu Chen . Rational design of S-scheme CdS/MnO2 heterojunctions for high-value photothermal synergistic catalytic oxidation of toluene. Acta Physico-Chimica Sinica, 2026, 42(4): 100179-0. doi: 10.1016/j.actphy.2025.100179

    6. [6]

      Kaihui HuangDejun ChenXin ZhangRongchen ShenPeng ZhangDifa XuXin Li . Constructing Covalent Triazine Frameworks/N-Doped Carbon-Coated Cu2O S-Scheme Heterojunctions for Boosting Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(12): 2407020-0. doi: 10.3866/PKU.WHXB202407020

    7. [7]

      Aoyun MengZhenhua LiGuoyuan XiongZhen LiJinfeng Zhang . S-scheme heterojunction Al6Si2O13/BiOBr with enhanced charge transfer effect for efficient and stable photocatalytic degradation of triazophos and dichlorvos pesticides. Acta Physico-Chimica Sinica, 2026, 42(5): 100186-0. doi: 10.1016/j.actphy.2025.100186

    8. [8]

      Fan FanHao XiuYuting WangYongpeng CuiYajun Wang . Construction of NH2-MIL-125/Na-doped g-C3N4 composite S-scheme heterojunction and its performance in photocatalytic hydrogen peroxide production. Acta Physico-Chimica Sinica, 2026, 42(2): 100143-0. doi: 10.1016/j.actphy.2025.100143

    9. [9]

      Yi YangXin ZhouMiaoli GuBei ChengZhen WuJianjun Zhang . Femtosecond transient absorption spectroscopy investigation on ultrafast electron transfer in S-scheme ZnO/CdIn2S4 photocatalyst for H2O2 production and benzylamine oxidation. Acta Physico-Chimica Sinica, 2025, 41(6): 100064-0. doi: 10.1016/j.actphy.2025.100064

    10. [10]

      Jiali LeiJuan WangWenhui ZhangGuohong WangZihui LiangJinmao Li . TiO2/CdIn2S4 S-scheme heterojunction photocatalyst promotes photocatalytic hydrogen evolution coupled vanillyl alcohol oxidation. Acta Physico-Chimica Sinica, 2025, 41(12): 100174-0. doi: 10.1016/j.actphy.2025.100174

    11. [11]

      Ze LuoYukun ZhuYadan LuoGuangmin RenYonghong WangHua Tang . Photocatalytic selective oxidation of 5-hydroxymethylfurfural coupled with H2 evolution over In2O3/ZnIn2S4 S-scheme heterojunction. Acta Physico-Chimica Sinica, 2026, 42(3): 100166-0. doi: 10.1016/j.actphy.2025.100166

    12. [12]

      Xinwan ZhaoYue CaoMinjun LeiZhiliang JinTsubaki Noritatsu . Constructing S-scheme heterojunctions by integrating covalent organic frameworks with transition metal sulfides for efficient noble-metal-free photocatalytic hydrogen evolution. Acta Physico-Chimica Sinica, 2025, 41(12): 100152-0. doi: 10.1016/j.actphy.2025.100152

    13. [13]

      Jianyu QinYuejiao AnYanfeng ZhangIn Situ Assembled ZnWO4/g-C3N4 S-Scheme Heterojunction with Nitrogen Defect for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2408002-0. doi: 10.3866/PKU.WHXB202408002

    14. [14]

      Jie GuoLijun XueFahui SongChengpeng LiZhuo ChenLili Wen . Dual built-in electric field-driven S-scheme heterojunction of D-A COFs/ZnIn2S4 for accelerated charge separation toward high-efficiency H2O2 photosynthesis in pure water. Acta Physico-Chimica Sinica, 2026, 42(4): 100177-0. doi: 10.1016/j.actphy.2025.100177

    15. [15]

      Kexin DongChuqi ShenRuyu YanYanping LiuChunqiang ZhuangShijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-0. doi: 10.3866/PKU.WHXB202310013

    16. [16]

      Tieping CAOYuejun LIDawei SUN . Surface plasmon resonance effect enhanced photocatalytic CO2 reduction performance of S-scheme Bi2S3/TiO2 heterojunction. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 903-912. doi: 10.11862/CJIC.20240366

    17. [17]

      Jinhui JiangJiaqi SunYongyi ChenLei ZhangPengyu Dong . W18O49/Al-doped SrTiO3 S-scheme heterojunction aided by the LSPR effect for full-spectrum solar light-driven photocatalytic hydrogen evolution. Acta Physico-Chimica Sinica, 2025, 41(11): 100145-0. doi: 10.1016/j.actphy.2025.100145

    18. [18]

      Yang XiaKangyan ZhangHeng YangLijuan ShiQun Yi . Improving Photocatalytic H2O2 Production over iCOF/Bi2O3 S-Scheme Heterojunction in Pure Water via Dual Channel Pathways. Acta Physico-Chimica Sinica, 2024, 40(11): 2407012-0. doi: 10.3866/PKU.WHXB202407012

    19. [19]

      Shumin ZhangYaqi WangZelin WangLibo WangChangsheng AnDifa Xu . Ultrafast electron transfer at the ZIS1−x/UCN S-scheme interface enables efficient H2O2 photosynthesis coupled with tetracycline degradation. Acta Physico-Chimica Sinica, 2025, 41(11): 100136-0. doi: 10.1016/j.actphy.2025.100136

    20. [20]

      Ruolin CHENGYue WANGXiyao NIUHuagen LIANGLing LIUShijian LU . Efficient photothermal catalytic CO2 cycloaddition over W18O49/rGO composites. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1276-1284. doi: 10.11862/CJIC.20240424

Metrics
  • PDF Downloads(2)
  • Abstract views(1110)
  • HTML views(204)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return