Citation: Mingxuan Qi,  Lanyu Jin,  Honghe Yao,  Zipeng Xu,  Teng Cheng,  Qi Chen,  Cheng Zhu,  Yang Bai. 钙钛矿太阳能电池在反向偏压下的电学失效及稳定性研究进展[J]. Acta Physico-Chimica Sinica, ;2025, 41(8): 100088. doi: 10.1016/j.actphy.2025.100088 shu

钙钛矿太阳能电池在反向偏压下的电学失效及稳定性研究进展

  • Received Date: 7 February 2025
    Revised Date: 21 March 2025
    Accepted Date: 3 April 2025

    Fund Project: The project was supported by the National Natural Science Foundation of China (52473272).

  • 卤化物钙钛矿凭借其优异的光电特性和独特的缺陷容忍特性,在光伏领域展现出巨大的应用潜力,其单结太阳能电池的认证效率已突破26.95%。然而,钙钛矿材料中的离子键键能较弱,使其在电场作用下易发生离子迁移,导致器件在反向电偏压加载下呈现显著的电学不稳定性,严重阻碍了其商业化进程。特别是在大面积组件应用中,局部遮光效应会使被遮挡的子电池成为电阻,在相邻子电池驱动下被迫承受反向偏压,进而引发材料的结构降解和器件性能的急剧衰减。本文系统综述了钙钛矿太阳能电池在反向偏压下的失效机制,全面梳理了反向偏压稳定性的最新研究进展,重点剖析了反向击穿电压阈值与其电学演化规律,深入探讨了器件老化行为的诱因及稳定性提升策略,并评述了相关原位表征技术的应用进展。最后,本文进一步提出了通过机器学习辅助逆向设计材料体系、构建动态载流子输运模型等创新性解决方案,为攻克反向偏压稳定性这一关键科学难题提供了新的研究思路。
  • 加载中
    1. [1]

      https://www.nrel.gov/pv/cell-efficiency.html. (Accessed 10 March 2025).

    2. [2]

      F.Y. Lin, Y. Yang, C.T. Zhu, T. Chen, S.P. Ma, Y. Luo, L. Zhu, X.Y. Guo, Acta Phys. Chim. Sin. 38 (2022) 24, https://doi.org/10.3866/PKU.WHXB202005007.

    3. [3]

      Y. Lu, Y. Ge, M.L. Sui, Acta Phys. Chim. Sin. 38 (2022) 76, https://doi.org/10.3866/PKU.WHXB202007088.

    4. [4]

      L. Shi, M.P. Bucknall, T.L. Young, M. Zhang, L. Hu, J. Bing, D.S. Lee, J. Kim, T. Wu, N. Takamure, D.R. McKenzie, S. Huang, M.A. Green, A.W.Y. Ho-Baillie, Science 368 (6497) (2020) eaba2412, https://doi.org/10.1126/science.aba2412.

    5. [5]

      J. Tang, S. Ma, Y. Wu, F. Pei, Y. Ma, G. Yuan, Z. Zhang, H. Zhou, C. Zhu, Y. Jiang, Y. Li, Q. Chen, Sol. RRL 8 (2) (2024) 2300801, https://doi.org/10.1002/solr.202300801.

    6. [6]

      F. Bella, G. Griffini, J.-P. Correa-Baena, G. Saracco, M. Gr€atzel, A. Hagfeldt, S. Turri, C. Gerbaldi, Science 354 (6309) (2016) 203, https://doi.org/10.1126/science.aah4046.

    7. [7]

      Y. Wang, Z. Zhang, Y. Lan, Q. Song, M. Li, Y. Song, Angew. Chem. Int. Ed. 60 (16) (2021) 8673, https://doi.org/10.1002/anie.202100218.

    8. [8]

      B.Y. Zhang, C. Yang, W.F. Liu, A.M. Liu, Appl. Phys. Lett. 101 (9) (2012) 93903, https://doi.org/10.1063/1.4749821.

