Citation: Yu Peng,  Jiawei Chen,  Yue Yin,  Yongjie Cao,  Mochou Liao,  Congxiao Wang,  Xiaoli Dong,  Yongyao Xia. 无碳酸乙烯酯电解液定向构筑正极电解质界面相实现高电压钴酸锂的宽温域稳定运行[J]. Acta Physico-Chimica Sinica, ;2025, 41(8): 100087. doi: 10.1016/j.actphy.2025.100087 shu

无碳酸乙烯酯电解液定向构筑正极电解质界面相实现高电压钴酸锂的宽温域稳定运行

  • Received Date: 19 February 2025
    Revised Date: 18 March 2025
    Accepted Date: 2 April 2025

    Fund Project: The project was supported by the National Natural Science Foundation of China (21935003).

  • 提升钴酸锂(LCO)正极的充电截止电压是提高锂离子电池(LIBs)能量密度的直接策略。然而,高电压下正极-电解质界面相(CEI)的不稳定性严重制约了高能量密度LIBs的发展。因此,本研究利用无碳酸乙烯酯(EC)的电解液设计,通过构建兼具化学稳定性与机械强度的氟/硼复合CEI以提升界面稳定性。采用碳酸丙烯酯(PC)及氟代碳酸乙烯酯(FEC)作为溶剂,增强电解液的抗氧化稳定性,促进CEI中氟化锂(LiF)组分的生成,提升其机械强度。同时,引入双草酸硼酸锂(LiBOB)添加剂,在CEI中形成含硼交联聚合物(LiBxOy)组分,以其柔性结构特征弥补LiF层的不足之处。最终,构建出具有富无机相(LiF和Li2C2O4)嵌入含硼类聚合物(LiBxOy)基体结构的刚柔并济CEI。这种CEI其兼具结构致密性、良好的机械稳定性与电化学稳定性等优点,有效抑制高电压下LCO的界面副反应及不可逆结构退化。实验结果表明,无EC的PC基电解液使LCO正极在4.6 V高截止电压下展现出优异的电化学性能,0.5C倍率循环200次后容量保持率达82%。此外,石墨||LCO全电池在4.5 V截止电压下表现出显著提升的循环稳定性,并实现-40 - 80 °C宽温域范围内的稳定运行,验证了该优化电解液衍生的刚柔并济CEI的有效性。本研究突破传统EC基电解液设计范式,为开发高性能、宽温域及可持续PC基电解液提供了新思路。
  • 加载中
    1. [1]

      M. Li, J. Lu, Z. Chen, K. Amine, Adv. Mater. 30 (2018) 1800561, https://doi.org/10.1002/adma.201800561.

    2. [2]

      L. Wang, B. Chen, J. Ma, G. Cui, L. Chen, Chem. Soc. Rev. 47 (2018) 6505, https://doi.org/10.1039/C8CS00322J.

    3. [3]

      Y. Lyu, X. Wu, K. Wang, Z. Feng, T. Cheng, Y. Liu, M. Wang, R. Chen, L. Xu, J. Zhou, Y. Lu, B. Guo, Adv. Energy Mater. 11 (2021) 2000982, https://doi.org/10.1002/aenm.202000982.

    4. [4]

      C. Lin, J. Li, Z.-W. Yin, W. Huang, Q. Zhao, Q. Weng, Q. Liu, J. Sun, G. Chen, F. Pan, Adv. Mater. 36 (2024) 2307404, https://doi.org/10.1002/adma.202307404.

    5. [5]

      B. Chu, Y.-J. Guo, J.-L. Shi, Y.-X. Yin, T. Huang, H. Su, A. Yu, Y.-G. Guo, Y.J. Li, Power Sources. 544 (2022) 231873, https://doi.org/10.1016/j.jpowsour.2022.231873.

    6. [6]

      Y. Kim, G.M. Veith, J. Nanda, R.R. Unocic, M. Chi, N.J. Dudney, Electrochim. Acta 56 (2011) 6573, https://doi.org/10.1016/j.electacta.2011.03.070.

