Citation: Weikang Wang,  Yadong Wu,  Jianjun Zhang,  Kai Meng,  Jinhe Li,  Lele Wang,  Qinqin Liu. 三聚氰胺泡沫支撑的S型硫铟锌镉/硫掺杂氮化碳异质结的绿色H2O2合成:协同界面电荷转移调控与局域光热效应[J]. Acta Physico-Chimica Sinica, ;2025, 41(8): 100093. doi: 10.1016/j.actphy.2025.100093 shu

三聚氰胺泡沫支撑的S型硫铟锌镉/硫掺杂氮化碳异质结的绿色H2O2合成:协同界面电荷转移调控与局域光热效应

  • Received Date: 13 March 2025
    Revised Date: 1 April 2025
    Accepted Date: 10 April 2025

    Fund Project: This work was supported by the Natural Science Foundation of China (22472069, 22102064, 22302080) and Anhui Key Laboratory of Nanomaterials and Nanotechnology, the Major Science and Technology Projects in Anhui Province (202305a12020006).

  • 绿色光催化合成过氧化氢(H2O2)是替代高能耗蒽醌工艺的理想途径,但其在无牺牲剂体系中受限于快速载流子复合与氧化还原能力不足。本研究报道了一种原位化学浴-水热法制备的三聚氰胺泡沫(MF)负载的硫掺杂氮化碳(SCN)/硫空位修饰硫铟锌镉(CZIS)S型异质结(CZIS/SCN/MF),用于无牺牲剂H2O2光合成。通过原位辐照X射线光电子能谱(XPS)、自由基捕获电子顺磁共振(EPR)、飞秒瞬态吸收光谱(fs-TA)及理论计算,证实了其S型电荷转移机制。具体而言,硫掺杂可调控氮化碳骨架的局域电荷分布,强化SCN/CZIS异质结界面内建电场;同时,CZIS中煅烧引入的硫空位作为光电子陷阱促进电荷分离,并保留光生空穴用于H2O氧化,从而实现无牺牲剂H2O2合成。结合MF三维多孔框架的光热效应,优化S掺杂浓度和SCN用量的CZIS/SCN/MF催化剂在纯水中H2O2产率达3.46 mmol·g-1·h-1,显著优于多数无牺牲剂体系。该研究为无牺牲剂光催化体系中的界面电荷协同调控与能量转换强化提供了新策略。
  • 加载中
    1. [1]

      Y. Zhang, C. Pan, G. Bian, J. Xu, Y. Dong, Y. Zhang, Y. Lou, W. Liu, Y. Zhu, Nat. Energy 8 (2023) 361, http://doi.org/10.1038/s41560-023-01218-7.

    2. [2]

      X. Zhang, D. Gao, B. Zhu, B. Cheng, J. Yu, H. Yu, Nat. Commun. 15 (2024) 3212, http://doi.org/10.1038/s41467-024-47624-7.

    3. [3]

      A. Meng, X. Ma, D. Wen, W. Zhong, S. Zhou, Y. Su, Chin. J. Catal. 60 (2024) 231, http://doi.org/10.1016/s1872-2067(24)60008-2.

    4. [4]

      K. Zhang, Y. Li, S. Yuan, L. Zhang, Q. Wang, Acta Phys. Chim. Sin. 39 (2023) 2212010, http://doi.org/10.3866/PKU.WHXB202212010.

    5. [5]

      K. Li, J. Mei, J. Li, Y. Liu, G. Wang, D. Hu, S. Yan, K. Wang, Sci. China Mater. 67 (2024) 484, http://doi.org/10.1007/s40843-023-2717-0.

    6. [6]

      Y. Zhang, Y. Wang, Y. Liu, S. Zhang, Y. Zhao, J. Zhang, J. Materiomics 11 (2025) 100985, http://doi.org/10.1016/j.jmat.2024.100985.

    7. [7]

      W. Wang, L. Wang, L. Sun, H. Jiang, Y. Liu, Q. Liu, X. She, H. Tang, Chem. Eng. J. 477 (2023) 146945, http://doi.org/10.1016/j.cej.2023.146945.