    9. [9]

      N. Klasen, F. Lux, J. Weber, T. Roessler, A. Kraft, IEEE J. Photovoltaics 12 (2) (2022) 546, https://doi.org/10.1109/JPHOTOV.2022.3144635.

    10. [10]

      Y. Jia, Y. Wang, X. Hu, J. Xu, G. Weng, X. Luo, S. Chen, Z. Zhu, H. Akiyama, Sol. Energy 225 (2021) 463, https://doi.org/10.1016/j.solener.2021.07.052.

    11. [11]

      Farella, G. Montagna, A.M. Mancini, A. Cola, IEEE Trans. Nucl. Sci. 56 (4) (2009) 1736, https://doi.org/10.1109/TNS.2009.2017020.

    12. [12]

      D. Shvydka, V.G. Karpov, A.D. Compaan, Appl. Phys. Lett. 80 (17) (2002) 3114, https://doi.org/10.1063/1.1475359.

    13. [13]

      J.V. Li, A.F. Halverson, O.V. Sulima, S. Bansal, J.M. Burst, T.M. Barnes, T.A. Gessert, D.H. Levi, Sol. Energy Mater. Sol. Cell. 100 (2012) 126, https://doi.org/10.1016/j.solmat.2012.01.003.

    14. [14]

      Agresti, S. Pescetelli, E. Gatto, M. Venanzi, A. Di Carlo, J. Power Sources 287 (2015) 87, https://doi.org/10.1016/j.jpowsour.2015.04.038.

    15. [15]

      S. Mastroianni, A. Lembo, T.M. Brown, A. Reale, A. Di Carlo, ChemPhysChem 13 (12) (2012) 2964, https://doi.org/10.1002/cphc.201200229.

    16. [16]

      S. Mastroianni, A. Lanuti, T.M. Brown, R. Argazzi, S. Caramori, A. Reale, A. Di Carlo, Appl. Phys. Lett. 101 (12) (2012) 123302, https://doi.org/10.1063/1.4754116.

    17. [17]

      E. Palmiotti, S. Johnston, A. Gerber, H. Guthrey, A. Rockett, L. Mansfield, T.J. Silverman, M. Al-Jassim, Sol. Energy 161 (2018) 1, https://doi.org/10.1016/j.solener.2017.12.019.

    18. [18]

      H. Guthrey, M. Nardone, S. Johnston, J. Liu, A. Norman, J. Moseley, M. Al-Jassim, Prog. Photovoltaics Res. Appl. 27 (9) (2019) 812, https://doi.org/10.1002/pip.3168.

    19. [19]

      K. Bakker, H.N. Åhman, T. Burgers, N. Barreau, A. Weeber, M. Theelen, Sol. Energy Mater. Sol. Cell. 205 (2020) 110249, https://doi.org/10.1016/j.solmat.2019.110249.

    20. [20]

      C. Wehrenfennig, G.E. Eperon, M.B. Johnston, H.J. Snaith, L.M. Herz, Adv. Mater. 26 (10) (2014) 1584, https://doi.org/10.1002/adma.201305172.

    21. [21]

      Y. Zhao, C. Liang, H. Zhang, D. Li, D. Tian, G. Li, X. Jing, W. Zhang, W. Xiao, Q. Liu, F. Zhang, Z. He, Energy Environ. Sci. 8 (4) (2015) 1256, https://doi.org/10.1039/C4EE04064C.

    22. [22]

      H. Wu, C. Xu, Z. Zhang, Z. Xiong, M. Shi, S. Ma, W. Fan, Z. Zhang, Q. Liao, Z. Kang, Y. Zhang, Nano Lett. 22 (4) (2022) 1467, https://doi.org/10.1021/acs.nanolett.1c03336.

    23. [23]

      R.A.Z. Razera, D.A. Jacobs, F. Fu, P. Fiala, M. Dussouillez, F. Sahli, T.C.J. Yang, L. Ding, A. Walter, A.F. Feil, H.I. Boudinov, S. Nicolay, C. Ballif, Q. Jeangros, J. Mater. Chem. A 8 (1) (2020) 242, https://doi.org/10.1039/C9TA12032G.