    7. [7]

      Z. Sun, J. Zhao, M. Zhu, J. Liu, Adv. Energy Mater. 14 (2024) 2303498, https://doi.org/10.1002/aenm.202303498.

    8. [8]

      Q. Wu, B. Zhang, Y. Lu, J. Energy Chem. 74 (2022) 283, https://doi.org/10.1016/j.jechem.2022.07.007.

    9. [9]

      N. Qin, Q. Gan, Z. Zhuang, Y. Wang, Y. Li, Z. Li, I. Hussain, C. Zeng, G. Liu, Y. Bai, K. Zhang, Z. Lu, Adv. Energy Mater. 12 (2022) 2201549, https://doi.org/10.1002/aenm.202201549.

    10. [10]

      Z. Zhuang, J. Wang, K. Jia, G. Ji, J. Ma, Z. Han, Z. Piao, R. Gao, H. Ji, X. Zhong, G. Zhou, H.-M. Cheng, Adv. Mater. 35 (2023) 2212059, https://doi.org/10.1002/adma.202212059.

    11. [11]

      Z. Liu, M. Han, S. Zhang, H. Li, X. Wu, Z. Fu, H. Zhang, G. Wang, Y. Zhang, Adv. Mater. 36 (2024) 2404188, https://doi.org/10.1002/adma.202404188.

    12. [12]

      T. Fan, Y. Wang, V.K. Harika, A. Nimkar, K. Wang, X. Liu, M. Wang, L. Xu, Y. Elias, H. Sclar, M.S. Chae, Y. Min, Y. Lu, N. Shpigel, D. Aurbach, Adv. Sci. 9 (2022) 2202627, https://doi.org/10.1002/advs.202202627.

    13. [13]

      T. Cheng, Z. Ma, R. Qian, Y. Wang, Q. Cheng, Y. Lyu, A. Nie, B. Guo, Adv. Funct. Mater. 8 (2021) 2001974, https://doi.org/10.1002/adfm.202001974.

    14. [14]

      X. Yang, C. Wang, P. Yan, T. Jiao, J. Hao, Y. Jiang, F. Ren, W. Zhang, J. Zheng, Y. Cheng, X. Wang, W. Yang, J. Zhu, S. Pan, M. Lin, L. Zeng, Z. Gong, J. Li, Y. Yang, Adv. Energy Mater. 12 (2022) 2200197, https://doi.org/10.1002/aenm.202200197.

    15. [15]

      C. Yang, X. Liao, X. Zhou, C. Sun, R. Qu, J. Han, Y. Zhao, L. Wang, Y. You, J. Lu, Adv. Mater. 35 (2023) 2210966, https://doi.org/10.1002/adma.202210966.

    16. [16]

      Y. Li, W. Li, R. Shimizu, D. Cheng, H. Nguyen, J. Paulsen, S. Kumakura, M. Zhang, Y.S. Meng, Adv. Energy Mater. 12 (2022) 2103033, https://doi.org/10.1002/aenm.202103033.

    17. [17]

      M. Mao, X. Ji, Q. Wang, Z. Lin, M. Li, T. Liu, C. Wang, Y.-S. Hu, H. Li, X. Huang, L. Chen, L. Suo, Nat. Commun. 14 (2023) 1082, https://doi.org/10.1038/s41467-023-36853-x.

    18. [18]

      Y. Qin, K. Xu, Q. Wang, M. Ge, T. Cheng, M. Liu, H. Cheng, Y. Hu, C. Shen, D. Wang, Y. Liu, B. Guo, Nano Energy 96 (2022) 107082, https://doi.org/10.1016/j.nanoen.2022.107082.

    19. [19]

      Q. Liu, W. Jiang, J. Xu, Y. Xu, Z. Yang, D.-J. Yoo, K.Z. Pupek, C. Wang, C. Liu, K. Xu, Z. Zhang, Nat. Commun. 14 (2023) 3678, https://doi.org/10.1038/s41467-023-38229-7.

