Citation: Zeqiu Chen,  Limiao Cai,  Jie Guan,  Zhanyang Li,  Hao Wang,  Yaoguang Guo,  Xingtao Xu,  Likun Pan. 电容去离子提锂技术中电极材料的研究进展[J]. Acta Physico-Chimica Sinica, ;2025, 41(8): 100089. doi: 10.1016/j.actphy.2025.100089 shu

电容去离子提锂技术中电极材料的研究进展

  • Received Date: 17 January 2025
    Revised Date: 3 April 2025
    Accepted Date: 7 April 2025

    Fund Project: The project was supported by the National Natural Science Foundation of China (52400174, 52270129, 52370142), Shanghai Sailing Program (24YF2714000), Oriental Talent Youth Program, and Shanghai Shuguang Program (23SG52).

  • 随着新能源领域对锂资源需求的持续增长,开发高效的锂提取技术变得及其重要。然而,由于其高能耗和可能引发的二次污染问题,传统的锂提取和回收技术具有实际应用和发展的局限性。电容去离子(CDI)技术作为一种新兴的锂提取技术,在效率、成本效益和能源消耗方面展现出巨大的潜力。本综述从文献计量入手,剖析了CDI提锂的关键研究主题,进而全面总结了在CDI提锂技术中电极材料的最新进展,并探讨了使用这些材料构建的各种CDI系统类型。本研究详细阐明了CDI系统中用于锂资源回收的主要电极材料——水系锂离子电极材料(包括LiFePO4、LiMn2O4、LiNi1/3Co1/3Mn1/3O2等)及其修饰材料(包括碳纳米管、石墨烯、MOF等)。此外,本文讨论了通过不同的电容去离子(CDI)系统提高锂提取效率,并评估了各种先进电极材料在这些系统中的性能。文末强调了机器学习在CDI提锂领域的应用潜力,并期望本研究将为未来开发基于CDI的高效锂提取系统提供坚实的理论基础和实践指导。
  • 加载中
    1. [1]

      P. Greim, A. Solomon, C. Breyer, Nat. Commun. 11 (1) (2020) 4570, https://doi.org/10.1038/s41467-020-18402-y.

    2. [2]

      S. Sahoo, S. Tripathy, A. Nayak, K. Hembrom, S. Dey, R. Rath, M. Mohanta, Miner. Process. Extr. M 45 (1) (2022) 1, https://doi.org/10.1080/08827508.2022.2117172.

    3. [3]

      E. Dugamin, A. Richard, M. Cathelineau, M. Boiron, F. Despinois, A. Brisset, Sci. Rep. 11 (1) (2021) 21091, https://doi.org/10.1038/s41598-021-99912-7.

    4. [4]

      L. Talens Peiró, G. Villalba Méndez, R. Ayres, Jom 65 (8) (2013) 986, https://doi.org/10.1007/s11837-013-0666-4.

    5. [5]

      T. Gao, N. Fan, W. Chen, T. Dai, China Geol. 6 (1) (2023) 137, https://doi.org/10.31035/cg2022088.

    6. [6]

      Y. Sun, Q. Wang, Y. Wang, R. Yun, X. Xiang, Sep. Purif. Technol. 256 (2021) 117807, https://doi.org/10.1016/j.seppur.2020.117807.

    7. [7]

      M. Zheng, X. Zhang, M. Li, D. Che, L. Bu, J. Han, C. Ye. China Geol. 6 (4) (2023) 547, https://doi.org/10.31035/cg2023061.

    8. [8]

      A. Khalil, S. Mohammed, R. Hashaikeh, N. Hilal, Desalination 528 (2022) 115611, https://doi.org/10.1016/j.desal.2022.115611.

    9. [9]

      J. Song, L. Nghiem, X. Li, T. He, Environ. Sci.-Wat. Res‌‌. Technol. 3 (4) (2017) 593, https://doi.org/10.1039/c7ew00020k.

    10. [10]

      L. Wu, C. Zhang, S. Kim, T. Hatton, H. Mo, T. Waite, Water Res. 221 (2022) 118822, https://doi.org/10.1016/j.watres.2022.118822.

    11. [11]

      Y. Zhang, Y. Hu, L. Wang, W. Sun, Miner. Eng. 139 (2019) 105865, https://doi.org/10.1016/j.mineng.2019.105868.

    12. [12]

      Z. Xu, H. Zhang, R. Wang, W. Gui, G. Liu, Y. Yang, Ind. Eng. Chem. Res. 53 (42) (2014) 16502, https://doi.org/10.1021/ie502749n.

    13. [13]

      X. Liu, M. Zhong, X. Chen, Z. Zhao, Hydrometallurgy 176 (2018) 73, https://doi.org/10.1016/j.hydromet.2018.01.005.

    14. [14]

      W. Xiang, S. Liang, Z. Zhou, W. Qin, W. Fei, Hydrometallurgy 171 (2017) 27, https://doi.org/10.1016/j.hydromet.2017.04.007.

    15. [15]

      J. Zhang, Z. Cheng, X. Qin, X. Gao, M. Wang, X. Xiang, Desalination 547 (2023) 116225, https://doi.org/10.1016/j.desal.2022.116225.