    24. [24]

      N. Li, Z. Shi, C. Fei, H. Jiao, M. Li, H. Gu, S.P. Harvey, Y. Dong, M.C. Beard, J. Huang, Nat. Energy 9 (10) (2024) 1264, https://doi.org/10.1038/s41560-024-01579-7.

    25. [25]

      M. Diethelm, T. Lukas, J. Smith, A. Dasgupta, P. Caprioglio, M. Futscher, R. Hany, H.J. Snaith, Energy Environ. Sci. 18 (2025) 1385, https://doi.org/10.1039/D4EE02494J.

    26. [26]

      H. Bi, M. Wang, L. Liu, J. Yan, R. Zeng, Z. Xu, J. Wang, J. Mater. Chem. A 12 (2024) 12744, https://doi.org/10.1039/D3TA07457A.

    27. [27]

      Q. Jeangros, M. Duchamp, J. Werner, M. Kruth, R.E. Dunin-Borkowski, B. Niesen, C. Ballif, A. Hessler-Wyser, Nano Lett. 16 (11) (2016) 7013, https://doi.org/10.1021/acs.nanolett.6b03158.

    28. [28]

      Z. Xu, R.A. Kerner, S.P. Harvey, K. Zhu, J.J. Berry, B.P. Rand, ACS Energy Lett. 8 (1) (2023) 513, https://doi.org/10.1021/acsenergylett.2c02385.

    29. [29]

      D. Bogachuk, K. Saddedine, D. Martineau, S. Narbey, A. Verma, P. Gebhardt, J.P. Herterich, N. Glissmann, S. Zouhair, J. Markert, I.E. Gould, M.D. McGehee, U. Würfel, A. Hinsch, L. Wagner, Sol. RRL 6 (3) (2022) 2100527, https://doi.org/10.1002/solr.202100527.

    30. [30]

      C. Jiang, J. Zhou, H. Li, L. Tan, M. Li, W. Tress, L. Ding, M. Gr€atzel, C. Yi, NanoMicro Lett. 15 (1) (2022) 12, https://doi.org/10.1007/s40820-022-00985-4.

    31. [31]

      T. Tayagaki, H. Kobayashi, K. Yamamoto, T.N. Murakami, M. Yoshita, Sol. Energy Mater. Sol. Cells 279 (2025) 113229, https://doi.org/10.1016/j.solmat.2024.113229.

    32. [32]

      W. Li, K. Huang, J. Chang, C. Hu, C. Long, H. Zhang, X. Maldague, B. Liu, J. Meng, Y. Duan, J. Yang, ChemPhysMater 1 (1) (2022) 71, https://doi.org/10.1016/j.chphma.2021.10.001.

    33. [33]

      Rajagopal, S.T. Williams, C.-C. Chueh, A.K.-Y. Jen, J. Phys. Chem. Lett. 7 (6) (2016) 995, https://doi.org/10.1021/acs.jpclett.6b00058.

    34. [34]

      Wang, L. Huang, Y. Guo, S. Liu, J. Huang, X. Liu, J. Zhang, Z. Hu, K. Liu, Y. Zhu, Sol. RRL 7 (20) (2023) 2300456, https://doi.org/10.1002/solr.202300456.

    35. [35]

      W. Tress, J.P. Correa Baena, M. Saliba, A. Abate, M. Graetzel, Adv. Energy Mater. 6 (19) (2016) 1600396, https://doi.org/10.1002/aenm.201600396.

    36. [36]

      Z. Ni, H. Jiao, C. Fei, H. Gu, S. Xu, Z. Yu, G. Yang, Y. Deng, Q. Jiang, Y. Liu, Y. Yan, J. Huang, Nat. Energy 7 (1) (2022) 65, https://doi.org/10.1038/s41560-021-00949-9.

    37. [37]

      X. Guo, N. Li, Y. Xu, J. Zhao, F. Cui, Y. Chen, X. Du, Q. Song, G. Zhang, X. Cheng, X. Tao, Z. Chen, Adv. Funct. Mater. 33 (22) (2023) 2213995, https://doi.org/10.1002/adfm.202213995.