    20. [20]

      J. Liu, M. Wu, X. Li, D. Wu, H. Wang, J. Huang, J. Ma, Adv. Energy Mater. 13 (2023) 2300084, https://doi.org/10.1002/aenm.202300084.

    21. [21]

      B. Zhang, L. Wang, X. Wang, S. Zhou, A. Fu, Y. Yan, Q. Wang, Q. Xie, D. Peng, Y. Qiao, S.-G. Sun, Energy Storage Mater. 53 (2022) 492, https://doi.org/10.1016/j.ensm.2022.09.032.

    22. [22]

      Z. Wu, G. Zeng, J. Yin, C.-L. Chiang, Q. Zhang, B. Zhang, J. Chen, Y. Yan, Y. Tang, H. Zhang, S. Zhou, Q. Wang, X. Kuai, Y.-G. Lin, L. Gu, Y. Qiao, S.-G. Sun, ACS Energy Lett. 8 (2023) 4806, https://doi.org/10.1021/acsenergylett.3c01954.

    23. [23]

      S. Kim, J.-A. Lee, D.G. Lee, J. Son, T.H. Bae, T.K. Lee, N.-S. Choi, ACS Energy Lett. 9 (2024) 262, https://doi.org/10.1021/acsenergylett.3c02534.

    24. [24]

      J. Xu, Nano-Micro Lett. 14 (2022) 166, https://doi.org/10.1007/s40820-022-00917-2.

    25. [25]

      J.C. Hestenes, L.E. Marbella, ACS Energy Lett. 8 (2023) 4572, https://doi.org/10.1021/acsenergylett.3c01529.

    26. [26]

      Z. Sun, F. Li, J. Ding, Z. Lin, M. Xu, M. Zhu, J. Liu, ACS Energy Lett. 8 (2023) 2478, https://doi.org/10.1021/acsenergylett.3c00324.

    27. [27]

      Y. Yamada, J. Wang, S. Ko, E. Watanabe, A. Yamada, Nat. Energy 4 (2019) 269, https://doi.org/10.1038/s41560-019-0336-z.

    28. [28]

      W. Li, A. Dolocan, J. Li, Q. Xie, A. Manthiram, Adv. Energy Mater. 9 (2019) 1901152, https://doi.org/10.1002/aenm.201901152.

    29. [29]

      R. Pan, Z. Cui, M. Yi, Q. Xie, A. Manthiram, Adv. Energy Mater. 12 (2022) 2103806, https://doi.org/10.1002/aenm.202103806.

    30. [30]

      M. Qin, M. Liu, Z. Zeng, Q. Wu, Y. Wu, H. Zhang, S. Lei, S. Cheng, J. Xie, Adv. Energy Mater. 12 (2022) 2201801, https://doi.org/10.1002/aenm.202201801.

    31. [31]

      X. Liu, X. Shen, H. Li, P. Li, L. Luo, H. Fan, X. Feng, W. Chen, X. Ai, H. Yang, Y. Cao, Adv. Energy Mater. 11 (2021) 2003905, https://doi.org/10.1002/aenm.202003905.

    32. [32]

      H. Liang, Z. Ma, Y. Wang, F. Zhao, Z. Cao, L. Cavallo, Q. Li, J. Ming, ACS Nano 17 (2023) 18062, https://doi.org/10.1021/acsnano.3c04790.

    33. [33]

      X. Fan, C. Wang, Chem. Soc. Rev. 50 (2021) 10486, https://doi.org/10.1039/D1CS00450F.

    34. [34]

      Z. Li, H. Rao, R. Atwi, B.M. Sivakumar, B. Gwalani, S. Gray, K.S. Han, T.A. Everett, T.A. Ajantiwalay, V. Murugesan, N.N. Rajput, V.G. Pol, Nat. Commun. 14 (2023) 868, https://doi.org/10.1038/s41467-023-36647-1.