    16. [16]

      B. Van Der Bruggen, A. Koninckx, C. Vandecasteele, Water Res. 38 (5) (2004) 1347, https://doi.org/10.1016/j.watres.2003.11.008.

    17. [17]

      A. Somrani, A. Hamzaoui, M. Pontie, Desalination 317 (2013) 184, https://doi.org/10.1016/j.desal.2013.03.009.

    18. [18]

      Y. Li, Y. Zhao, H. Wang, M. Wang, Desalination 468 (2019) 114081, https://doi.org/10.1016/j.desal.2019.114081.

    19. [19]

      L. Li, V. Deshmane, M. Paranthaman, R. Bhave, B. Moyer, S. Harrison, Johnson Matthey Tech. 62 (2) (2018) 161, https://doi.org/10.1595/205651317x696676.

    20. [20]

      H. Yu, G. Naidu, C. Zhang, C. Wang, A. Razmjou, D. Han, T. He, H. Shon, Desalination 539 (2022) 115951, https://doi.org/10.1016/j.desal.2022.115951.

    21. [21]

      A. Battistel, M. Palagonia, D. Brogioli, F. Mantia, R. Trócoli, Adv. Mater. 32 (23) (2020) 1905440, https://doi.org/10.1002/adma.201905440.

    22. [22]

      J. Wang, X. Yue, P. Wang, T. Yu, X. Du, X. Hao, A. Abudula, G. Guan, Renew. Sust. Energy Rev. 154 (2022) 111813, https://doi.org/10.1016/j.rser.2021.111813.

    23. [23]

      Y. Hao, Y. Wang, Y. Wang, X. Guo, X. Yan, Y. Chen, X. Zhang, W. Lang, Ind. Eng. Chem. Res. 62 (50) (2023) 21693, https://doi.org/10.1021/acs.iecr.3c03744.

    24. [24]

      D. Weng, H. Duan, Y. Hou, J. Huo, L. Chen, F. Zhang, J. Wang, Prog. Nat. Sci.-Mater. 30 (2) (2020) 139, https://doi.org/10.1016/j.pnsc.2020.01.017.

    25. [25]

      H. Wang, X. Xu, X. Gao, Y. Li, T. Lu, L. Pan, Coord. Chem. Rev. 510 (2024) 215835, https://doi.org/10.1016/j.ccr.2024.215835.

    26. [26]

      W. Tang, J. Liang, D. He, J. Gong, L. Tang, Z. Liu, D. Wang, G. Zeng, Water Res. 150 (2019) 225, https://doi.org/10.1016/j.watres.2018.11.064.

    27. [27]

      Y. Shin, J. Lim, C. Boo, S. Hong, Desalination 502 (2021) 114930, https://doi.org/10.1016/j.desal.2021.114930.

    28. [28]

      J. Li, L. Han, R. Wang, T. Wang, L. Pan, X. Zhang, C. Wang, Desalination 591 (2024) 118035, https://doi.org/10.1016/j.desal.2024.118035.

    29. [29]

      H. Wang, M. Jiang, G. Xu, C. Wang, X. Xu, Y. Liu, Y. Li, T. Lu, G. Yang, L. Pan, Small 20 (42) (2024) 2401214, https://doi.org/10.1002/smll.202401214.

    30. [30]

      H. Wang, Y. Li, Y. Liu, X. Xu, T. Lu, L. Pan, Sep. Purif. Technol. 354 (2025) 129423, https://doi.org/10.1016/j.seppur.2024.129423.

    31. [31]

      G. Xu, M. Jiang, J. Li, X. Xuan, J. Li, T. Lu, L. Pan, Energy Storage Mater. 72 (2024) 103710, https://doi.org/10.1016/j.ensm.2024.103710.

    32. [32]

      M. Jiang, Y. Zhang, Z. Yang, H. Li, J. Li, J. Li, T. Lu, C. Wang, G. Yang, L. Pan, Inorg. Chem. Front. 10 (22) (2023) 6646, https://doi.org/10.1039/d3qi01705b.

    33. [33]

      Y. Li, Y. Liu, M. Wang, X. Xu, T. Lu, C. Sun, L. Pan, Carbon 130 (2018) 377, https://doi.org/10.1016/j.carbon.2018.01.035.

    34. [34]

      X. Yang, J. Li, W. Qu, W. Wang, P. Wang, J. Ma, Desalination 599 (2025) 118450, https://doi.org/10.1016/j.desal.2024.118450.

    35. [35]

      S. Zavahir, T. Elmakki, M. Gulied, Z. Ahmad, L. Al-Sulaiti, H. Shon, Y. Chen, H. Park, B. Batchelor, D. S. Han, Desalination 500 (2021) 114883, https://doi.org/10.1016/j.desal.2020.114883.

    36. [36]

      M. Liu, M. He, J. Han, Y. Sun, H. Jiang, Z. Li, Y. Li, H. Zhang, Sustainability 14 (21) (2022) 14429, https://doi.org/10.3390/su142114429.