    8. [8]

      Y. Wu, C. Cheng, K. Qi, B. Cheng, J. Zhang, J. Yu, L. Zhang, Acta Phys. Chim. Sin. 40 (2024) 2406027, http://doi.org/10.3866/PKU.WHXB202406027.

    9. [9]

      Q. Zhang, H. Miao, J. Wang, T. Sun, E. Liu, Chin. J. Catal. 63 (2024) 176, http://doi.org/10.1016/s1872-2067(24)60077-x.

    10. [10]

      W. Wang, Y. Wu, S. Khan, H. Jiang, M.A. Qaiser, X. Chai, C. Zhu, L. Wang, Q. Liu, Int. J. Hydrogen Energy 77 (2024) 1176, http://doi.org/10.1016/j.ijhydene.2024.06.264.

    11. [11]

      W. Wang, H. Zhang, S. Zhang, Y. Liu, G. Wang, C. Sun, H. Zhao, Angew. Chem. Int. Ed. 58 (2019) 16644, https://doi.org/10.1002/anie.201908640.

    12. [12]

      W. Wang, R. Liu, J. Zhang, T. Kong, L. Wang, X. Yu, X. Ji, Q. Liu, R. Long, Z. Lu, Y. Xiong, Angew. Chem. Int. Ed. 64 (2025) e202415800, http://doi.org/10.1002/anie.202415800.

    13. [13]

      W. Yang, J. Zhang, Q. Xu, Y. Yang, L. Zhang, Acta Phys. Chim. Sin. 40 (2024) 2312014, http://doi.org/10.3866/PKU.WHXB202312014.

    14. [14]

      Y. Yang, J. Liu, M. Gu, B. Cheng, L. Wang, J. Yu, Appl. Catal. B Environ. 333 (2023) 122780, http://doi.org/10.1016/j.apcatb.2023.122780.

    15. [15]

      X. Deng, J. Zhang, K. Qi, G. Liang, F. Xu, J. Yu, Nat. Commun. 15 (2024) 4807, http://doi.org/10.1038/s41467-024-49004-7.

    16. [16]

      X. Wu, L. Tan, G. Chen, J. Kang, G. Wang, Sci. China Mater. 67 (2024) 444, http://doi.org/10.1007/s40843-023-2755-2.

    17. [17]

      W. Yu, C. Bie, Acta Phys. Chim. Sin. 40 (2024) 2307022, http://doi.org/10.3866/PKU.WHXB202307022.

    18. [18]

      W. Wang, S. Mei, H. Jiang, L. Wang, H. Tang, Q. Liu, Chin. J. Catal. 55 (2023) 137, http://doi.org/10.1016/s1872-2067(23)64551-6.

    19. [19]

      R. He, D. Xu, X. Li, J. Mater. Sci. Technol. 138 (2023) 256, http://doi.org/10.1016/j.jmst.2022.09.002.

    20. [20]

      W. Zhong, A. Meng, Y. Su, H. Yu, P. Han, J. Yu, Angew. Chem. Int. Ed. 64 (2025) e202425038, http://doi.org/10.1002/anie.202425038.

    21. [21]

      Y. Li, Z. Xia, Q. Yang, L. Wang, Y. Xing, J. Mater. Sci. Technol. 125 (2022) 128, http://doi.org/10.1016/j.jmst.2022.02.035.

    22. [22]

      C. Zhang, L. Lin, M. Zhou, Y. Wang, S. Xu, X. Chen, Z. Li, Chem. Eng. J. 495 (2024) 153563, http://doi.org/10.1016/j.cej.2024.153563.

    23. [23]

      Z. Jiang, Q. Long, B. Cheng, R. He, L. Wang, J. Mater. Sci. Technol. 162 (2023) 1, http://doi.org/10.1016/j.jmst.2023.03.045.

    24. [24]

      S. Mao, R. He, S. Song, Chin. J. Catal. 64 (2024) 1, http://doi.org/10.1016/s1872-2067(24)60102-6.

    25. [25]

      Y. Niu, Y.-Y. Li, J. Wang, H. Wang, B. Wang, J. Xu, M. Tian, H. Lin, L. Wang, Inorg. Chem. 62 (2023) 5690, http://doi.org/10.1021/acs.inorgchem.3c00240.