    35. [35]

      S. Li, W. Zhang, Q. Wu, L. Fan, X. Wang, X. Wang, Z. Shen, Y. He, Y. Lu, Angew. Chem. Int. Ed. 59 (2020) 14935, https://doi.org/10.1002/anie.202004853.

    36. [36]

      D. Wu, C. Zhu, H. Wang, J. Huang, G. Jiang, Y. Yang, G. Yang, D. Tang, J. Ma, Angew. Chem. Int. Ed. 63 (2024) 202315608, https://doi.org/10.1002/anie.202315608.

    37. [37]

      R. Wang, B. Weng, A. Mahadevegowda, I. Temprano, H. Wang, Z. He, C. Ducati, Y. Xiao, C.P. Grey, M.F.L. De Volder, Adv. Energy Mater. 14 (2024) 2401097, https://doi.org/10.1002/aenm.202401097.

    38. [38]

      W.M. Dose, W. Li, I. Temprano, C.A. O'Keefe, B.L. Mehdi, ACS Energy Lett. 10 (2022) 3524, https://doi.org/10.1021/acsenergylett.2c01722.

    39. [39]

      D. Wu, J. He, J. Liu, M. Wu, S. Qi, H. Wang, J. Huang, F. Li, D. Tang, J. Ma, Adv. Energy Mater. 12 (2022) 2200337, https://doi.org/10.1002/aenm.202200337.

    40. [40]

      J. Xu, J. Zhang, T.P. Pollard, Q. Li, S. Tan, S. Hou, H. Wan, F. Chen, H. He, E. Hu, K. Xu, X.-Q. Yang, O. Borodin, C. Wang, Nature 614 (2023) 694, https://doi.org/10.1038/s41586-022-05627-8.

    41. [41]

      P. Bai, X. Ji, J. Zhang, W. Zhang, S. Hou, H. Su, M. Li, T. Deng, L. Cao, S. Liu, X. He, Y. Xu, C. Wang, Angew. Chem. Int. Ed. 61 (2022) e202202731, https://doi.org/10.1002/anie.202202731.

    42. [42]

      Q. Li, Y. Wang, X. Wang, X. Sun, J.-N. Zhang, X. Yu, H. Li, ACS Appl. Mater. Interfaces 12 (2020) 2319, https://doi.org/10.1021/acsami.9b16727.

    43. [43]

      Y. Chen, Q. He, Y. Mo, W. Zhou, Y. Zhao, N. Piao, C. Liu, P. Xiao, H. Liu, B. Li, S. Chen, L. Wang, X. He, L. Xing, J. Liu, Adv. Energy Mater. 12 (2022) 2201631, https://doi.org/10.1002/aenm.202201631.

    44. [44]

      J. Lai, Y. Huang, X. Zeng, T. Zhou, Z. Peng, Z. Li, X. Zhang, K. Ding, C. Xu, Y. Ying, Y.-P. Cai, R. Shang, J. Zhao, Q. Zheng, ACS Energy Lett. 8 (2023) 2241, https://doi.org/10.1021/acsenergylett.3c00504.

    45. [45]

      M. Qin, Z. Zeng, Q. Wu, F. Ma, Q. Liu, S. Cheng, J. Xie, Adv. Funct. Mater. 34 (2024) 2406357, https://doi.org/10.1002/adfm.202406357.

    46. [46]

      Y. Wang, Z. Li, Y. Hou, Z. Hao, Q. Zhang, Y. Ni, Y. Lu, Z. Yan, K. Zhang, Q. Zhao, F. Li, J. Chen, Chem. Soc. Rev. 52 (2023) 2713, https://doi.org/10.1039/D2CS00873D.

    47. [47]

      D.Y. Wang, N.N. Sinha, J.C. Burns, R. Petibon, J.R. Dahn, J. Power Sources 270 (2014) 68, https://doi.org/10.1016/j.jpowsour.2014.07.053.

    48. [48]

      K. Guo, C. Zhu, H. Wang, S. Qi, J. Huang, D. Wu, J. Ma, Adv. Energy Mater. 13 (2023) 2204272, https://doi.org/10.1002/aenm.202204272.