    37. [37]

      Z. Song, Y. Chen, N. Ren, X. Duan, Environ. Funct. Mater. 2 (3) (2023) 290, https://doi.org/10.1016/j.efmat.2023.11.001.

    38. [38]

      M. Chen, Wires Comput. Stat. 2(4) (2010) 387, https://doi.org/10.1002/wics.89.

    39. [39]

      T. Pang, J. Shen, Desalination 527 (2022) 115562, https://doi.org/10.1016/j.desal.2022.115562.

    40. [40]

      J. Ma, R. Zhou, F. Yu, Desalination 571 (2024) 117107, https://doi.org/10.1016/j.desal.2023.117107.

    41. [41]

      C. Xiao, L. Zeng, Hydrometallurgy 178 (2018) 283, https://doi.org/10.1016/j.hydromet.2018.05.001.

    42. [42]

      N. Heidari, P. Momeni, Environ. Earth. Sci. 76 (16) (2017) 551, https://doi.org/10.1007/s12665-017-6885-1.

    43. [43]

      R. Reich, K. Slunitschek, R. Danisi, E. Eiche, J. Kolb, Miner. Process. Extr. M 44 (4) (2022) 261, https://doi.org/10.1080/08827508.2022.2047041.

    44. [44]

      K. Walha, R. Amar, F. Quemeneur, P. Jaouen, Desalination 219 (1–3) (2008) 231, https://doi.org/10.1016/j.desal.2007.05.016.

    45. [45]

      D. Zhou, L. Zhu, Y. Fu, M. Zhu, L. Xue, Desalination 376 (16) (2015) 109, https://doi.org/10.16/jdesal.2015.020.

    46. [46]

      L. Wang, X. Xiong, Z. Fan, G. Zhang, Z. Wang, Appl. Mech. Mater. 378 (2013) 318, https://doi.org/10.4028/www.scientific.net/AMM.378.318.

    47. [47]

      A. Mohammad, Y. Teow, W. Ang, Y. Chung, D. Oatley-Radcliffe, N. Hilal, Desalination 356 (2015) 226, https://doi.org/10.1016/j.desal.2014.10.043.

    48. [48]

      P. Xu, J. Drewes, T. Kim, C. Bellona, G. Amy, J. Membr. Sci. 279 (12) (2006) 165, https://doi.org/10.1016/j.memsci.2005.12.001.

    49. [49]

      J. Blair, G. Murphy, Saline Water Conversion 20 (1960) 206, https://doi.org/10.21/ba-1960-0027.ch020.

    50. [50]

      A. Johnson, J. Newman, J. Electrochem. Soc. 118 (3) (1971) 510, https://doi.org/10.1149/1.2408094.

    51. [51]

      P. Srimuk, X. Su, J. Yoon, D. Aurbach, V. Presser, Nat. Rev. Mater. 5 (7) (2020) 517, https://doi.org/10.1038/s41578-020-0193-1.

    52. [52]

      D. Lee, T. Ryu, J. Shin, J. Ryu, K. Chung, Y. Kim, Hydrometallurgy 173 (2017) 283, https://doi.org/10.1016/j.hydromet.2017.09.005.

    53. [53]

      M. Pasta, A. Battistel, F. La Mantia, Energy Environ. Sci. 5 (11) (2012) 9487, https://doi.org/10.1039/c2ee22977c.

    54. [54]

      R. Al-Juboori, S. Bakly, L. Bowtell, S. Alkurdi, A. Altaee, J. Water Process. Eng. 47 (2022) 102786, https://doi.org/10.1016/j.jwpe.2022.102786.

    55. [55]

      H. Wang, Y. Liu, Y. Li, X. Xu, X. Liu, Y. Yao, T. Lu, L. Pan, Chem. Eng. J. 496 (2024) 153808, https://doi.org/10.1016/j.cej.2024.153808.

    56. [56]

      H. Wang, Y. Liu, Y. Li, X. Xu, T. Lu, L. Pan, Mater. Horiz. 11 (21) (2024) 5209, https://doi.org/10.1039/d4mh00773e.

    57. [57]

      X. Zhang, Y. Li, Z. Yang, P. Yang, J. Wang, M. Shi, F. Yu, J. Ma, Sep. Purif. Technol. 297 (2022) 121510, https://doi.org/10.1016/j.seppur.2022.121510.

    58. [58]

      M. Gao, J. Li, Z. Wang, Z. Yang, Y. Chen, W. Deng, W. Liang, T. Ao, W. Chen, Sep. Purif. Technol. 328 (2024) 125084, https://doi.org/10.1016/j.seppur.2023.125084.

    59. [59]

      A. Sood, A. Poletayev, D Cogswell, P. Csernica, J. Mefford, D. Fraggedakis, M. Toney, A. Lindenberg, M. Bazant, W. Chueh, Nat. Rev. Mater. 6 (9) (2021) 847, https://doi.org/10.1038/s41578-021-00314-y.

    60. [60]

      K. Salari, P. Zarafshan, M. Khashehchi, G. Chegini, H. Etezadi, H. Karami, J. Szulżyk-Cieplak, G. Łagód, Membranes 12 (5) (2022) 459, https://doi.org/10.3390/membranes12050459.