    26. [26]

      W. Wang, W. Shan, Y. Hu, H. Jiang, L. Wang, J. Chen, Q. Liu, H. Tang, Chem. Eng. J. 493 (2024) 152516, http://doi.org/10.1016/j.cej.2024.152516.

    27. [27]

      Y. Sun, R. Xiong, X. Ke, J. Liao, Y. Xiao, B. Cheng, S. Lei, Sep. Purif. Technol. 345 (2024) 127253, http://doi.org/10.1016/j.seppur.2024.127253.

    28. [28]

      L. Ying, Z. Huang, Y. Dong, F. Lin, J. Ding, W. Wang, J. Lu, Desalination 549 (2023) 116328, http://doi.org/10.1016/j.desal.2022.116328.

    29. [29]

      H. Xu, S. Zhang, X. Zhang, M. Xu, J. Geng, M. Han, H. Zhang, J. Mater. Chem. A 11 (2023) 10204, http://doi.org/10.1039/d2ta09904g.

    30. [30]

      C. Lu, S. Khan, H. Jiang, M.A. Qaiser, W. Wang, L. Wang, Q. Liu, Appl. Surf. Sci. 654 (2024) 159463, http://doi.org/10.1016/j.apsusc.2024.159463.

    31. [31]

      C. Liu, Q. Zhang, Z. Zou, J. Mater. Sci. Technol. 139 (2023) 167, http://doi.org/10.1016/j.jmst.2022.08.030.

    32. [32]

      C. Zhu, Q. He, W. Wang, F. Du, F. Yang, C. Chen, C. Wang, S. Wang, X. Duan, J. Colloid. Interf. Sci. 620 (2022) 253, http://doi.org/10.1016/j.jcis.2022.04.024.

    33. [33]

      X. Wu, D. Li, B. Luo, B. Chen, Y. Huang, T. Yu, N. Shen, L. Li, W. Shi, Appl. Catal. B Environ. 325 (2023) 122292, http://doi.org/10.1016/j.apcatb.2022.122292.

    34. [34]

      S. Xu, Y. Yu, X. Zhang, D. Xue, Y. Wei, H. Xia, F. Zhang, J.N. Zhang, Angew. Chem. Int. Ed. 63 (2024) e202407578, http://doi.org/10.1002/anie.202407578.

    35. [35]

      S. Wang, G. Hu, Y. Dou, S. Li, M. Li, H. Feng, Y.-S. Feng, Sep. Purif. Technol. 354 (2025) 129220, http://doi.org/10.1016/j.seppur.2024.129220.

    36. [36]

      J. Sun, H. Liu, S. Wang, Y. Zhang, C. Bie, L. Zhang, J. Materiomics 11 (2025) 100975, http://doi.org/10.1016/j.jmat.2024.100975.

    37. [37]

      K. Meng, J. Zhang, B. Cheng, X. Ren, Z. Xia, F. Xu, L. Zhang, J. Yu, Adv. Mater. 36 (2024) 2406460, http://doi.org/10.1002/adma.202406460.

    38. [38]

      M. Gu, Y. Yang, B. Cheng, L. Zhang, P. Xiao, T. Chen, Chin. J. Catal. 59 (2024) 185, http://doi.org/10.1016/s1872-2067(23)64610-8.

    39. [39]

      H. Zhang, J. Liu, Y. Zhang, B. Cheng, B. Zhu, L. Wang, J. Mater. Sci. Technol. 166 (2023) 241, http://doi.org/10.1016/j.jmst.2023.05.030.

    40. [40]

      Y. Zhao, Y. Zhang, H. Tan, C. Ai, J. Zhang, J. Materiomics 11 (2025) 100970, http://doi.org/10.1016/j.jmat.2024.100970.

    41. [41]

      B. Zhu, J. Liu, J. Sun, F. Xie, H. Tan, B. Cheng, J. Zhang, J. Mater. Sci. Technol. 162 (2023) 90, http://doi.org/10.1016/j.jmst.2023.03.054.