    38. [38]

      X. Ren, J. Wang, Y. Lin, Y. Wang, H. Xie, H. Huang, B. Yang, Y. Yan, Y. Gao, J. He, J. Huang, Y. Yuan, Nat. Mater. 23 (6) (2024) 810, https://doi.org/10.1038/s41563-024-01876-2.

    39. [39]

      F. Jiang, Y. Shi, T.R. Rana, D. Morales, I.E. Gould, D.P. McCarthy, J.A. Smith, M.G. Christoforo, M.Y. Yaman, F. Mandani, T. Terlier, H. Contreras, S. Barlow, A.D. Mohite, H.J. Snaith, S.R. Marder, J.D. MacKenzie, M.D. McGehee, D.S. Ginger, Nat. Energy 9 (10) (2024) 1275, https://doi.org/10.1038/s41560-024-01600-z.

    40. [40]

      A.R. Bowring, L. Bertoluzzi, B.C. O'Regan, M.D. McGehee, Adv. Energy Mater. 8 (8) (2018) 1702365, https://doi.org/10.1002/aenm.201702365.

    41. [41]

      Breitenstein, J. Bauer, K. Bothe, W. Kwapil, D. Lausch, U. Rau, J. Schmidt, M. Schneemann, M.C. Schubert, J.-M. Wagner, W. Warta, J. Appl. Phys. 109 (7) (2011) 71101, https://doi.org/10.1063/1.3562200.

    42. [42]

      M. Singh Tyagi, Solid State Electron. 11 (1) (1968) 99, https://doi.org/10.1016/0038-1101(68)90141-X.

    43. [43]

      L. Bertoluzzi, J.B. Patel, K.A. Bush, C.C. Boyd, R.A. Kerner, B.C. O'Regan, M.D.McGehee, Adv. Energy Mater. 11 (10) (2021) 2002614, https://doi.org/10.1002/aenm.202002614.

    44. [44]

      T.S. Vaas, B.E. Pieters, A. Gerber, U. Rau, IEEE J. Photovoltaics 13 (3) (2023) 398, https://doi.org/10.1109/JPHOTOV.2023.3240680.

    45. [45]

      C. Eames, J.M. Frost, P.R.F. Barnes, B.C. O'Regan, A. Walsh, M.S. Islam, Nat. Commun. 6 (1) (2015) 7497, https://doi.org/10.1038/ncomms8497.

    46. [46]

      K. Huang, X. Feng, H. Li, C. Long, B. Liu, J. Shi, Q. Meng, K. Weber, T. Duong, J. Yang, Adv. Sci. 9 (35) (2022) 2204163, https://doi.org/10.1002/advs.202204163.

    47. [47]

      J. Zhang, X. Niu, C. Peng, H. Jiang, L. Yu, H. Zhou, Z. Zhou, Angew. Chem., Int. Ed. 62 (50) (2023) e202314106, https://doi.org/10.1002/anie.202314106.

    48. [48]

      P. Teng, S. Reichert, W. Xu, S.-C. Yang, F. Fu, Y. Zou, C. Yin, C. Bao, M. Karlsson, X. Liu, J. Qin, T. Yu, W. Tress, Y. Yang, B. Sun, C. Deibel, F. Gao, Matter 4 (11) (2021) 3710, https://doi.org/10.1016/j.matt.2021.09.007.

    49. [49]

      Y. Cheng, X. Liu, Z. Guan, M. Li, Z. Zeng, H. Li, S. Tsang, A.G. Aberle, F. Lin, Adv. Mater. 33 (3) (2021) 2006170, https://doi.org/10.1002/adma.202006170.

    50. [50]

      D. Kim, J.S. Yun, P. Sharma, D.S. Lee, J. Kim, A.M. Soufiani, S. Huang, M.A. Green, A.W.Y. Ho-Baillie, J. Seidel, Nat. Commun. 10 (1) (2019) 444, https://doi.org/10.1038/s41467-019-08364-1.