    61. [61]

      Z. He, Y. Lv, T. Zhang, Y. Zhu, L. Dai, S. Yao, W. Zhu, L. Wang, Chem. Eng. J. 427 (2022) 131680, https://doi.org/10.1016/j.cej.2021.131680.

    62. [62]

      S. Bao, C. Xin, Y. Zhang, B. Chen, W. Ding, Y. Luo, Energies 16 (3) (2023) 1136, https://doi.org/10.3390/en16031136.

    63. [63]

      J. Wang, J. Yuan, H. Gao, F. Yu, J. Ma, Chem. Eng. J. 480 (2024) 147986, https://doi.org/10.1016/j.cej.2023.147986.

    64. [64]

      E. Sayed, M. Obaid, A. Olabi, M. Abdelkareem, M. Al Radi, A. Al-Dawoud, S. Al-Asheh, N. Ghaffour, J. Water. Process. Eng. 56 (2023) 104379, https://doi.org/10.1016/j.jwpe.2023.104379.

    65. [65]

      P. Sivasubramanian, M. Kumar, V. Kirankumar, M. Samuel, C. Dong, J. Chang, Desalination 559 (2023) 116652, https://doi.org/10.1016/j.desal.2023.116652.

    66. [66]

      F. Yu, Y. Yang, X. Zhang, J. Ma, Sep. Purif. Technol. 354 (2025) 129285, https://doi.org/10.1016/j.seppur.2024.129285.

    67. [67]

      Y. Tao, Y. Cui, H. Wang, Z. Li, Z. Qian, P. Zhang, H. Zhou, M. Shi, Adv. Funct. Mater. 35 (6) (2024) 2414805, https://doi.org/10.1002/adfm.202414805.

    68. [68]

      Q. Wang, Q. Wu, M. Zhao, S. Lu, D. Liang, Chem. Eng. J. 482 (2024) 148923, https://doi.org/10.1016/j.cej.2024.148923.

    69. [69]

      H. Yu, S. Hossain, C. Wang, Y. Choo, G. Naidu, D. Han, H. Shon, Desalination 556 (2023) 116569, https://doi.org/10.1016/j.desal.2023.116569.

    70. [70]

      S. Kim, J. Kang, H. Joo, Y. Sung, J. Yoon, Environ. Sci. Technol. 54 (14) (2020) 9044, https://doi.org/10.1021/acs.est.9b07646.

    71. [71]

      Y. Xiong, J. Zhou, P. Lu, J. Yin, Y. Wang, Z. Fan, Matter 5 (6) (2022) 1760, https://doi.org/10.1016/j.matt.2022.04.034.

    72. [72]

      J. Luo, W. Cui, P. He, Y. Xia, Nat. Chem. 2 (9) (2010) 760, https://doi.org/10.1038/nchem.763.

    73. [73]

      J. Tarascon, M. Armand, Nature 414 (6861) (2001) 359, https://doi.org/10.1038/35104644.

    74. [74]

      Z. Zhao, X. Si, X. Liu, L. He, X. Liang, Hydrometallurgy 133 (2013) 75, https://doi.org/10.1016/j.hydromet.2012.11.013.

    75. [75]

      M. Thackeray, P. Johnson, L. De Picciotto, P. Bruce, J. Goodenough, Mater. Res. Bull.19 (2) (1984) 179, https://doi.org/10.1016/0025-5408(84)90088-6.

    76. [76]

      Q. Lu, P. Liu, T. Zhou, R. Huang, K. Zhang, L. Hu, R. Liu, Z. Ren, J. Wang, X. Wang, Nano Res. 17 (4) (2023) 2563, https://doi.org/10.1007/s12274-023-6121-0.

    77. [77]

      H. Kanoh, K. Ooi, Y. Miyai, S. Katoh, Sep. Sci. Technol. 28 (13) (1993) 643, https://doi.org/10.1080/01496399308019512.

    78. [78]

      Y. Mu, C. Zhang, W. Zhang, Y. Wang, Desalination 511 (2021) 115112, https://doi.org/10.1016/j.desal.2021.115112.

    79. [79]

      X. Shang, B. Hu, P. Nie, W. Shi, T. Hussain, J. Liu, Sep. Purif. Technol. 258 (2021) 118009, https://doi.org/10.1016/j.seppur.2020.118009.

    80. [80]

      C. Ouyang, S. Shi, M. Lei, J. Alloy. Compd. 474 (12) (2009) 370, https://doi.org/10.1016/j.jallcom.2008.06.123.

    81. [81]

      Y. Wang, G. Zhang, G. Dong, H. Zheng, Batteries 8 (11) (2022) 225, https://doi.org/10.3390/batteries8110225.

    82. [82]

      C. Lawagon, G. Nisola, R. Cuevas, H. Kim, S. Lee, W. Chung, Chem. Eng. J. 348 (2018) 1000, https://doi.org/10.1016/j.cej.2018.05.030.

    83. [83]

      R. Fang, K. Chen, L. Yin, Z. Sun, F. Li, H. Cheng, Adv. Mater. 31 (9) (2018) 1800863, https://doi.org/10.1002/adma.201800863.