    42. [42]

      J. Qiu, K. Meng, Y. Zhang, B. Cheng, J. Zhang, L. Wang, J. Yu, Adv. Mater. 36 (2024) 2400288, http://doi.org/10.1002/adma.202400288.

    43. [43]

      M. Sayed, F. Xu, P. Kuang, J. Low, S. Wang, L. Zhang, J. Yu, Nat. Commun. 12 (2021) 4936, http://doi.org/10.1038/s41467-021-25007-6.

    44. [44]

      W. Wang, W. Zhang, Y. Cai, Q. Wang, J. Deng, J. Chen, Z. Jiang, Y. Zhang, C. Yu, Nano Res. 16 (2023) 2177, http://doi.org/10.1007/s12274-022-4976-0.

    45. [45]

      Y. Ma, S. Wang, Y. Zhang, B. Cheng, L. Zhang, J. Materiomics 11 (2025) 100978, http://doi.org/10.1016/j.jmat.2024.100978.

    46. [46]

      F. Xu, Y. He, J. Zhang, G. Liang, C. Liu, J. Yu, Angew. Chem. Int. Ed. 64 (2025) e202414672 http://doi.org/10.1002/anie.202414672.

    47. [47]

      M. Gu, J. Zhang, I.V. Kurganskii, A.S. Poryvaev, M.V. Fedin, B. Cheng, J. Yu, L. Zhang, Adv. Mater. 37 (2025) 2414803, http://doi.org/10.1002/adma.202414803.

    48. [48]

      Y. Xia, K. Zhang, H. Yang, L. Shi, Q. Yi, Acta Phys. Chim. Sin. 40 (2024) 2407012, http://doi.org/10.3866/PKU.WHXB202407012.

    49. [49]

      J. Yan, J. Zhang, J. Mater. Sci. Technol. 193 (2024) 18, http://doi.org/10.1016/j.jmst.2023.12.054.

    50. [50]

      G. Sun, Z. Tai, J. Zhang, B. Cheng, H. Yu, J. Yu, Appl. Catal. B Environ. 358 (2024) 124459, http://doi.org/10.1016/j.apcatb.2024.124459.

    51. [51]

      X. Zhou, C. Ai, X. Wang, Z. Wu, J. Zhang, J. Materiomics 11 (2025) 100974, http://doi.org/10.1016/j.jmat.2024.100974.

    52. [52]

      J. Cai, B. Liu, S. Zhang, L. Wang, Z. Wu, J. Zhang, B. Cheng, J. Mater. Sci. Technol. 197 (2024) 183, http://doi.org/10.1016/j.jmst.2024.02.012.

    53. [53]

      J. Zhang, B. Zhu, L. Zhang, J. Yu, Chem.Commun. 59 (2023) 688, http://doi.org/10.1039/d2cc06300j.

    54. [54]

      S. Wan, W. Wang, B. Cheng, G. Luo, Q. Shen, J. Yu, J. Zhang, S. Cao, L. Zhang, Nat. Commun. 15 (2024) 9612, http://doi.org/10.1038/s41467-024-53951-6.

    55. [55]

      C. Cheng, J. Yu, D. Xu, L. Wang, G. Liang, L. Zhang, M. Jaroniec, Nat. Commun. 15 (2024) 1313, http://doi.org/10.1038/s41467-024-45604-5.

    56. [56]

      C. Cheng, J. Zhang, B. Zhu, G. Liang, L. Zhang, J. Yu, Angew. Chem. Int. Ed. 62 (2023) e202218688, http://doi.org/10.1002/anie.202218688.

    57. [57]

      D. Zu, Y. Ying, Q. Wei, P. Xiong, M.S. Ahmed, Z. Lin, M.M.J. Li, M. Li, Z. Xu, G. Chen, L. Bai, S. She, Y.H. Tsang, H. Huang, Angew. Chem. Int. Ed. 63 (2024) e202405756, http://doi.org/10.1002/anie.202405756.

    58. [58]

      Y. Yang, X. Zhou, M. Gu, B. Cheng, Z. Wu, J. Zhang, Acta Phys. Chim. Sin. 41 (2025) 100064, http://doi.org/10.1016/j.actphy.2025.100064.