    49. [49]

      S. Kim, S.O. Park, M.-Y. Lee, J.-A. Lee, I. Kristanto, T.K. Lee, D. Hwang, J. Kim, T.- U. Wi, H.-W. Lee, S.K. Kwak, N.-S. Choi, Energy Storage Mater. 45 (2022) 1, https://doi.org/10.1016/j.ensm.2021.10.031.

    50. [50]

      E.W.C. Spotte-Smith, T.B. Petrocelli, H.D. Patel, S.M. Blau, K.A. Persson, ACS Energy Lett. 8 (2023) 347, https://doi.org/10.1021/acsenergylett.2c02351.

    51. [51]

      Z. Piao, R. Gao, Y. Liu, G. Zhou, H.-M. Cheng, Adv. Mater. 35 (2023) 2206009, https://doi.org/10.1002/adma.202206009.

    52. [52]

      S. Li, J. Li, P. Wang, H. Ding, J. Zhou, C. Li, X. Cui, Adv. Funct. Mater. 34 (2024) 2307180, https://doi.org/10.1002/adfm.202307180.

    53. [53]

      Y. Yang, H. Wang, C. Zhu, J. Ma, Angew. Chem. Int. Ed. 62 (2023) e202300057, https://doi.org/10.1002/anie.202300057.

    54. [54]

      J. Zhang, P. Wang, P. Bai, H. Wan, S. Liu, S. Hou, X. Pu, J. Xia, W. Zhang, Z. Wang, B. Nan, X. Zhang, J. Xu, C. Wang, Adv. Mater. 34 (2022) 2108353, https://doi.org/10.1002/adma.202108353.

  • 加载中
    1. [1]

      Jiahe LIUGan TANGKai CHENMingda ZHANG . Effect of low-temperature electrolyte additives on low-temperature performance of lithium cobaltate batteries. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 719-728. doi: 10.11862/CJIC.20250023

    2. [2]

      Aoyu Huang Jun Xu Yu Huang Gui Chu Mao Wang Lili Wang Yongqi Sun Zhen Jiang Xiaobo Zhu . Tailoring Electrode-Electrolyte Interfaces via a Simple Slurry Additive for Stable High-Voltage Lithium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 100037-. doi: 10.3866/PKU.WHXB202408007

    3. [3]

      Jiandong Liu Zhijia Zhang Mikhail Kamenskii Filipp Volkov Svetlana Eliseeva Jianmin Ma . Research Progress on Cathode Electrolyte Interphase in High-Voltage Lithium Batteries. Acta Physico-Chimica Sinica, 2025, 41(2): 100011-. doi: 10.3866/PKU.WHXB202308048

    4. [4]

      Feiya Cao Qixin Wang Pu Li Zhirong Xing Ziyu Song Heng Zhang Zhibin Zhou Wenfang Feng . Magnesium-Ion Conducting Electrolyte Based on Grignard Reaction: Synthesis and Properties. University Chemistry, 2024, 39(3): 359-368. doi: 10.3866/PKU.DXHX202308094

    5. [5]

      Mingyang Men Jinghua Wu Gaozhan Liu Jing Zhang Nini Zhang Xiayin Yao . 液相法制备硫化物固体电解质及其在全固态锂电池中的应用. Acta Physico-Chimica Sinica, 2025, 41(1): 2309019-. doi: 10.3866/PKU.WHXB202309019

    6. [6]

      Zhaoxuan ZHULixin WANGXiaoning TANGLong LIYan SHIJiaojing SHAO . Application of poly(vinyl alcohol) conductive hydrogel electrolytes in zinc ion batteries. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 893-902. doi: 10.11862/CJIC.20240368

    7. [7]

      Tao Jiang Yuting Wang Lüjin Gao Yi Zou Bowen Zhu Li Chen Xianzeng Li . Experimental Design for the Preparation of Composite Solid Electrolytes for Application in All-Solid-State Batteries: Exploration of Comprehensive Chemistry Laboratory Teaching. University Chemistry, 2024, 39(2): 371-378. doi: 10.3866/PKU.DXHX202308057