    84. [84]

      N. Wang, Z. Bai, Y. Qian, J. Yang, Adv. Mater. 28 (21) (2016) 4126, https://doi.org/10.1002/adma.201505918.

    85. [85]

      S. Zhang, F. Han, Q. Pan, D. Lin, G. Chen, X. Mu, X. Zhu, C. Shao, N. Wu, G. Meng, Sci. China Mater. 66 (9) (2023) 3493, https://doi.org/10.1007/s40843-023-2526-8.

    86. [86]

      S. Zhang, F. Han, Q. Pan, D. Lin, X. Zhu, C. Shao, G. Zhang, Z. Wang, S. Sun, G. Meng, Energy Environ. Mater. 6 (4) (2023) e12586, https://doi.org/10.1002/eem2.12586.

    87. [87]

      G. Wang, Z. Ma, G. Shao, L. Kong, W. Gao, J. Power Sources 291 (2015) 209, https://doi.org/10.1016/j.jpowsour.2015.05.027.

    88. [88]

      X. Tu, Y. Zhou, X. Tian, Y. Song, C. Deng, H. Zhu, Electrochim. Acta 222 (2016) 64, https://doi.org/10.1016/j.electacta.2016.10.137.

    89. [89]

      Y. Qiao, W. Feng, J. Li, T. Shen, Electrochim. Acta 232 (2017) 323, https://doi.org/10.1016/j.electacta.2017.02.161.

    90. [90]

      W. Li, A. Garg, M. Le, C. Ruhatiya, L. Gao, V. Tran, Electrochim. Acta 330 (2020) 135314, https://doi.org/10.1016/j.electacta.2019.135314.

    91. [91]

      J. Daigle, Y. Asakawa, M. Beaupré, V. Gariépy, R. Vieillette, D. Laul, M. Trudeau, K. Zaghib, Sci. Rep. 9 (1) (2019) 16871, https://doi.org/10.1038/s41598-019-53195-1.

    92. [92]

      Y. Hu, F. Lin, Z. Liu, Ceram. Int. 45 (8) (2019) 10976, https://doi.org/10.1016/j.ceramint.2019.02.180.

    93. [93]

      A. Wei, J. Mu, R. He, X. Bai, Z. Liu, L. Zhang, Z. Liu, Y. Wang, J. Phys. Chem. Solids 138 (2020) 109303, https://doi.org/10.1016/j.jpcs.2019.109303.

    94. [94]

      Z. Yao, X. Xia, C. Zhou, Y. Zhong, Y. Wang, S. Deng, W. Wang, X. Wang, J. Tu, Adv. Sci. 5 (3) (2018) 1700786, https://doi.org/10.1002/advs.201700786.

    95. [95]

      X. Shang, J. Liu, B. Hu, P. Nie, J. Yang, B. Zhang, Y. Wang, F. Zhan, J. Qiu, Small Methods 6 (7) (2022) 2200508, https://doi.org/10.1002/smtd.202200508.

    96. [96]

      J. Si, C. Xue, S. Li, L. Yang, W. Li, J. Yang, J. Lan, N. Sun, Desalination 572 (2024) 117154, https://doi.org/10.1016/j.desal.2023.117154.

    97. [97]

      X. Zhao, M. Feng, Y. Jiao, Y. Zhang, Y. Wang, Z. Sha, Desalination 481 (2020) 114360, https://doi.org/10.1016/j.desal.2020.114360.

    98. [98]

      B. Hu, X. Shang, P. Nie, B. Zhang, J. Yang, J. Liu, J. Colloid Interface Sci. 612 (2022) 392, https://doi.org/10.1016/j.jcis.2021.12.181.

    99. [99]

      R. Freund, O. Zaremba, G. Arnauts, R. Ameloot, G. Skorupskii, M. Dincă, A. Bavykina, J. Gascon, A. Ejsmont, J. Goscianska, et al., Angew. Chem. Int. Ed. 60 (45) (2021) 23975, https://doi.org/10.1002/anie.202106259.

    100. [100]

      A. Razmjou, M. Asadnia, E. Hosseini, A. Habibnejad Korayem, V. Chen, Nat. Commun. 10 (1) (2019) 5793, https://doi.org/10.1038/s41467-019-13648-7.

    101. [101]

      X. Cao, C. Tan, M. Sindoro, H. Zhang, Chem. Soc. Rev. 46 (10) (2017) 2660, https://doi.org/10.1039/c6cs00426a.

    102. [102]

      M. Ding, X. Cai, H. Jiang, Chem. Sci. 10 (44) (2019) 10209, https://doi.org/10.1039/c9sc03916c.

    103. [103]

      A. Chen, M. Cheng, D. Huang, G. Zhang, W. Wang, L. Du, G. Wang, H. Liu, Y. Chen, W. Xiao, et al., Renew. Sust. Energy Rev. 199 (2024) 114520, https://doi.org/10.1016/j.rser.2024.114520.

    104. [104]

      N. Cheng, L. Ren, X. Xu, Y. Du, S. Dou, Adv. Energy Mater. 8 (25) (2018) 1801257, https://doi.org/10.1002/aenm.201801257.