    59. [59]

      T. Wang, X. Pan, M. He, L. Kang, W. Ma, Adv. Sci. 11 (2024) 2403771, http://doi.org/10.1002/advs.202403771.

    60. [60]

      M.D. Segall, P.J.D. Lindan, M.J. Probert, C.J. Pickard, P.J. Hasnip, S.J. Clark, M.C. Payne, J. Phys. Condens. Mat. 14 (2002) 2717, http://doi.org/10.1088/0953-8984/14/11/301.

    61. [61]

      Y. Wu, Y. Yang, M. Gu, C. Bie, H. Tan, B. Cheng, J. Xu, Chin. J. Catal. 53 (2023) 123, http://doi.org/10.1016/s1872-2067(23)64514-0.

    62. [62]

      Wang, L.-Y. Huang, L.-J. Xue, Q. Kang, L.-L. Wen, K.-L. Lv, Appl. Catal. B Environ. 358 (2024) 124366, http://doi.org/10.1016/j.apcatb.2024.124366.

  • 加载中
    1. [1]

      Chao Liu Huan Yu Jiaming Li Xi Yu Zhuangzhi Yu Yuxi Song Feng Zhang Qinfang Zhang Zhigang Zou . Facile synthesis of hierarchical Ti3C2/Bi12O17Br2 Schottky heterojunction with photothermal effect for solar-driven antibiotics photodegradation. Acta Physico-Chimica Sinica, 2025, 41(7): 100075-. doi: 10.1016/j.actphy.2025.100075

    2. [2]

      Kaihui Huang Dejun Chen Xin Zhang Rongchen Shen Peng Zhang Difa Xu Xin Li . Constructing Covalent Triazine Frameworks/N-Doped Carbon-Coated Cu2O S-Scheme Heterojunctions for Boosting Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(12): 2407020-. doi: 10.3866/PKU.WHXB202407020

    3. [3]

      Yi Yang Xin Zhou Miaoli Gu Bei Cheng Zhen Wu Jianjun Zhang . Femtosecond transient absorption spectroscopy investigation on ultrafast electron transfer in S-scheme ZnO/CdIn2S4 photocatalyst for H2O2 production and benzylamine oxidation. Acta Physico-Chimica Sinica, 2025, 41(6): 100064-. doi: 10.1016/j.actphy.2025.100064

    4. [4]

      Jianyu Qin Yuejiao An Yanfeng ZhangIn Situ Assembled ZnWO4/g-C3N4 S-Scheme Heterojunction with Nitrogen Defect for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2408002-. doi: 10.3866/PKU.WHXB202408002

    5. [5]

      Kexin Dong Chuqi Shen Ruyu Yan Yanping Liu Chunqiang Zhuang Shijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-. doi: 10.3866/PKU.WHXB202310013

    6. [6]

      Tieping CAOYuejun LIDawei SUN . Surface plasmon resonance effect enhanced photocatalytic CO2 reduction performance of S-scheme Bi2S3/TiO2 heterojunction. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 903-912. doi: 10.11862/CJIC.20240366

    7. [7]

      Yang Xia Kangyan Zhang Heng Yang Lijuan Shi Qun Yi . 构建双通道路径增强iCOF/Bi2O3 S型异质结在纯水体系中光催化合成H2O2性能. Acta Physico-Chimica Sinica, 2024, 40(11): 2407012-. doi: 10.3866/PKU.WHXB202407012

    8. [8]

      Yuejiao An Wenxuan Liu Yanfeng Zhang Jianjun Zhang Zhansheng Lu . Revealing Photoinduced Charge Transfer Mechanism of SnO2/BiOBr S-Scheme Heterostructure for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2407021-. doi: 10.3866/PKU.WHXB202407021

    9. [9]

      Xinyu Miao Hao Yang Jie He Jing Wang Zhiliang Jin . Adjusting the electronic structure of Keggin-type polyoxometalates to construct S-scheme heterojunction for photocatalytic hydrogen evolution. Acta Physico-Chimica Sinica, 2025, 41(6): 100051-. doi: 10.1016/j.actphy.2025.100051