    51. [51]

      M. Kot, C. Das, Z. Wang, K. Henkel, Z. Rouissi, K. Wojciechowski, H.J. Snaith, D. Schmeisser, ChemSusChem 9 (24) (2016) 3401, https://doi.org/10.1002/cssc.201601186.

    52. [52]

      L. Zhou, X. Guo, Z. Lin, J. Ma, J. Su, Z. Hu, C. Zhang, S. Liu, (Frank), J. Chang, Y. Hao, Nano Energy 60 (2019) 583, https://doi.org/10.1016/j.nanoen.2019.03.081.

    53. [53]

      Z. Yin, Y. Chen, Y. Zhang, Y. Yuan, Q. Yang, Y. Zhong, X. Gao, J. Xiao, Z. Wang, J. Xu, S. Wang, Adv. Funct. Mater. 33 (33) (2023) 2302199, https://doi.org/10.1002/adfm.202302199.

    54. [54]

      L. Najafi, S. Bellani, L. Gabatel, M.I. Zappia, A. Di Carlo, F. Bonaccorso, ACS Appl. Energy Mater. 5 (2) (2022) 1378, https://doi.org/10.1021/acsaem.1c03206.

    55. [55]

      Z. Xu, H. Bristow, M. Babics, B. Vishal, E. Aydin, R. Azmi, E. Ugur, B.K. Yildirim, J. Liu, R.A. Kerner, S. De Wolf, B.P. Rand, Joule 7 (9) (2023) 1992, https://doi.org/10.1016/j.joule.2023.07.017.

  • 加载中
    1. [1]

      Jiaxi Xu Yuan Ma . Influence of Hyperconjugation on the Stability and Stable Conformation of Ethane, Hydrazine, and Hydrogen Peroxide. University Chemistry, 2024, 39(11): 374-377. doi: 10.3866/PKU.DXHX202402049

    2. [2]

      Shitao Fu Jianming Zhang Cancan Cao Zhihui Wang Chaoran Qin Jian Zhang Hui Xiong . Study on the Stability of Purple Cabbage Pigment. University Chemistry, 2024, 39(4): 367-372. doi: 10.3866/PKU.DXHX202401059

    3. [3]

      Yadan Luo Hao Zheng Xin Li Fengmin Li Hua Tang Xilin She . Modulating reactive oxygen species in O, S co-doped C3N4 to enhance photocatalytic degradation of microplastics. Acta Physico-Chimica Sinica, 2025, 41(6): 100052-. doi: 10.1016/j.actphy.2025.100052

    4. [4]

      Hailian Tang Siyuan Chen Qiaoyun Liu Guoyi Bai Botao Qiao Fei Liu . Stabilized Rh/hydroxyapatite Catalyst for Furfuryl Alcohol Hydrogenation: Application of Oxidative Strong Metal-Support Interactions in Reducing Conditions. Acta Physico-Chimica Sinica, 2025, 41(4): 100036-. doi: 10.3866/PKU.WHXB202408004

    5. [5]

      Bo YANGGongxuan LÜJiantai MA . Corrosion inhibition of nickel-cobalt-phosphide in water by coating TiO2 layer. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 365-384. doi: 10.11862/CJIC.20240063

    6. [6]

      Yihan Xue Xue Han Jie Zhang Xiaoru Wen . NCQDs修饰FeOOH基复合材料的制备及其电容脱盐性能. Acta Physico-Chimica Sinica, 2025, 41(7): 100072-. doi: 10.1016/j.actphy.2025.100072

    7. [7]

      Zeyi Yan Ruitao Liu Xinyu Qi Yuxiang Zhang Lulu Sun Xiangyuan Li Anchao Feng . Exploration of Suspension Polymerization: Preparation and Fluorescence Stability of Perovskite Polystyrene Microbeads. University Chemistry, 2025, 40(4): 72-79. doi: 10.12461/PKU.DXHX202405110

    8. [8]

      Yingqi BAIHua ZHAOHuipeng LIXinran RENJun LI . Perovskite LaCoO3/g-C3N4 heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 480-490. doi: 10.11862/CJIC.20240259