    105. [105]

      G. Zhong, D. Liu, J. Zhang, J. Mater. Chem. A 6 (5) (2018) 1887, https://doi.org/10.1039/c7ta08268a.

    106. [106]

      S. Hossain, H. Yu, Y. Choo, G. Naidu, D. Han, H. Shon, Desalination 546 (2023) 116201, https://doi.org/10.1016/j.desal.2022.116201.

    107. [107]

      J. Lim, H. Lee, S. Lee, S. Hong, Desalination 578 (2024) 117403, https://doi.org/10.1016/j.desal.2024.117403.

    108. [108]

      F. Yang, J. Ma, X. Zhang, X. Huang, P. Liang, Water Res. 164 (2019) 114904, https://doi.org/10.1016/j.watres.2019.114904.

    109. [109]

      T. Elmakki, S. Zavahir, H. Shon, G. Gago, H. Park, D. Han, Desalination 593 (2025) 118195, https://doi.org/10.1016/j.desal.2024.118195.

    110. [110]

      W. Shi, X. Liu, C. Ye, X. Cao, C. Gao, J. Shen, Sep. Purif. Technol. 210 (2019) 885, https://doi.org/10.1016/j.seppur.2018.09.006.

    111. [111]

      J. Yang, X. Shang, B. Hu, B. Zhang, Y. Wang, J. Yang, J. Liu, J. Solid State Electrochem. 27 (8) (2023) 2029, https://doi.org/10.1007/s10008-023-05461-6.

    112. [112]

      B. Hu, Y. Wang, B. Zhang, X. Song, H. Jiang, J. Ma, J. Liu, Sep. Purif. Technol. 348 (2024) 127693, https://doi.org/10.1016/j.seppur.2024.127693.

    113. [113]

      N. Xie, Y. Li, Y. Yuan, J. Gong, X. Hu, ACS Appl. Energy Mater. 4 (11) (2021) 13036, https://doi.org/10.1021/acsaem.1c02654.

    114. [114]

      H. Zhang, Z. Huang, L. Zhao, Z. Guo, J. Wang, J. Liu, Y. Zhao, F. Li, P. Zhang, Z. Ji, Chem. Eng. J. 482 (2024) 148802, https://doi.org/10.1016/j.cej.2024.148802.

    115. [115]

      A. Siekierka, Desalination 527 (2022) 11569, https://doi.org/10.1016/j.desal.2022.115569.

    116. [116]

      Y. Ha, H. Jung, H. Lim, P. Jo, H. Yoon, C. Yoo, T. Pham, W. Ahn, Y. Cho, Energies 12 (15) (2019) 2913, https://doi.org/10.3390/en12152913.

    117. [117]

      H. Saif, J. Crespo, S. Pawlowski, J. Membr. Sci. Lett. 3 (2) (2023) 100059, https://doi.org/10.1016/j.memlet.2023.100059.

    118. [118]

      W. Xu, L. He, Z. Zhao, Desalination 503 (2021) 114935, https://doi.org/10.1016/j.desal.2021.114935.

    119. [119]

      Z. Guo, Z. Ji, J. Wang, X. Guo, J. Liang, Desalination 533 (2022) 115767, https://doi.org/10.1016/j.desal.2022.115767.

    120. [120]

      L. He, W. Xu, Y. Song, Y. Luo, X. Liu, Z. Zhao, Glob. Chall. 2 (2) (2018) 1700079, https://doi.org/10.1002/gch2.201700079.

    121. [121]

      C. Liu, Y. Li, D. Lin, P. Hsu, B. Liu, G. Yan, T. Wu, Y. Cui, S. Chu, Joule 4 (7) (2020) 1459, https://doi.org/10.1016/j.joule.2020.05.017.

    122. [122]

      S. Porada, L. Borchardt, M. Oschatz, M. Bryjak, J. Atchison, K. Keesman, S. Kaskel, P. Biesheuvel, V. Presser, Energy Environ. Sci. 6 (12) (2013) 3700, https://doi.org/10.1039/c3ee42209g.

    123. [123]

      W. Tang, P. Kovalsky, D. He, T. Waite, Water Res. 84 (2015) 342, https://doi.org/10.1016/j.watres.2015.08.012.

    124. [124]

      J. Choi, H. Lee, S. Hong, Desalination 400 (2016) 38, https://doi.org/10.1016/j.desal.2016.09.016.

    125. [125]

      J. Lee, K. Park, H. Eum, C. Lee, Desalination 196 (13) (2006) 125, https://doi.org/10.1016/j.desal.2006.01.011.

    126. [126]

      A. Siekierka, J. Wolska, M. Bryjak, W. Kujawski, Desalin. Water Treat. 75 (2017) 331, https://doi.org/10.5004/dwt.2017.20431.

    127. [127]

      J. Lee, S. Kim, C. Kim, J. Yoon, Energy Environ. Sci. 7 (11) (2014) 3683, https://doi.org/10.1039/c4ee02378a.

    128. [128]

      D. Jiang, R. Xu, L. Bai, W. Wu, D. Luo, Z. Li, T. Asahi, Y. Mai, Z. Liu, Y. Yamauchi, et al., Coord. Chem. Rev. 516 (2024) 215923, https://doi.org/10.1016/j.ccr.2024.215923.