    10. [10]

      Chenye An Abiduweili Sikandaier Xue Guo Yukun Zhu Hua Tang Dongjiang Yang . 红磷纳米颗粒嵌入花状CeO2分级S型异质结高效光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2405019-. doi: 10.3866/PKU.WHXB202405019

    11. [11]

      Xiutao Xu Chunfeng Shao Jinfeng Zhang Zhongliao Wang Kai Dai . Rational Design of S-Scheme CeO2/Bi2MoO6 Microsphere Heterojunction for Efficient Photocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309031-. doi: 10.3866/PKU.WHXB202309031

    12. [12]

      Shijie Li Ke Rong Xiaoqin Wang Chuqi Shen Fang Yang Qinghong Zhang . Design of Carbon Quantum Dots/CdS/Ta3N5 S-Scheme Heterojunction Nanofibers for Efficient Photocatalytic Antibiotic Removal. Acta Physico-Chimica Sinica, 2024, 40(12): 2403005-. doi: 10.3866/PKU.WHXB202403005

    13. [13]

      Jinwang Wu Qijing Xie Chengliang Zhang Haifeng Shi . 自旋极化增强ZnFe1.2Co0.8O4/BiVO4 S型异质结光催化性能降解四环素. Acta Physico-Chimica Sinica, 2025, 41(5): 100050-. doi: 10.1016/j.actphy.2025.100050

    14. [14]

      Jiajie Cai Chang Cheng Bowen Liu Jianjun Zhang Chuanjia Jiang Bei Cheng . CdS/DBTSO-BDTO S型异质结光催化制氢及其电荷转移动力学. Acta Physico-Chimica Sinica, 2025, 41(8): 100084-. doi: 10.1016/j.actphy.2025.100084

    15. [15]

      Jiaxing Cai Wendi Xu Haoqiang Chi Qian Liu Wa Gao Li Shi Jingxiang Low Zhigang Zou Yong Zhou . 具有0D/2D界面的InOOH/ZnIn2S4空心球S型异质结用于增强光催化CO2转化性能. Acta Physico-Chimica Sinica, 2024, 40(11): 2407002-. doi: 10.3866/PKU.WHXB202407002

    16. [16]

      Peng Li Yuanying Cui Zhongliao Wang Graham Dawson Chunfeng Shao Kai Dai . Efficient interfacial charge transfer of CeO2/Bi19Br3S27 S-scheme heterojunction for boosted photocatalytic CO2 reduction. Acta Physico-Chimica Sinica, 2025, 41(6): 100065-. doi: 10.1016/j.actphy.2025.100065

    17. [17]

      You Wu Chang Cheng Kezhen Qi Bei Cheng Jianjun Zhang Jiaguo Yu Liuyang Zhang . ZnO/D-A共轭聚合物S型异质结高效光催化产H2O2及其电荷转移动力学研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-. doi: 10.3866/PKU.WHXB202406027

    18. [18]

      Changjun You Chunchun Wang Mingjie Cai Yanping Liu Baikang Zhu Shijie Li . 引入内建电场强化BiOBr/C3N5 S型异质结中光载流子分离以实现高效催化降解微污染物. Acta Physico-Chimica Sinica, 2024, 40(11): 2407014-. doi: 10.3866/PKU.WHXB202407014

    19. [19]

      Fanpeng Meng Fei Zhao Jingkai Lin Jinsheng Zhao Huayang Zhang Shaobin Wang . 优化氮化碳纳米片/球形共轭聚合物S型异质结界面电场以促进析氢反应. Acta Physico-Chimica Sinica, 2025, 41(8): 100095-. doi: 10.1016/j.actphy.2025.100095

    20. [20]

      Zhuoya WANGLe HEZhiquan LINYingxi WANGLing LI . Multifunctional nanozyme Prussian blue modified copper peroxide: Synthesis and photothermal enhanced catalytic therapy of self-provided hydrogen peroxide. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2445-2454. doi: 10.11862/CJIC.20240194

Metrics
  • PDF Downloads(0)
  • Abstract views(12)
  • HTML views(1)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return