    8. [8]

      Junke LIUKungui ZHENGWenjing SUNGaoyang BAIGuodong BAIZuwei YINYao ZHOUJuntao LI . Preparation of modified high-nickel layered cathode with LiAlO2/cyclopolyacrylonitrile dual-functional coating. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1461-1473. doi: 10.11862/CJIC.20240189

    9. [9]

      Qingqing SHENXiangbowen DUKaicheng QIANZhikang JINZheng FANGTong WEIRenhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028

    10. [10]

      Shuang Yang Qun Wang Caiqin Miao Ziqi Geng Xinran Li Yang Li Xiaohong Wu . Ideological and Political Education Design for Research-Oriented Experimental Course of Highly Efficient Hydrogen Production from Water Electrolysis in Aerospace Perspective. University Chemistry, 2024, 39(11): 269-277. doi: 10.12461/PKU.DXHX202403044

    11. [11]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    12. [12]

      Xinlong WANGZhenguo CHENGGuo WANGXiaokuen ZHANGYong XIANGXinquan WANG . Enhancement of the fragile interface of high voltage LiCoO2 by surface gradient permeation of trace amounts of Mg/F. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 571-580. doi: 10.11862/CJIC.20230259

    13. [13]

      Liangliang Song Haoyan Liang Shunqing Li Bao Qiu Zhaoping Liu . 超高比能电池高锰富锂层状氧化物正极材料面临的挑战与解决策略. Acta Physico-Chimica Sinica, 2025, 41(8): 100085-. doi: 10.1016/j.actphy.2025.100085

    14. [14]

      Chunai Dai Yongsheng Han Luting Yan Zhen Li Yingze Cao . Ideological and Political Design of Solid-liquid Contact Angle Measurement Experiment. University Chemistry, 2024, 39(2): 28-33. doi: 10.3866/PKU.DXHX202306065

    15. [15]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    16. [16]

      Yongmei Liu Lisen Sun Zhen Huang Tao Tu . Curriculum-Based Ideological and Political Design for the Experiment of Methanol Oxidation to Formaldehyde Catalyzed by Electrolytic Silver. University Chemistry, 2024, 39(2): 67-71. doi: 10.3866/PKU.DXHX202308020

    17. [17]

      Chongjing Liu Yujian Xia Pengjun Zhang Shiqiang Wei Dengfeng Cao Beibei Sheng Yongheng Chu Shuangming Chen Li Song Xiaosong Liu . Understanding Solid-Gas and Solid-Liquid Interfaces through Near Ambient Pressure X-Ray Photoelectron Spectroscopy. Acta Physico-Chimica Sinica, 2025, 41(2): 100013-. doi: 10.3866/PKU.WHXB202309036

    18. [18]

      Guang Huang Lei Li Dingyi Zhang Xingze Wang Yugai Huang Wenhui Liang Zhifen Guo Wenmei Jiao . Cobalt’s Valor, Nickel’s Foe: A Comprehensive Chemical Experiment Utilizing a Cobalt-based Imidazolate Framework for Nickel Ion Removal. University Chemistry, 2024, 39(8): 174-183. doi: 10.3866/PKU.DXHX202311051

    19. [19]

      Yuanyuan JIANGFangfang TUYuhong ZHANGShi CHENJiayuan XIANGXinhui XIA . Preparation and electrochemical properties of high-stability cathode prelithiation additive. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1101-1111. doi: 10.11862/CJIC.20240441

    20. [20]

      Yutong Dong Huiling Xu Yucheng Zhao Zexin Zhang Ying Wang . The Hidden World of Surface Tension and Droplets. University Chemistry, 2024, 39(6): 357-365. doi: 10.3866/PKU.DXHX202312022

Metrics
  • PDF Downloads(0)
  • Abstract views(12)
  • HTML views(0)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return