    129. [129]

      A. Siekierka, J. Kujawa, W. Kujawski, M. Bryjak, Sep. Purif. Technol. 194 (2018) 231, https://doi.org/10.1016/j.seppur.2017.11.045.

    130. [130]

      A. Siekierka, Sep. Purif. Technol. 236 (2020) 116234, https://doi.org/10.1016/j.seppur.2019.116234.

    131. [131]

      S. Dahiya, B. Mishra, Sep. Purif. Technol. 240 (2020) 116660, https://doi.org/10.1016/j.seppur.2020.116660.

    132. [132]

      S. Jeon, H. Park, J. Yeo, S. Yang, C. Cho, M. Han, D. Kim, Energy Environ. Sci. 6 (5) (2013), https://doi.org/10.1039/c3ee24443a.

    133. [133]

      K. Smith, R. Dmello, J. Electrochem. Soc. 163 (3) (2016) A530, https://doi.org/10.1149/2.0761603jes.

    134. [134]

      X. Liu, X. Chen, L. He, Z. Zhao, Desalination 376 (2015) 35, https://doi.org/10.1016/j.desal.2015.08.013.

    135. [135]

      L. Miao, M. Gao, W. Xiao, Y. Kang, R. Li, H. Kong, H. Mou, W. Chen, T. Ao, Desalination 586 (2024) 117850, https://doi.org/10.1016/j.desal.2024.117850.

    136. [136]

      F. Saffarimiandoab, R. Mattesini, W. Fu, E. Kuruoglu, X. Zhang, J. Mater. Chem. A 9 (4) (2021) 2259, https://doi.org/10.1039/d0ta09531a.

    137. [137]

      G. Xu, Y. Zhang, M. Jiang, J. Li, H. Sun, J. Li, T. Lu, C. Wang, G. Yang, L. Pan, Chem. Eng. J. 476 (2023) 146676, https://doi.org/10.1016/j.cej.2023.146676.

    138. [138]

      Z. Xu, Y. Ding, S. Han, C. Zhang, Water Res. 266 (2024) 122374, https://doi.org/10.1016/j.watres.2024.122374.

    139. [139]

      E. Aytaç, A. Fombona-Pascual, J. Lado, E. Quismondo, J. Palma, M. Khayet, Desalination 563 (2023) 116715, https://doi.org/10.1016/j.desal.2023.116715.

    140. [140]

      L. Bai, R. Xu, W. Wu, C. Ma, S. Li, H. Gao, D. Luo, B. Liu, S. Melhi, Y. Zhao, et al., J. Mater. Chem. A 12 (18) (2024) 10676, https://doi.org/10.1039/d3ta07069g.

    141. [141]

      Z. Wang, T. Yan, L. Shi, D. Zhang, ACS Appl. Mater. Interfaces 9 (17) (2017) 15068, https://doi.org/10.1021/acsami.7b02712.

    142. [142]

      J. Zhang, J. Fang, J. Han, T. Yan, L. Shi, D. Zhang, J. Mater. Chem. A 6 (31) (2018) 15245, https://doi.org/10.1039/c8ta04813d.

    143. [143]

      F. Saffarimiandoab, R. Mattesini, W. Fu, E. Kuruoglu, X. Zhang, Desalination 515 (2021) 115197, https://doi.org/10.1016/j.desal.2021.115197.

    144. [144]

      Y. Zhu, B. Lian, Y. Wang, C. Miller, C. Bales, J. Fletcher, L. Yao, T. Waite, Water Res. 227 (2022) 119349, https://doi.org/10.1016/j.watres.2022.119349.

    145. [145]

      K. Salari, P. Zarafshan, M. Khashehchi, E. Pipelzadeh, G. Chegini, Desalination 540 (2022) 115992, https://doi.org/10.1016/j.desal.2022.115992.

    146. [146]

      S. Yu, J. Jeon, Y. Shin, H. Bae, ACS EST Engg. 4 (8) (2024) 1937, https://doi.org/10.1021/acsestengg.4c00142.

    147. [147]

      M. Son, N. Yoon, S. Park, A. Abbas, K. Cho, Sci. Total Environ. 856 (2023) 159158, https://doi.org/10.1016/j.scitotenv.2022.159158.