    9. [9]

      Cheng PENGJianwei WEIYating CHENNan HUHui ZENG . First principles investigation about interference effects of electronic and optical properties of inorganic and lead-free perovskite Cs3Bi2X9 (X=Cl, Br, I). Chinese Journal of Inorganic Chemistry, 2024, 40(3): 555-560. doi: 10.11862/CJIC.20230282

    10. [10]

      Xuyang Wang Jiapei Zhang Lirui Zhao Xiaowen Xu Guizheng Zou Bin Zhang . Theoretical Study on the Structure and Stability of Copper-Ammonia Coordination Ions. University Chemistry, 2024, 39(3): 384-389. doi: 10.3866/PKU.DXHX202309065

    11. [11]

      Xiaoning TANGJunnan LIUXingfu YANGJie LEIQiuyang LUOShu XIAAn XUE . Effect of sodium alginate-sodium carboxymethylcellulose gel layer on the stability of Zn anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1452-1460. doi: 10.11862/CJIC.20240191

    12. [12]

      Yingtong Shi Guotong Xu Guizeng Liang Di Lan Siyuan Zhang Yanru Wang Daohao Li Guanglei Wu . PEG-VN改性PP隔膜用于高稳定性高效率锂硫电池. Acta Physico-Chimica Sinica, 2025, 41(7): 100082-. doi: 10.1016/j.actphy.2025.100082

    13. [13]

      Jing SUBingrong LIYiyan BAIWenjuan JIHaiying YANGZhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414

    14. [14]

      Xuewei BACheng CHENGHuaikang ZHANGDeqing ZHANGShuhua LI . Preparation and luminescent performance of Sr1-xZrSi2O7xDy3+ phosphor with high thermal stability. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 357-364. doi: 10.11862/CJIC.20240096

    15. [15]

      Renqing Lü Shutao Wang Fang Wang Guoping Shen . Computational Chemistry Aided Organic Chemistry Teaching: A Case of Comparison of Basicity and Stability of Diazine Isomers. University Chemistry, 2025, 40(3): 76-82. doi: 10.12461/PKU.DXHX202404119

    16. [16]

      Baitong Wei Jinxin Guo Xigong Liu Rongxiu Zhu Lei Liu . Theoretical Study on the Structure, Stability of Hydrocarbon Free Radicals and Selectivity of Alkane Chlorination Reaction. University Chemistry, 2025, 40(3): 402-407. doi: 10.12461/PKU.DXHX202406003

    17. [17]

      Rui Li Huan Liu Yinan Jiao Shengjian Qin Jie Meng Jiayu Song Rongrong Yan Hang Su Hengbin Chen Zixuan Shang Jinjin Zhao . 卤化物钙钛矿的单双向离子迁移. Acta Physico-Chimica Sinica, 2024, 40(11): 2311011-. doi: 10.3866/PKU.WHXB202311011

    18. [18]

      Xinyuan Shi Chenyangjiang Changyu Zhai Xuemei Lu Jia Li Zhu Mao . Preparation and Photoelectric Performance Characterization of Perovskite CsPbBr3 Thin Films. University Chemistry, 2024, 39(6): 383-389. doi: 10.3866/PKU.DXHX202312019

    19. [19]

      Yao Ma Xin Zhao Hongxu Chen Wei Wei Liang Shen . Progress and Perspective of Perovskite Thin Single Crystal Photodetectors. Acta Physico-Chimica Sinica, 2025, 41(4): 100030-. doi: 10.3866/PKU.WHXB202309045

    20. [20]

      Jian Li Yu Zhang Rongrong Yan Kaiyuan Sun Xiaoqing Liu Zishang Liang Yinan Jiao Hui Bu Xin Chen Jinjin Zhao Jianlin Shi . 高效靶向示踪钙钛矿纳米系统光电增效抗肿瘤. Acta Physico-Chimica Sinica, 2025, 41(5): 100042-. doi: 10.1016/j.actphy.2024.100042

Metrics
  • PDF Downloads(0)
  • Abstract views(12)
  • HTML views(0)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return