  • 加载中
    1. [1]

      Zhuo Wang Xue Bai Kexin Zhang Hongzhi Wang Jiabao Dong Yuan Gao Bin Zhao . MOF模板法合成氮掺杂碳材料用于增强电化学钠离子储存和去除. Acta Physico-Chimica Sinica, 2025, 41(3): 2405002-. doi: 10.3866/PKU.WHXB202405002

    2. [2]

      Guoze Yan Bin Zuo Shaoqing Liu Tao Wang Ruoyu Wang Jinyang Bao Zhongzhou Zhao Feifei Chu Zhengtong Li Yusuke Yamauchi Saad Melhi Xingtao Xu . Opportunities and Challenges of Capacitive Deionization for Uranium Extraction from Seawater. Acta Physico-Chimica Sinica, 2025, 41(4): 100032-. doi: 10.3866/PKU.WHXB202404006

    3. [3]

      Ping Ye Lingshuang Qin Mengyao He Fangfang Wu Zengye Chen Mingxing Liang Libo Deng . 荷叶衍生多孔碳的零电荷电位调节实现废水中电化学捕集镉离子. Acta Physico-Chimica Sinica, 2025, 41(3): 2311032-. doi: 10.3866/PKU.WHXB202311032

    4. [4]

      Xiaochen Zhang Fei Yu Jie Ma . 多角度数理模拟在电容去离子中的前沿应用. Acta Physico-Chimica Sinica, 2024, 40(11): 2311026-. doi: 10.3866/PKU.WHXB202311026

    5. [5]

      Yifeng Xu Jiquan Liu Bin Cui Yan Li Gang Xie Ying Yang . “Xiao Li’s School Adventures: The Working Principles and Safety Risks of Lithium-ion Batteries”. University Chemistry, 2024, 39(9): 259-265. doi: 10.12461/PKU.DXHX202404009

    6. [6]

      Jun Huang Pengfei Nie Yongchao Lu Jiayang Li Yiwen Wang Jianyun Liu . 丝光沸石负载自支撑氮掺杂多孔碳纳米纤维电容器及高效选择性去除硬度离子. Acta Physico-Chimica Sinica, 2025, 41(7): 100066-. doi: 10.1016/j.actphy.2025.100066

    7. [7]

      Zihan Lin Wanzhen Lin Fa-Jie Chen . Electrochemical Modifications of Native Peptides. University Chemistry, 2025, 40(3): 318-327. doi: 10.12461/PKU.DXHX202406089

    8. [8]

      Cen Zhou Biqiong Hong Yiting Chen . Application of Electrochemical Techniques in Supramolecular Chemistry. University Chemistry, 2025, 40(3): 308-317. doi: 10.12461/PKU.DXHX202406086

    9. [9]

      Yongming Zhu Huili Hu Yuanchun Yu Xudong Li Peng Gao . Construction and Practice on New Form Stereoscopic Textbook of Electrochemistry for Energy Storage Science and Engineering: Taking Basic Course of Electrochemistry as an Example. University Chemistry, 2024, 39(8): 44-47. doi: 10.3866/PKU.DXHX202312086

    10. [10]

      Yongjian Zhang Fangling Gao Hong Yan Keyin Ye . Electrochemical Transformation of Organosulfur Compounds. University Chemistry, 2025, 40(5): 311-317. doi: 10.12461/PKU.DXHX202407035

    11. [11]

      Linbao Zhang Weisi Guo Shuwen Wang Ran Song Ming Li . Electrochemical Oxidation of Sulfides to Sulfoxides. University Chemistry, 2024, 39(11): 204-209. doi: 10.3866/PKU.DXHX202401009

    12. [12]

      Shuhui Li Rongxiuyuan Huang Yingming Pan . Electrochemical Synthesis of 2,5-Diphenyl-1,3,4-Oxadiazole: A Recommended Comprehensive Organic Chemistry Experiment. University Chemistry, 2025, 40(5): 357-365. doi: 10.12461/PKU.DXHX202407028

    13. [13]

      Hongyi LIAimin WULiuyang ZHAOXinpeng LIUFengqin CHENAikui LIHao HUANG . Effect of Y(PO3)3 double-coating modification on the electrochemical properties of Li[Ni0.8Co0.15Al0.05]O2. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1320-1328. doi: 10.11862/CJIC.20230480

    14. [14]

      Jianfeng Yan Yating Xiao Xin Zuo Caixia Lin Yaofeng Yuan . Comprehensive Chemistry Experimental Design of Ferrocenylphenyl Derivatives. University Chemistry, 2024, 39(4): 329-337. doi: 10.3866/PKU.DXHX202310005

    15. [15]

      Yifei Cheng Jiahui Yang Wei Shao Wanqun Zhang Wanqun Hu Weiwei Li Kaiping Yang . Learning Goes Beyond the Written Word: Practical Insights from the “Leaf Electroplating” Popular Science Experiment. University Chemistry, 2024, 39(9): 319-327. doi: 10.3866/PKU.DXHX202310033

    16. [16]

      Kuaibing Wang Honglin Zhang Wenjie Lu Weihua Zhang . Experimental Design and Practice for Recycling and Nickel Content Detection from Waste Nickel-Metal Hydride Batteries. University Chemistry, 2024, 39(11): 335-341. doi: 10.12461/PKU.DXHX202403084

    17. [17]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    18. [18]

      Kuaibing Wang Feifei Mao Weihua Zhang Bo Lv . Design and Practice of a Comprehensive Teaching Experiment for Preparing Biomass Carbon Dots from Rice Husk. University Chemistry, 2025, 40(5): 342-350. doi: 10.12461/PKU.DXHX202407042

    19. [19]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    20. [20]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

Metrics
  • PDF Downloads(0)
  • Abstract views(11)
  • HTML views(0)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return